Query Evaluation Over SLP-Represented Document Databases With Complex Document Editing

Markus L. Schmid, Nicole Schweikardt

HU Berlin, Germany

PODS 2022

The Data Model

Document Databases

Finite alphabet
$$\Sigma = \{a, b, c, \ldots\}$$
.

• Documents: strings over Σ , e.g., D = abaacbca.

Document Databases: Sets of documents, e.g.,

$$\begin{split} DDB &= \{D_1, D_2, D_3\} \\ &= \{\texttt{ababbcabca}, \texttt{bcabcaabbca}, \texttt{ababbca}\}\,. \end{split}$$

Evaluation Task

Given a document database DDB, evaluate a given query q over some $D \in DDB$.

Evaluation Task

Given a document database DDB, evaluate a given query q over some $D \in DDB$.

Prominent choice as query class:

Document spanners

Evaluation Task

Given a document database DDB, evaluate a given query q over some $D \in DDB$.

Prominent choice as query class:

Document spanners

D = abbabccabc

Evaluation Task

```
Given a document database DDB, evaluate a given query q over some D \in DDB.
```

Prominent choice as query class:

Document spannersXyz $[2,5\rangle$ $[4,7\rangle$ $[1,10\rangle$ $[3,5\rangle$ $[5,8\rangle$ $[4,7\rangle$ $[1,3\rangle$ $[3,10\rangle$ $[2,4\rangle$ \vdots \vdots \vdots

Evaluation Task

```
Given a document database DDB, evaluate a given query q over some D \in DDB.
```

Prominent choice as query class:

Document spanners $D = abbabccabc \implies \begin{array}{c|c} x & y & z \\ \hline [2,5\rangle & [4,7\rangle & [1,10\rangle \\ \hline [3,5\rangle & [5,8\rangle & [4,7\rangle \\ \hline [1,3\rangle & [3,10\rangle & [2,4\rangle \\ \hline \vdots & \vdots & \vdots \end{array}$

Evaluation Task

```
Given a document database DDB, evaluate a given query q over some D \in DDB.
```

Prominent choice as query class:

Document spanners $D = abbabccabc \implies \begin{array}{c|c} x & y & z \\ \hline [2,5\rangle & [4,7\rangle & [1,10\rangle \\ \hline [3,5\rangle & [5,8\rangle & [4,7\rangle \\ \hline [1,3\rangle & [3,10\rangle & [2,4\rangle \\ \hline \vdots & \vdots & \vdots \end{array}$

Evaluation Task

Given a document database DDB, evaluate a given query q over some $D \in DDB$.

Prominent choice as query class:

Document spanners $D = abbabccabc \implies \begin{array}{c|c} x & y & z \\ \hline [2,5\rangle & [4,7\rangle & [1,10\rangle \\ \hline [3,5\rangle & [5,8\rangle & [4,7\rangle \\ \hline [1,3\rangle & [3,10\rangle & [2,4\rangle \\ \hline \vdots & \vdots & \vdots \end{array}$

Compressed Strings

- In practice, strings have many redundancies (~→ are highly compressible).
- Many practical (dictionary based) compression schemes for strings exist.
- ► Good compression rates, low (near linear-time) running times.

String-Problem P

Input: A string w. Task: Solve P for w. Running time: f(|w|).

String-Problem P (compressed)

String-Problem P (compressed)

uncompressed	VS.	compressed
f(w)	VS.	g(S)

String-Problem P (compressed)

uncompressed	VS.	compressed
f(w)	vs.	g(S)
O(w)	VS.	poly(S)

String-Problem P (compressed)

uncompressed	VS.	compressed
f(w)	VS.	g(S)
O(w)	VS.	poly(S)
O(w)	VS.	polylog(w)

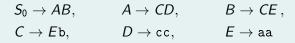
Main idea: Represent a string w by a context-free grammar S (in chomsky normal form) for language $\{w\}$.

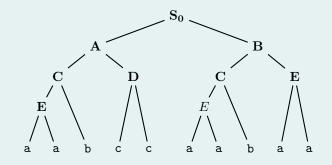
Main idea: Represent a string w by a context-free grammar S (in chomsky normal form) for language $\{w\}$.

Example

Main idea: Represent a string w by a context-free grammar S (in chomsky normal form) for language $\{w\}$.

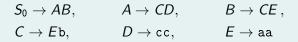
Example

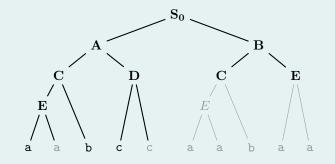




Main idea: Represent a string w by a context-free grammar S (in chomsky normal form) for language $\{w\}$.

Example



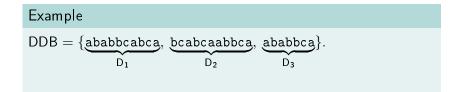


Good Properties of SLPs

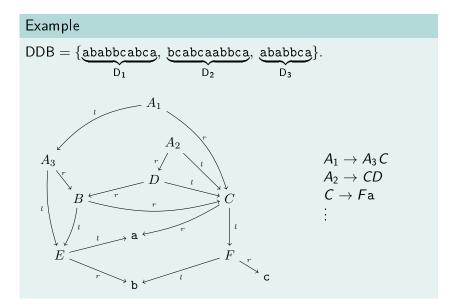
SLPs are intensely researched in TCS and many things are known:

- Exponential compression rates.
- ► SLPs are mathematically easy to handle (⇒ good for theoretical considerations).
- High practical relevance (SLPs cover many practically applied dictionary-based compression schemes).
- Many approximations and heuristics exist that efficiently compute small SLPs.
- SLPs are suitable for algorithmics on compressed strings: comparison, pattern matching, membership in a regular language, retrieving subwords, etc.

Straight-Line Programs for Document Databases



Straight-Line Programs for Document Databases



Straight-Line Programs for Document Databases



Spanner Evaluation Over SLP-Compressed Documents

What about database theory (i.e., information extraction)?

Theorem (S., Schweikardt, PODS'21)

Let D be a document represented by an SLP S and let M be a document spanner. The set $\llbracket M \rrbracket(D)$ can be enumerated with preprocessing time O(|S|) and delay $O(\log |D|)$.¹

¹In data-complexity.

Spanner Evaluation Over SLP-Compressed Documents

What about database theory (i.e., information extraction)?

Theorem (S., Schweikardt, PODS'21)

Let D be a document represented by an SLP S and let M be a document spanner. The set $\llbracket M \rrbracket(D)$ can be enumerated with preprocessing time O(|S|) and delay $O(\log |D|)$.¹

Remark

Delay $O(\log |D|)$ independent of the size |S| is possible since S is **balanced** in the preprocessing.

(Balanced SLPs will play a central role in the following).

¹In data-complexity.

This Paper: Dynamic Setting

Basic Setting

Given:

- \blacktriangleright A document database DDB represented by an SLP $\mathcal{S}.$
- Data structures for enumerating spanners M₁, M₂,... on documents of DDB.

This Paper: Dynamic Setting

Basic Setting

Given:

- \blacktriangleright A document database DDB represented by an SLP S.
- Data structures for enumerating spanners M₁, M₂,... on documents of DDB.

Task:

"Update" DDB by directly updating S.

This Paper: Dynamic Setting

Basic Setting

Given:

- A document database DDB represented by an SLP S.
- Data structures for enumerating spanners M₁, M₂,... on documents of DDB.

Task:

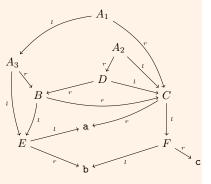
"Update" DDB by directly updating S.

Additional conditions:

- ► Do not decompress S.
- Also update the data structures for enumeration.
- ► Maintain the "balancedness" property of S.

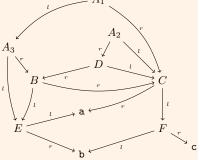
Notations for Balancedness

Let A be a node of an SLP S that represents a document database.



Notations for Balancedness

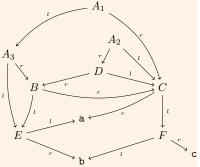
Let A be a node of an SLP S that represents a document database. ord(A) is the length of a longest path from A to a sink node. (E. g., ord(A_3) = 4)



Notations for Balancedness

Let A be a node of an SLP S that represents a document database. ord(A) is the length of a longest path from A to a sink node. (E. g., $ord(A_3) = 4$)

Let
$$A \rightarrow BC$$
.
bal $(A) = \operatorname{ord}(B) - \operatorname{ord}(C)$.
(E. g., bal $(A_3) = -2$)

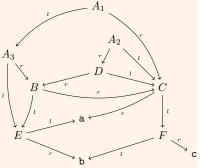


Notations for Balancedness

Let A be a node of an SLP S that represents a document database. ord(A) is the length of a longest path from A to a sink node. (E. g., $ord(A_3) = 4$)

Let
$$A \rightarrow BC$$
.
bal $(A) = \operatorname{ord}(B) - \operatorname{ord}(C)$.
(E. g., bal $(A_3) = -2$)

A is c-shallow (for a constant $c \in \mathbb{N}$) if $\operatorname{ord}(A) \leq c \cdot \log |\mathfrak{D}(A)|$.

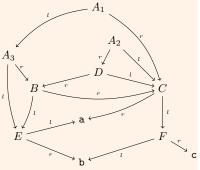


Notations for Balancedness

Let A be a node of an SLP S that represents a document database. ord(A) is the length of a longest path from A to a sink node. (E. g., $ord(A_3) = 4$)

Let
$$A \rightarrow BC$$
.
bal $(A) = \operatorname{ord}(B) - \operatorname{ord}(C)$.
(E. g., bal $(A_3) = -2$)

A is c-shallow (for a constant $c \in \mathbb{N}$) if $\operatorname{ord}(A) \leq c \cdot \log |\mathfrak{D}(A)|$. A is balanced if $\operatorname{bal}(A) \in \{-1, 0, 1\}$.



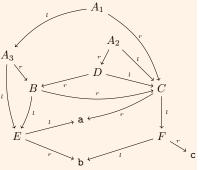
Notations for Balancedness

Let A be a node of an SLP S that represents a document database. ord(A) is the length of a longest path from A to a sink node. (E. g., $ord(A_3) = 4$)

Let
$$A \rightarrow BC$$
.
bal $(A) = \operatorname{ord}(B) - \operatorname{ord}(C)$.
(E. g., bal $(A_3) = -2$)

A is c-shallow (for a constant $c \in \mathbb{N}$) if $\operatorname{ord}(A) \leq c \cdot \log |\mathfrak{D}(A)|$. A is balanced if $\operatorname{bal}(A) \in \{-1, 0, 1\}$.

S is *c*-shallow or strongly balanced if all nodes are *c*-shallow or balanced, respectively.



Important Results About SLP-Balancing

A given SLP ${\mathcal S}$ for a single document D \ldots

... can be made *c*-shallow in time O(|S|). (Ganardi, Jez, Lohrey, JACM 2021)

Important Results About SLP-Balancing

A given SLP ${\mathcal S}$ for a single document D \ldots

... can be made *c*-shallow in time O(|S|). (Ganardi, Jez, Lohrey, JACM 2021)

... can be made strongly balanced in time O($|S| \cdot \log |D|$). (Rytter, TCS 2003)

Balanced SLPs

Important Results About SLP-Balancing

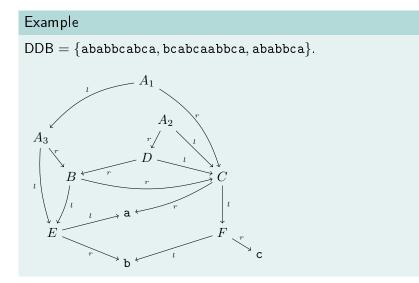
A given SLP ${\mathcal S}$ for a single document D \ldots

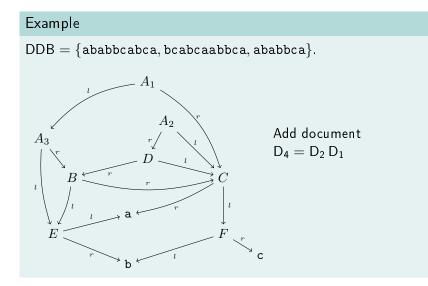
... can be made *c*-shallow in time O(|S|). (Ganardi, Jez, Lohrey, JACM 2021)

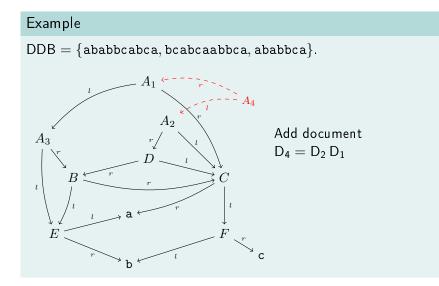
... can be made strongly balanced in time O($|S| \cdot \log |D|$). (Rytter, TCS 2003)

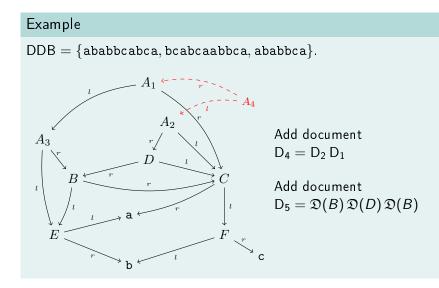
... can in general not be made strongly balanced without a size increase by a factor of $\Omega(\log \mid D \mid).$

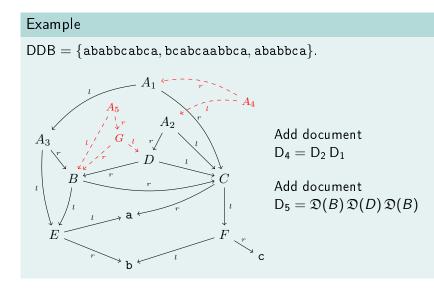
(Ganardi, ESA 2021)











Complex Document Editing

Notation

Let D be a document and $i, j \in \{1, 2, ..., |D|\}$. D[*i*..*j*] is D's factor from position *i* to position *j*.

Complex Document Editing

Notation

Let D be a document and $i, j \in \{1, 2, ..., |D|\}$. D[*i*..*j*] is D's factor from position *i* to position *j*.

Basic CDE-Algebra Operationsconcat(D, D') = $D \cdot D'$,extract(D, i, j) = D[i..j],delete(D, i, j) = $D[1..i - 1] \cdot D[j + 1..|D|]$,insert(D, D', k) = $D[1..k - 1] \cdot D' \cdot D[k..|D|]$,copy(D, i, j, k) = $D[1..k - 1] \cdot D[i..j] \cdot D[k..|D|]$.

Complex Document Editing

Notation

Let D be a document and $i, j \in \{1, 2, ..., |D|\}$. D[*i*..*j*] is D's factor from position *i* to position *j*.

Basic CDE-Algebra Operations		
concat(D,D')	=	$D\cdotD'$,
extract(D, <i>i</i> , <i>j</i>)	=	D[<i>ij</i>],
delete(D, i, j)	=	$D[1i-1] \cdot D[j+1 D]$,
insert(D,D',k)	=	$D[1k-1] \cdot D' \cdot D[k D]$,
copy(D, i, j, k)	=	$D[1k-1] \cdot D[ij] \cdot D[k D]$.

CDE-Expressions

Expressions over DDB's documents using the basic CDE-algebra operations.

 $\mathsf{E}. \mathsf{g}., \varphi = \mathsf{concat}(\mathsf{D}_1, \mathsf{insert}(\mathsf{D}_3, \mathsf{extract}(\mathsf{D}_7, 5, 21), 12))$

Our Main Result

CDE Extension Theorem

Let DDB be represented by a strongly balanced SLP S, let φ be a CDE-expression over DDB.

We can construct a strongly balanced SLP \mathcal{S}' for

 $\mathsf{DDB} \cup \{\mathsf{eval}(\varphi)\}$

in time

 $O(|\varphi|^2 + |\varphi| \cdot \log(d_{\max})),$

where $d_{max} = \{ | D | | D \in DDB \}.$

Our Main Result

Corollary

Let DDB be represented by a strongly balanced SLP \mathcal{S} .

Let \mathcal{M} be a class of regular spanners such that every $M \in \mathcal{M}$ can be enumerated on every $D \in DDB$ with delay $O(\log(|D|))$.

Given a CDE-expression φ over DDB, we can construct in time

$$O(|\mathcal{M}| \cdot (|\varphi|^2 + |\varphi| \cdot \log(\mathsf{d}_{\mathsf{max}})))$$

a strongly balanced SLP \mathcal{S}' for

$$\mathsf{DDB}' = \mathsf{DDB} \cup \{\mathsf{eval}(\varphi)\}$$

and data structures such that we can now enumerate every $M \in \mathcal{M}$ on every $\mathsf{D} \in \mathsf{DDB}'$ with delay $\mathsf{O}(\mathsf{log}(|\mathsf{D}|))$.

Proof Ideas

Proof Roadmap

For each of the basic CDE-operation, prove a lemma that "handles" this operation.
(I. e., "For nodes B and C, create a node that derives concat(D(B), D(C))", "For node B and i, j, create a node that derives extract(D(B), i, j)", etc.)

Proof Ideas

Proof Roadmap

For each of the basic CDE-operation, prove a lemma that "handles" this operation.

(I. e., "For nodes B and C, create a node that derives $concat(\mathfrak{D}(B), \mathfrak{D}(C))$ ", "For node B and i, j, create a node that derives $extract(\mathfrak{D}(B), i, j)$ ", etc.)

 For a given CDE-expression φ, we can then apply these lemmas "bottom-up" (along φ's syntax tree).

Proof Ideas

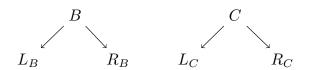
Proof Roadmap

For each of the basic CDE-operation, prove a lemma that "handles" this operation.

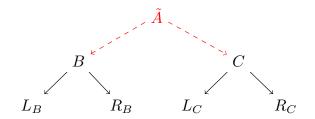
(I. e., "For nodes B and C, create a node that derives $concat(\mathfrak{D}(B), \mathfrak{D}(C))$ ", "For node B and i, j, create a node that derives $extract(\mathfrak{D}(B), i, j)$ ", etc.)

- For a given CDE-expression φ, we can then apply these lemmas "bottom-up" (along φ's syntax tree).
- Lemmas for concat(·, ·) and extract(·, ·, ·) are sufficient (since all CDE-operations can be defined by applications of these two operations).

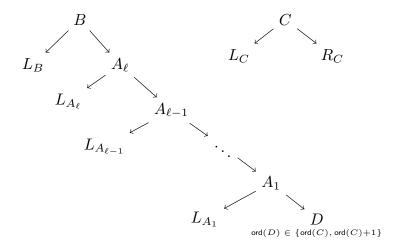
Proof Sketch for Concatenation Lemma



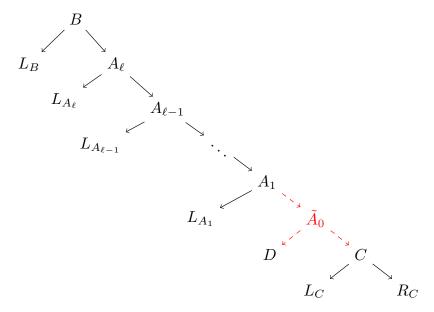
Proof Sketch for Concatenation Lemma



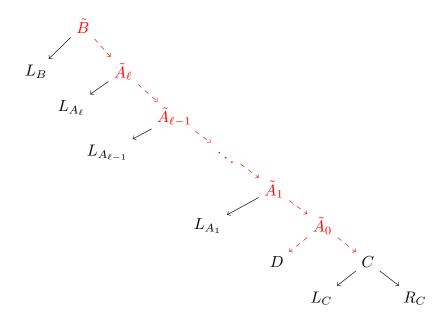
Proof Sketch for Concatenation



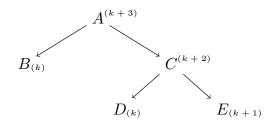
Proof Sketch for Concatenation



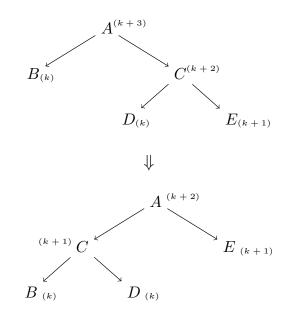
Proof Sketch for Concatenation



Rotations



Rotations



Related Question Discussed in the Paper

- Adding a completely new document (in compressed form or plain text).
- Building an SLP-represented document database from scratch.
- Retrieving SLP-represented documents for the spans extracted by a spanner.
- Overall setting works for other evaluation problems like testing, non-emptiness, etc.
- Extends to general finite transducers as extractors.

Thank you very much for your attention.