
Query Evaluation Over
SLP-Represented Document Databases

With Complex Document Editing

Markus L. Schmid, Nicole Schweikardt

HU Berlin, Germany

PODS 2022

The Data Model

Document Databases

▶ Finite alphabet Σ = {a, b, c, . . .}.

▶ Documents: strings over Σ, e. g., D = abaacbca.

▶ Document Databases: Sets of documents, e. g.,

DDB = {D1,D2,D3}
= {ababbcabca, bcabcaabbca, ababbca} .

Information Extraction

Evaluation Task

Given a document database DDB,

evaluate a given query q over some D ∈ DDB.

Prominent choice as query class:

Document spanners

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Information Extraction

Evaluation Task

Given a document database DDB,

evaluate a given query q over some D ∈ DDB.

Prominent choice as query class:

Document spanners

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Information Extraction

Evaluation Task

Given a document database DDB,

evaluate a given query q over some D ∈ DDB.

Prominent choice as query class:

Document spanners

D = a b b a b c c a b c

=⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Information Extraction

Evaluation Task

Given a document database DDB,

evaluate a given query q over some D ∈ DDB.

Prominent choice as query class:

Document spanners

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Information Extraction

Evaluation Task

Given a document database DDB,

evaluate a given query q over some D ∈ DDB.

Prominent choice as query class:

Document spanners

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Information Extraction

Evaluation Task

Given a document database DDB,

evaluate a given query q over some D ∈ DDB.

Prominent choice as query class:

Document spanners

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Information Extraction

Evaluation Task

Given a document database DDB,

evaluate a given query q over some D ∈ DDB.

Prominent choice as query class:

Document spanners

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Compressed Strings

▶ In practice, strings have many redundancies

(; are highly compressible).

▶ Many practical (dictionary based) compression schemes for

strings exist.

▶ Good compression rates, low (near linear-time) running times.

Algorithmics on Compressed Strings

String-Problem P

Input: A string w .

Task: Solve P for w .

Running time: f (|w |).

uncompressed vs. compressed

f (|w |) vs. g(|S |)
O(|w |) vs. poly(|S |)
O(|w |) vs. polylog(|w |)

Algorithmics on Compressed Strings

String-Problem P (compressed)

Input: A compressed form S of string w .

Task: Solve P for w (without explicitly constructing w).

Running time: f (|S |).

uncompressed vs. compressed

f (|w |) vs. g(|S |)
O(|w |) vs. poly(|S |)
O(|w |) vs. polylog(|w |)

Algorithmics on Compressed Strings

String-Problem P (compressed)

Input: A compressed form S of string w .

Task: Solve P for w (without explicitly constructing w).

Running time: f (|S |).

uncompressed vs. compressed

f (|w |) vs. g(|S |)

O(|w |) vs. poly(|S |)
O(|w |) vs. polylog(|w |)

Algorithmics on Compressed Strings

String-Problem P (compressed)

Input: A compressed form S of string w .

Task: Solve P for w (without explicitly constructing w).

Running time: f (|S |).

uncompressed vs. compressed

f (|w |) vs. g(|S |)
O(|w |) vs. poly(|S |)

O(|w |) vs. polylog(|w |)

Algorithmics on Compressed Strings

String-Problem P (compressed)

Input: A compressed form S of string w .

Task: Solve P for w (without explicitly constructing w).

Running time: f (|S |).

uncompressed vs. compressed

f (|w |) vs. g(|S |)
O(|w |) vs. poly(|S |)
O(|w |) vs. polylog(|w |)

Straight-Line Programs (SLPs)
Main idea: Represent a string w by a context-free grammar S (in

chomsky normal form) for language {w}.

Example

S0 → AB, A → CD, B → CE ,

C → Eb, D → cc, E → aa

S0

A B

C D C E

E E

a a a a a ab bc c

Straight-Line Programs (SLPs)
Main idea: Represent a string w by a context-free grammar S (in

chomsky normal form) for language {w}.

Example

S0 → AB, A → CD, B → CE ,

C → Eb, D → cc, E → aa

S0

A B

C D C E

E E

a a a a a ab bc c

Straight-Line Programs (SLPs)
Main idea: Represent a string w by a context-free grammar S (in

chomsky normal form) for language {w}.

Example

S0 → AB, A → CD, B → CE ,

C → Eb, D → cc, E → aa

S0

A B

C D C E

E E

a a a a a ab bc c

Straight-Line Programs (SLPs)
Main idea: Represent a string w by a context-free grammar S (in

chomsky normal form) for language {w}.

Example

S0 → AB, A → CD, B → CE ,

C → Eb, D → cc, E → aa

S0

A B

C D C E

E E

a a a a a ab bc c

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

▶ Exponential compression rates.

▶ SLPs are mathematically easy to handle (⇒ good for

theoretical considerations).

▶ High practical relevance (SLPs cover many practically applied

dictionary-based compression schemes).

▶ Many approximations and heuristics exist that e�ciently

compute small SLPs.

▶ SLPs are suitable for algorithmics on compressed strings:

comparison, pattern matching, membership in a regular

language, retrieving subwords, etc.

Straight-Line Programs for Document Databases

Example

DDB = {ababbcabca︸ ︷︷ ︸
D1

, bcabcaabbca︸ ︷︷ ︸
D2

, ababbca︸ ︷︷ ︸
D3

}.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A1 → A3C
A2 → CD
C → Fa
...

Straight-Line Programs for Document Databases

Example

DDB = {ababbcabca︸ ︷︷ ︸
D1

, bcabcaabbca︸ ︷︷ ︸
D2

, ababbca︸ ︷︷ ︸
D3

}.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A1 → A3C
A2 → CD
C → Fa
...

Straight-Line Programs for Document Databases

Example

DDB = {ababbcabca︸ ︷︷ ︸
D1=D(A1)

, bcabcaabbca︸ ︷︷ ︸
D2=D(A2)

, ababbca︸ ︷︷ ︸
D3=D(A3)

}.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A1 → A3C
A2 → CD
C → Fa
...

Spanner Evaluation Over SLP-Compressed Documents

What about database theory (i. e., information extraction)?

Theorem (S., Schweikardt, PODS'21)

Let D be a document represented by an SLP S and let M be a

document spanner. The set JMK(D) can be enumerated with

preprocessing time O(|S|) and delay O(log |D |).1

Remark

Delay O(log |D |) independent of the size |S| is possible since S is

balanced in the preprocessing.

(Balanced SLPs will play a central role in the following).

1In data-complexity.

Spanner Evaluation Over SLP-Compressed Documents

What about database theory (i. e., information extraction)?

Theorem (S., Schweikardt, PODS'21)

Let D be a document represented by an SLP S and let M be a

document spanner. The set JMK(D) can be enumerated with

preprocessing time O(|S|) and delay O(log |D |).1

Remark

Delay O(log |D |) independent of the size |S| is possible since S is

balanced in the preprocessing.

(Balanced SLPs will play a central role in the following).

1In data-complexity.

This Paper: Dynamic Setting

Basic Setting

Given:

▶ A document database DDB represented by an SLP S.
▶ Data structures for enumerating spanners M1,M2, . . . on

documents of DDB.

Task:

▶ �Update� DDB by directly updating S.
Additional conditions:

▶ Do not decompress S.
▶ Also update the data structures for enumeration.

▶ Maintain the �balancedness� property of S.

This Paper: Dynamic Setting

Basic Setting

Given:

▶ A document database DDB represented by an SLP S.
▶ Data structures for enumerating spanners M1,M2, . . . on

documents of DDB.

Task:

▶ �Update� DDB by directly updating S.

Additional conditions:

▶ Do not decompress S.
▶ Also update the data structures for enumeration.

▶ Maintain the �balancedness� property of S.

This Paper: Dynamic Setting

Basic Setting

Given:

▶ A document database DDB represented by an SLP S.
▶ Data structures for enumerating spanners M1,M2, . . . on

documents of DDB.

Task:

▶ �Update� DDB by directly updating S.
Additional conditions:

▶ Do not decompress S.
▶ Also update the data structures for enumeration.

▶ Maintain the �balancedness� property of S.

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.

ord(A) is the length of a longest

path from A to a sink node.

(E. g., ord(A3) = 4)

Let A → BC .
bal(A) = ord(B)− ord(C).
(E. g., bal(A3) = −2)

A is c-shallow (for a constant

c ∈ N) if ord(A) ≤ c · log |D(A)|.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A is balanced if bal(A) ∈ {−1, 0, 1}.

S is c-shallow or strongly balanced if all nodes are

c-shallow or balanced, respectively.

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.

ord(A) is the length of a longest

path from A to a sink node.

(E. g., ord(A3) = 4)

Let A → BC .
bal(A) = ord(B)− ord(C).
(E. g., bal(A3) = −2)

A is c-shallow (for a constant

c ∈ N) if ord(A) ≤ c · log |D(A)|.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A is balanced if bal(A) ∈ {−1, 0, 1}.

S is c-shallow or strongly balanced if all nodes are

c-shallow or balanced, respectively.

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.

ord(A) is the length of a longest

path from A to a sink node.

(E. g., ord(A3) = 4)

Let A → BC .
bal(A) = ord(B)− ord(C).
(E. g., bal(A3) = −2)

A is c-shallow (for a constant

c ∈ N) if ord(A) ≤ c · log |D(A)|.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A is balanced if bal(A) ∈ {−1, 0, 1}.

S is c-shallow or strongly balanced if all nodes are

c-shallow or balanced, respectively.

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.

ord(A) is the length of a longest

path from A to a sink node.

(E. g., ord(A3) = 4)

Let A → BC .
bal(A) = ord(B)− ord(C).
(E. g., bal(A3) = −2)

A is c-shallow (for a constant

c ∈ N) if ord(A) ≤ c · log |D(A)|.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A is balanced if bal(A) ∈ {−1, 0, 1}.

S is c-shallow or strongly balanced if all nodes are

c-shallow or balanced, respectively.

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.

ord(A) is the length of a longest

path from A to a sink node.

(E. g., ord(A3) = 4)

Let A → BC .
bal(A) = ord(B)− ord(C).
(E. g., bal(A3) = −2)

A is c-shallow (for a constant

c ∈ N) if ord(A) ≤ c · log |D(A)|.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A is balanced if bal(A) ∈ {−1, 0, 1}.

S is c-shallow or strongly balanced if all nodes are

c-shallow or balanced, respectively.

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.

ord(A) is the length of a longest

path from A to a sink node.

(E. g., ord(A3) = 4)

Let A → BC .
bal(A) = ord(B)− ord(C).
(E. g., bal(A3) = −2)

A is c-shallow (for a constant

c ∈ N) if ord(A) ≤ c · log |D(A)|.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

A is balanced if bal(A) ∈ {−1, 0, 1}.

S is c-shallow or strongly balanced if all nodes are

c-shallow or balanced, respectively.

Balanced SLPs

Important Results About SLP-Balancing

A given SLP S for a single document D . . .

. . . can be made c-shallow in time O(|S|).
(Ganardi, Jez, Lohrey, JACM 2021)

. . . can be made strongly balanced in time O(|S| · log |D |).
(Rytter, TCS 2003)

. . . can in general not be made strongly balanced without a size

increase by a factor of Ω(log |D |).
(Ganardi, ESA 2021)

Balanced SLPs

Important Results About SLP-Balancing

A given SLP S for a single document D . . .

. . . can be made c-shallow in time O(|S|).
(Ganardi, Jez, Lohrey, JACM 2021)

. . . can be made strongly balanced in time O(|S| · log |D |).
(Rytter, TCS 2003)

. . . can in general not be made strongly balanced without a size

increase by a factor of Ω(log |D |).
(Ganardi, ESA 2021)

Balanced SLPs

Important Results About SLP-Balancing

A given SLP S for a single document D . . .

. . . can be made c-shallow in time O(|S|).
(Ganardi, Jez, Lohrey, JACM 2021)

. . . can be made strongly balanced in time O(|S| · log |D |).
(Rytter, TCS 2003)

. . . can in general not be made strongly balanced without a size

increase by a factor of Ω(log |D |).
(Ganardi, ESA 2021)

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

Add document

D4 = D2D1

Add document

D5 = D(B)D(D)D(B)

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

A1

A2

B

D

C

E

a

F

A3

b
c

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

Add document

D4 = D2D1

Add document

D5 = D(B)D(D)D(B)

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

A1

A2

B

D

C

E

a

F

A3

b
c

A4

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

l

r

Add document

D4 = D2D1

Add document

D5 = D(B)D(D)D(B)

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

A1

A2

B

D

C

E

a

F

A3

b
c

A4

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

l

r

Add document

D4 = D2D1

Add document

D5 = D(B)D(D)D(B)

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

A1

A2

B

D

C

E

a

F

A3

b
c

A4A5

G

l

r

l
r

l

r

l

r

lr

l

r

l

r l

r

l

r

r

l

r

l
Add document

D4 = D2D1

Add document

D5 = D(B)D(D)D(B)

Complex Document Editing

Notation

Let D be a document and i , j ∈ {1, 2, . . . , |D |}.
D[i ..j] is D's factor from position i to position j .

Basic CDE-Algebra Operations

concat(D,D′) = D ·D′,
extract(D, i , j) = D[i ..j] ,
delete(D, i , j) = D[1..i − 1] · D[j + 1..|D |] ,
insert(D,D′, k) = D[1..k − 1] · D′ ·D[k..|D |] ,
copy(D, i , j , k) = D[1..k − 1] · D[i ..j] · D[k ..|D |] .

CDE-Expressions

Expressions over DDB's documents using the basic CDE-algebra

operations.

E. g., φ = concat(D1, insert(D3, extract(D7, 5, 21), 12))

Complex Document Editing

Notation

Let D be a document and i , j ∈ {1, 2, . . . , |D |}.
D[i ..j] is D's factor from position i to position j .

Basic CDE-Algebra Operations

concat(D,D′) = D ·D′,
extract(D, i , j) = D[i ..j] ,
delete(D, i , j) = D[1..i − 1] · D[j + 1..|D |] ,
insert(D,D′, k) = D[1..k − 1] · D′ ·D[k..|D |] ,
copy(D, i , j , k) = D[1..k − 1] · D[i ..j] · D[k ..|D |] .

CDE-Expressions

Expressions over DDB's documents using the basic CDE-algebra

operations.

E. g., φ = concat(D1, insert(D3, extract(D7, 5, 21), 12))

Complex Document Editing

Notation

Let D be a document and i , j ∈ {1, 2, . . . , |D |}.
D[i ..j] is D's factor from position i to position j .

Basic CDE-Algebra Operations

concat(D,D′) = D ·D′,
extract(D, i , j) = D[i ..j] ,
delete(D, i , j) = D[1..i − 1] · D[j + 1..|D |] ,
insert(D,D′, k) = D[1..k − 1] · D′ ·D[k..|D |] ,
copy(D, i , j , k) = D[1..k − 1] · D[i ..j] · D[k ..|D |] .

CDE-Expressions

Expressions over DDB's documents using the basic CDE-algebra

operations.

E. g., φ = concat(D1, insert(D3, extract(D7, 5, 21), 12))

Our Main Result

CDE Extension Theorem

Let DDB be represented by a strongly balanced SLP S, let φ be a

CDE-expression over DDB.

We can construct a strongly balanced SLP S ′ for

DDB∪{eval(φ)}

in time

O(|φ|2 + |φ|· log(dmax)) ,

where dmax = {|D | | D ∈ DDB}.

Our Main Result

Corollary

Let DDB be represented by a strongly balanced SLP S.

Let M be a class of regular spanners such that every M ∈ M can

be enumerated on every D ∈ DDB with delay O(log(|D |)).

Given a CDE-expression φ over DDB, we can construct in time

O(|M|·(|φ|2 + |φ|· log(dmax)))

a strongly balanced SLP S ′ for

DDB′ = DDB∪{eval(φ)}

and data structures such that we can now enumerate every M ∈ M
on every D ∈ DDB′ with delay O(log(|D |)).

Proof Ideas

Proof Roadmap

▶ For each of the basic CDE-operation, prove a lemma that

�handles� this operation.

(I. e., �For nodes B and C , create a node that derives

concat(D(B),D(C))�, �For node B and i , j , create a node

that derives extract(D(B), i , j)�, etc.)

▶ For a given CDE-expression φ, we can then apply these

lemmas �bottom-up� (along φ's syntax tree).

▶ Lemmas for concat(·, ·) and extract(·, ·, ·) are su�cient

(since all CDE-operations can be de�ned by applications of

these two operations).

Proof Ideas

Proof Roadmap

▶ For each of the basic CDE-operation, prove a lemma that

�handles� this operation.

(I. e., �For nodes B and C , create a node that derives

concat(D(B),D(C))�, �For node B and i , j , create a node

that derives extract(D(B), i , j)�, etc.)

▶ For a given CDE-expression φ, we can then apply these

lemmas �bottom-up� (along φ's syntax tree).

▶ Lemmas for concat(·, ·) and extract(·, ·, ·) are su�cient

(since all CDE-operations can be de�ned by applications of

these two operations).

Proof Ideas

Proof Roadmap

▶ For each of the basic CDE-operation, prove a lemma that

�handles� this operation.

(I. e., �For nodes B and C , create a node that derives

concat(D(B),D(C))�, �For node B and i , j , create a node

that derives extract(D(B), i , j)�, etc.)

▶ For a given CDE-expression φ, we can then apply these

lemmas �bottom-up� (along φ's syntax tree).

▶ Lemmas for concat(·, ·) and extract(·, ·, ·) are su�cient

(since all CDE-operations can be de�ned by applications of

these two operations).

Proof Sketch for Concatenation Lemma

B

LB RB

C

LC RC

Ã

Proof Sketch for Concatenation Lemma

B

LB RB

C

LC RC

Ã

Proof Sketch for Concatenation

B

LB Aℓ

LAℓ Aℓ−1

LAℓ−1
. . .

A1

LA1 D

C

LC RC

ord(D) ∈ {ord(C), ord(C)+1}

Proof Sketch for Concatenation

B

LB Aℓ

LAℓ Aℓ−1

LAℓ−1
. . .

A1

LA1 Ã0

D C

LC RC

Proof Sketch for Concatenation

B̃

LB Ãℓ

LAℓ Ãℓ−1

LAℓ−1
. . .

Ã1

LA1 Ã0

D C

LC RC

Rotations

A

B C

D E

(k + 3)

(k)
(k + 2)

(k) (k + 1)

⇓

A

C E

B D

(k + 2)

(k + 1)
(k + 1)

(k) (k)

Rotations

A

B C

D E

(k + 3)

(k)
(k + 2)

(k) (k + 1)

⇓

A

C E

B D

(k + 2)

(k + 1)
(k + 1)

(k) (k)

Related Question Discussed in the Paper

▶ Adding a completely new document (in compressed form or

plain text).

▶ Building an SLP-represented document database from scratch.

▶ Retrieving SLP-represented documents for the spans extracted

by a spanner.

▶ Overall setting works for other evaluation problems like testing,

non-emptiness, etc.

▶ Extends to general �nite transducers as extractors.

Thank you very much for your attention.

