Query Evaluation Over
SLP-Represented Document Databases
With Complex Document Editing

Markus L. Schmid, Nicole Schweikardt

HU Berlin, Germany

PODS 2022

The Data Model

Document Databases

» Finite alphabet ¥ = {a,b,c,...}.
» Documents: strings over X, e.g., D = abaacbca.

» Document Databases: Sets of documents, e. g.,

DDB = {D, D5, D3}
= {ababbcabca, bcabcaabbca, ababbca} .

Information Extraction

Evaluation Task

Given a document database DDB,
evaluate a given query g over some D € DDB.

Information Extraction

Evaluation Task

Given a document database DDB,
evaluate a given query g over some D € DDB.

Prominent choice as query class:

Document spanners

Information Extraction

Evaluation Task

Given a document database DDB,
evaluate a given query g over some D € DDB.

Prominent choice as query class:

Document spanners

D= abbabccabc

Information Extraction

Evaluation Task

Given a document database DDB,
evaluate a given query g over some D € DDB.

Prominent choice as query class:

Document spanners

x 1y |z
[2,5) | [4,7) [1,10)
D= abbabccabc = [3,5) | [5,8) [4,7)

[1,3) | [3,10) | [2,4)

Information Extraction

Evaluation Task

Given a document database DDB,
evaluate a given query g over some D € DDB.

Prominent choice as query class:

Document spanners

x 1y |z
[2,5) | [4,7) [1,10)
D= abbabccabc = [3,5) | [5,8) [4,7)

[1,3) | [3,10) | [2,4)

Information Extraction

Evaluation Task

Given a document database DDB,
evaluate a given query g over some D € DDB.

Prominent choice as query class:

Document spanners

x 1y |z
[2,5) | [4,7) [1,10)
D= abbabccabc = [3,5) | [5,8) [4,7)

[1,3) | [3,10) | [2,4)

Information Extraction

Evaluation Task

Given a document database DDB,
evaluate a given query g over some D € DDB.

Prominent choice as query class:

Document spanners

x 1y |z
[2,5) | [4,7) [1,10)
D= abbabccabc = [3,5) | [5,8) [4,7)

[1,3) | [3,10) | [2,4)

Compressed Strings

» In practice, strings have many redundancies
(~ are highly compressible).

» Many practical (dictionary based) compression schemes for
strings exist.

» Good compression rates, low (near linear-time) running times.

Algorithmics on Compressed Strings

String-Problem P

Input: A string w.
Task: Solve P for w.
Running time: f(|w]).

Algorithmics on Compressed Strings

String-Problem P (compressed)

Input: A compressed form S of string w.

Task: Solve P for w (without explicitly constructing w).
Running time: £(|S]).

Algorithmics on Compressed Strings

String-Problem P (compressed)

Input: A compressed form S of string w.

Task: Solve P for w (without explicitly constructing w).
Running time: £(|S]).

uncompressed vs. compressed
F(Iwl) vs. g(|S])

Algorithmics on Compressed Strings

String-Problem P (compressed)

Input: A compressed form S of string w.

Task: Solve P for w (without explicitly constructing w).
Running time: £(|S]).

uncompressed vs. compressed
F(jwl) vs. g(|S])
O(lwl) vs. poly(|S])

Algorithmics on Compressed Strings

String-Problem P (compressed)

Input: A compressed form S of string w.
Task: Solve P for w (without explicitly constructing w).
Running time: £(|S]).

uncompressed vs. compressed

F(lwl) vs. g(|S])
O(|wl) vs. poly(|S])

O(lwl) vs. polylog(|wl)

Straight-Line Programs (SLPs)

Main idea: Represent a string w by a context-free grammar S (in
chomsky normal form) for language {w}.

Straight-Line Programs (SLPs)

Main idea: Represent a string w by a context-free grammar S (in
chomsky normal form) for language {w}.

Example

So — AB, A— CD, B — CE,
C — Ev, D — cc, E — aa

Straight-Line Programs (SLPs)

Main idea: Represent a string w by a context-free grammar S (in
chomsky normal form) for language {w}.

Example
So — AB, A — CD, B — CE,
C — Ev, D — cc, E — aa

A/SO\B

VRN VRN
C D C E
/\ /\

E E

/\ /\

a a b c € a a b a a

Straight-Line Programs (SLPs)

Main idea: Represent a string w by a context-free grammar S (in
chomsky normal form) for language {w}.

Example
So — AB, A — CD, B — CE,
C — Ev, D — cc, E — aa
/ SO \
A B
VRN VRN
C D C E

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

>

>

Exponential compression rates.

SLPs are mathematically easy to handle (= good for
theoretical considerations).

High practical relevance (SLPs cover many practically applied
dictionary-based compression schemes).

Many approximations and heuristics exist that efficiently
compute small SLPs.

SLPs are suitable for algorithmics on compressed strings:
comparison, pattern matching, membership in a regular
language, retrieving subwords, etc.

Straight-Line Programs for Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.
—_——
D1 D, D3

Straight-Line Programs for Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.
—_——
D1 D, D3

A1 —>A3C
AQ-)CD
C— Fa

Straight-Line Programs for Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.
———
D1=D(A1) D2=9(A2) D3=D(As)

A1 —>A3C
A, — CD
C — Fa

Spanner Evaluation Over SLP-Compressed Documents

What about database theory (i. e., information extraction)?

Let D be a document represented by an SLP S and let M be a
document spanner. The set [M](D) can be enumerated with
preprocessing time O(|S|) and delay O(log | D).

'In data-complexity.

Spanner Evaluation Over SLP-Compressed Documents

What about database theory (i. e., information extraction)?

Theorem (S., Schweikardt, PODS'21)

Let D be a document represented by an SLP S and let M be a
document spanner. The set [M](D) can be enumerated with
preprocessing time O(|S|) and delay O(log|D |).1

Remark

Delay O(log| D) independent of the size |S| is possible since S is
balanced in the preprocessing.

(Balanced SLPs will play a central role in the following).

'In data-complexity.

This Paper: Dynamic Setting

Basic Setting
Given:

» A document database DDB represented by an SLP S.

» Data structures for enumerating spanners My, M5, ... on
documents of DDB.

This Paper: Dynamic Setting

Basic Setting

Given:
» A document database DDB represented by an SLP S.

» Data structures for enumerating spanners My, M5, ... on
documents of DDB.

Task:
> “Update” DDB by directly updating S.

This Paper: Dynamic Setting

Basic Setting

Given:
» A document database DDB represented by an SLP S.

» Data structures for enumerating spanners My, M5, ... on
documents of DDB.

Task:

> “Update” DDB by directly updating S.
Additional conditions:

» Do not decompress S.

» Also update the data structures for enumeration.

» Maintain the “balancedness” property of S.

Balanced SLPs

Notations for Balancedness
Let A be a node of an SLP S that represents a document database.

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.
ord(A) is the length of a longest
path from A to a sink node.
(E.g., ord(A3) = 4)

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.
ord(A) is the length of a longest

path from A to a sink node.
(E.g., ord(A3) = 4)

Let A— BC.
bal(A) = ord(B) — ord(C).
(E.g., bal(A3) = —2)

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.
ord(A) is the length of a longest
path from A to a sink node.
(E.g., ord(A3) = 4)

Let A— BC.
bal(A) = ord(B) — ord(C).
(E.g., bal(A3) = —2)

A is c-shallow (for a constant

R
c € N) if ord(A) < c - log| D(A)]. \b/ c

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.

ord(A) is the length of a longest
path from A to a sink node.
(E.g., ord(A3) = 4)

Let A— BC.
bal(A) = ord(B) — ord(C).
(E.g., bal(A3) = —2)

A is c-shallow (for a constant
c € N) if ord(A) < c - log| D(A)|.

A is balanced if bal(A) € {—1,0,1}.

Balanced SLPs

Notations for Balancedness

Let A be a node of an SLP S that represents a document database.
ord(A) is the length of a longest
path from A to a sink node.
(E.g., ord(A3) = 4)

Let A— BC.
bal(A) = ord(B) — ord(C).
(E.g., bal(As) = —2)

A is c-shallow (for a constant

! <
c € N) if ord(A) < c - log| D(A)]. \b/ c

A is balanced if bal(A) € {—1,0,1}.

S is c-shallow or strongly balanced if all nodes are
c-shallow or balanced, respectively.

Balanced SLPs

A given SLP S for a single document D ...

... can be made c-shallow in time O(|S]).
(Ganardi, Jez, Lohrey, JACM 2021)

Balanced SLPs

Important Results About SLP-Balancing
A given SLP S for a single document D ...

... can be made c-shallow in time O(|S|).
(Ganardi, Jez, Lohrey, JACM 2021)

... can be made strongly balanced in time O(|S| - log|D |).
(Rytter, TCS 2003)

Balanced SLPs

Important Results About SLP-Balancing
A given SLP S for a single document D ...

... can be made c-shallow in time O(|S|).
(Ganardi, Jez, Lohrey, JACM 2021)

... can be made strongly balanced in time O(|S| - log|D |).
(Rytter, TCS 2003)

... can in general not be made strongly balanced without a size
increase by a factor of Q(log | D).
(Ganardi, ESA 2021)

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

Add document
Ds = D5 Dy

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

Ay €777

Add document
Ds = D5 Dy

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

Ay €777

Add document
Ds = D5 Dy

Add document
Ds = D(B)®(D)®D(B)

Updating SLP-Represented Document Databases

Example

DDB = {ababbcabca, bcabcaabbca, ababbca}.

Add document
Ds = D5 Dy

Add document
Ds = D(B)®(D)®D(B)

Complex Document Editing

Notation

Let D be a document and /,j € {1,2,...,|D|}.
DJ[i..j] is D’s factor from position i to position j.

Complex Document Editing

Notation

Let D be a document and /,j € {1,2,...,|D|}.
DJ[i..j] is D’s factor from position i to position j.

Basic CDE-Algebra Operations

concat(D,D’) = D-D/,
extract(D,/,j) = D[i.j],
delete(D,i,j) = D[l..i—1]-D[j+1..|D]],
insert(D,D’, k) = DJ[l..k—1]-D'-D[k..|D]],

copy(D,i,j,k) = D[l..k—1]-DJi..j]-D[k..|D]].

Complex Document Editing

Notation

Let D be a document and /,j € {1,2,...,|D|}.
DJ[i..j] is D’s factor from position i to position j.

Basic CDE-Algebra Operations

concat(D,D’) = D-D/,

extract(D,/,j) = D[i.j],

delete(D,i,j) = D[l..i—1]-D[j+1..|D]],
insert(D,D’, k) = DJ[l..k—1]-D'-D[k..|D]],
copy(D,i,j,k) = D[l.k—1]-D[i..j]-D[k.|D]].

CDE-Expressions

Expressions over DDB’s documents using the basic CDE-algebra
operations.

E.g., ¢ = concat(Dy, insert(Ds3, extract(D7, 5, 21),12))

Our Main Result

CDE Extension Theorem

Let DDB be represented by a strongly balanced SLP S, let o be a
CDE-expression over DDB.

We can construct a strongly balanced SLP S’ for
DDB U{eval(y)}

in time
O(|p|? + || log(dmax))

where dmax = {|D | | D € DDB}.

Our Main Result

Corollary
Let DDB be represented by a strongly balanced SLP S.

Let M be a class of regular spanners such that every M € M can
be enumerated on every D € DDB with delay O(log(| D |)).

Given a CDE-expression over DDB, we can construct in time
O(IM[-(lpl? + | 2] log(dmax)))
a strongly balanced SLP &’ for
DDB’ = DDB U{eval(p)}

and data structures such that we can now enumerate every M € M
on every D € DDB’ with delay O(log(| D |)).

Proof Ideas

Proof Roadmap

» For each of the basic CDE-operation, prove a lemma that
“handles” this operation.
(I.e., “For nodes B and C, create a node that derives
concat(D(B),D(C))", “For node B and i, j, create a node
that derives extract(®(B), i,/)", etc.)

Proof Ideas

Proof Roadmap

» For each of the basic CDE-operation, prove a lemma that
“handles” this operation.
(I.e., “For nodes B and C, create a node that derives
concat(D(B),D(C))", “For node B and i, j, create a node
that derives extract(®(B), i,/)", etc.)

» For a given CDE-expression ¢, we can then apply these
lemmas “bottom-up” (along 's syntax tree).

Proof Ideas

Proof Roadmap

» For each of the basic CDE-operation, prove a lemma that
“handles” this operation.
(I.e., “For nodes B and C, create a node that derives
concat(D(B),D(C))", “For node B and i, j, create a node
that derives extract(®(B), i,/)", etc.)

» For a given CDE-expression ¢, we can then apply these
lemmas “bottom-up” (along 's syntax tree).

» Lemmas for concat(-,-) and extract(, -, -) are sufficient
(since all CDE-operations can be defined by applications of
these two operations).

Proof Sketch for Concatenation Lemma

Lg Rp Lc

Rc

Proof Sketch for Concatenation Lemma

Proof Sketch for Concatenation

C
VN
/ \ L Re
/
La, \6—1
e ~N
Ly, .
RN
Ay
RN
La,

ord(D) € {ord(C),ord(C)+1}

Proof Sketch for Concatenation

B
Lp Ay
RN
La, Ap_q
/ N
LAg 1
N
Ay
/ TN R
Ly, Ag
D e
N

Proof Sketch for Concatenation

B

LB Ag

/ .

La A
/ \\J
LAe—1
— .
Ly, .210
D C

Rotations

A(k +3)

N

(k+2)
B(k) C

7N

D) E 41

Rotations

(k+3)

Related Question Discussed in the Paper

» Adding a completely new document (in compressed form or
plain text).

» Building an SLP-represented document database from scratch.

» Retrieving SLP-represented documents for the spans extracted
by a spanner.

» Overall setting works for other evaluation problems like testing,
non-emptiness, etc.

» Extends to general finite transducers as extractors.

Thank you very much for your attention.

