Spanner Evaluation over SLP-Compressed Documents

Markus L. Schmid, Nicole Schweikardt

HU Berlin, Germany

PODS 2021

- $ightharpoonup \Sigma = \{a, b, c, \ldots\}$ is an alphabet.
- $ightharpoonup \mathcal{X} = \{x, y, z, \ldots\}$ is a set of variables.
- ightharpoonup D is a document over Σ .

- $ightharpoonup \Sigma = \{a, b, c, \ldots\}$ is an alphabet.
- $\blacktriangleright \ \mathcal{X} = \{x,y,z,\ldots\}$ is a set of variables.
- ightharpoonup D is a document over Σ .

$$\mathsf{D} = \mathtt{abbabccabc}$$

- $ightharpoonup \Sigma = \{a, b, c, \ldots\}$ is an alphabet.
- $ightharpoonup \mathcal{X} = \{x, y, z, \ldots\}$ is a set of variables.
- ightharpoonup D is a document over Σ .

$$D = abbabccabc \implies$$

Х	у	z
$[2,5\rangle$	$[4,7\rangle$	$[1,10\rangle$
$[3,5\rangle$	[5,8)	$[4,7\rangle$
$[1,3\rangle$	$[3,10\rangle$	$[2,4\rangle$

- $ightharpoonup \Sigma = \{a, b, c, \ldots\}$ is an alphabet.
- $ightharpoonup \mathcal{X} = \{x, y, z, \ldots\}$ is a set of variables.
- ightharpoonup D is a document over Σ .

$$D = abbabccabc \implies$$

Х	у	z
$[2,5\rangle$	$[4,7\rangle$	$[1,10\rangle$
$[3,5\rangle$	[5,8)	$[4,7\rangle$
$[1,3\rangle$	$[3,10\rangle$	$[2,4\rangle$
	:	:

- $ightharpoonup \Sigma = \{a, b, c, \ldots\}$ is an alphabet.
- $ightharpoonup \mathcal{X} = \{x, y, z, \ldots\}$ is a set of variables.
- ightharpoonup D is a document over Σ .

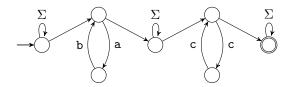
$$D = abbabccabc \implies$$

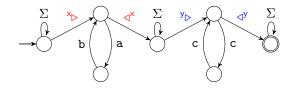
Х	у	Z
$[2,5\rangle$	$[4,7\rangle$	$[1,10\rangle$
$[3,5\rangle$	[5,8)	$[4,7\rangle$
$[1,3\rangle$	$[3,10\rangle$	$[2,4\rangle$
•		

- $ightharpoonup \Sigma = \{a, b, c, \ldots\}$ is an alphabet.
- $ightharpoonup \mathcal{X} = \{x, y, z, \ldots\}$ is a set of variables.
- ightharpoonup D is a document over Σ .

$$D = abbabccabc \implies$$

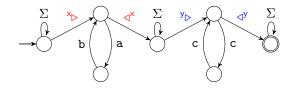
X	у	Z
$[2,5\rangle$	$[4,7\rangle$	$[1,10\rangle$
$[3,5\rangle$	[5,8)	$[4,7\rangle$
$[1,3\rangle$	$[3,10\rangle$	$[2,4\rangle$
	:	:





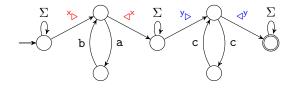
Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:

- $^{\mathsf{x}} \triangleright \ldots \triangleleft^{\mathsf{x}}$ (start and end position of span extracted by $^{\mathsf{x}}$),
- $^{y} \triangleright \ldots \triangleleft^{y}$ (start and end position of span extracted by y).



Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:

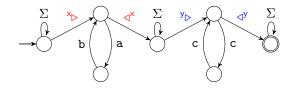
- $^{\mathsf{x}} \triangleright \ldots \triangleleft^{\mathsf{x}}$ (start and end position of span extracted by $^{\mathsf{x}}$),
- $^{y} \triangleright \ldots \triangleleft^{y}$ (start and end position of span extracted by y).



Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:

 $^{\mathsf{x}} \triangleright \ldots \triangleleft^{\mathsf{x}}$ (start and end position of span extracted by $^{\mathsf{x}}$), $^{\mathsf{y}} \triangleright \ldots \triangleleft^{\mathsf{y}}$ (start and end position of span extracted by $^{\mathsf{y}}$).

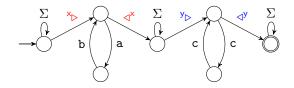
D = abbababccca



Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:

 $^{\mathsf{x}} \triangleright \ldots \triangleleft^{\mathsf{x}}$ (start and end position of span extracted by $^{\mathsf{x}}$), $^{\mathsf{y}} \triangleright \ldots \triangleleft^{\mathsf{y}}$ (start and end position of span extracted by $^{\mathsf{y}}$).

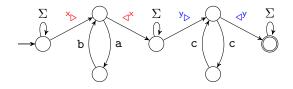
D = abbababccca $abb^{x} \triangleright ab \triangleleft^{x} ab^{y} \triangleright cc \triangleleft^{y} ca$



Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:

 $^{\mathsf{x}} \triangleright \ldots \triangleleft^{\mathsf{x}}$ (start and end position of span extracted by $^{\mathsf{x}}$), $^{\mathsf{y}} \triangleright \ldots \triangleleft^{\mathsf{y}}$ (start and end position of span extracted by $^{\mathsf{y}}$).

$$\begin{split} \mathsf{D} &= \mathtt{abbababccca} \\ \mathtt{abb^{x}} \!\!\!\! > \!\!\!\! \mathsf{ab} \!\!\! <^{\!\!\!\! \mathsf{x}} \!\!\! \mathsf{ab^{y}} \!\!\! > \!\!\! \mathsf{cc} \!\!\! <^{\!\!\!\! \mathsf{y}} \!\!\! \mathsf{ca} \implies \big([4,6\rangle,[8,10\rangle \big) \end{split}$$



Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:

 $^{\times}$ >... $^{\prec}$ (start and end position of span extracted by $^{\times}$), y >... dy (start and end position of span extracted by y).

 $\mathsf{D} = \mathtt{abbababccca}$

Regular Spanners – Notations

 $[\![M]\!]$ denotes the spanner represented by an NFA M.

Regular Spanners – Notations

 $[\![M]\!]$ denotes the spanner represented by an NFA M.

 $[\![M]\!](D)$ denotes the span-relation extracted from a document D.

Regular Spanners – Notations

 $[\![M]\!]$ denotes the spanner represented by an NFA M.

 $[\![M]\!](D)$ denotes the span-relation extracted from a document D.

A spanner S is a *regular spanner* if $S = [\![M]\!]$ for some NFA M.

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Since then intensely studied; many positive results.

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Since then intensely studied; many positive results.

A major result: linear preprocessing and constant delay enumeration (Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019).

Approach of this Paper

Spanner Evaluation over Compressed Documents

Input: A spanner represented by an NFA M,

a document D given in a compressed form* S.

Task: Evaluate M on D (e.g., model checking, computing or

enumerating $[\![M]\!](D)$)... but without decompressing S.

*Compression Scheme: Straight-Line Programs (SLPs).

Straight-Line Program

A straight-line program for document D is a context-free grammar $\mathcal S$ that describes the language $\{D\}.$

Example

Let ${\mathcal S}$ have rules

$$S_0 o AB, \qquad A o CD, \qquad B o CE, \ C o Eb, \qquad D o cc, \qquad E o aa$$

Example

Let $\mathcal S$ have rules

S have rules
$$S_0 \to AB, \qquad A \to CD, \qquad B \to CE, \\ C \to E \text{b}, \qquad D \to \text{cc}, \qquad E \to \text{aa}$$

Example

Let $\mathcal S$ have rules

 \mathbf{E}

$$S_0 o AB$$
, $A o CD$, $B o CE$, $C o Eb$, $D o cc$, $E o aa$

 $\ensuremath{\mathsf{SLPs}}$ are intensely researched in $\ensuremath{\mathsf{TCS}}$ and many things are known:

Exponential compression rates.

- Exponential compression rates.
- SLPs are mathematically easy to handle (⇒ good for theoretical considerations).

- Exponential compression rates.
- SLPs are mathematically easy to handle (⇒ good for theoretical considerations).
- ► High practical relevance (SLPs cover many practically applied dictionary-based compression schemes).

- Exponential compression rates.
- SLPs are mathematically easy to handle (⇒ good for theoretical considerations).
- High practical relevance (SLPs cover many practically applied dictionary-based compression schemes).
- Many approximations and heuristics exist that efficiently compute small SLPs.

- Exponential compression rates.
- SLPs are mathematically easy to handle (⇒ good for theoretical considerations).
- High practical relevance (SLPs cover many practically applied dictionary-based compression schemes).
- Many approximations and heuristics exist that efficiently compute small SLPs.
- SLPs are suitable for algorithmics on compressed strings: comparison, pattern matching, membership in a regular language, retrieving subwords, etc.

Research Task

Spanner Evaluation over SLP-Compressed Documents

Input: A spanner represented by an NFA M,

an SLP ${\cal S}$ for a document D.

Non-emptiness: Check whether $\llbracket M \rrbracket(D) \neq \emptyset$.

Model Checking: Check whether $t \in \llbracket M \rrbracket(\mathsf{D})$ for a span-tuple t.

Computation: Compute $[\![M]\!](D)$.

Enumeration: Enumerate $[\![M]\!](D)$.

Results

Theorem (Data Complexity)

Non-emptiness: O(size(S))Model Checking: O(size(S))

Computation: $O(\operatorname{size}(S) \cdot \operatorname{size}(\llbracket M \rrbracket(D)))$

Enumeration: preprocessing time O(size(S)) and

delay O(log(|D|)).

Results

Theorem (Data Complexity)

Non-emptiness: O(size(S))Model Checking: O(size(S))

Computation: $O(\operatorname{size}(S) \cdot \operatorname{size}(\llbracket M \rrbracket(D)))$

Enumeration: preprocessing time O(size(S)) and

delay O(log(|D|)).

Two remarks about combined-complexity:

Sets of markers ("{x_▷, ¬, z_▷}") as arc labels of the NFA (a.k.a. extended variable-set automata), which makes the NFA larger.

Results

Theorem (Data Complexity)

Non-emptiness: O(size(S))Model Checking: O(size(S))

Computation: $O(\operatorname{size}(S) \cdot \operatorname{size}(\llbracket M \rrbracket(D)))$

Enumeration: preprocessing time O(size(S)) and

delay O(log(|D|)).

Two remarks about combined-complexity:

- Sets of markers ("{x_▷, ¬y, ¬b_→}") as arc labels of the NFA (a.k.a. extended variable-set automata), which makes the NFA larger.
- For the enumeration result, we require the NFA also to be deterministic.

Proof Sketches

Non-Emptiness, Model-Checking and Computation

Follows (non-trivial) from known results about the regular membership problem for SLP-compressed words:

Non-emptiness: O(size(S))Model Checking: O(size(S))

Computation: $O(\operatorname{size}(S) \cdot \operatorname{size}(\llbracket M \rrbracket(D)))$

Non-Emptiness, Model-Checking and Computation

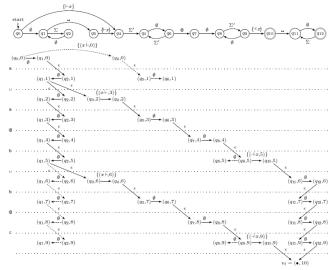
Follows (non-trivial) from known results about the regular membership problem for SLP-compressed words:

Non-emptiness: O(size(S))Model Checking: O(size(S))

Computation: $O(\operatorname{size}(S) \cdot \operatorname{size}(\llbracket M \rrbracket(D)))$

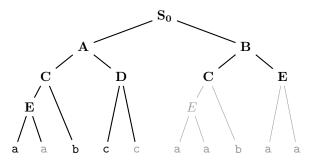
In the following: Sketch for Enumeration!

Non-Compressed Enumeration (Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019)

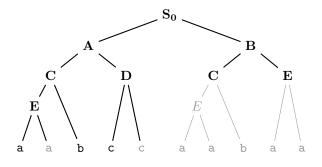


[Amarilli et al. ICDT 2019, SIGMOD Rec., 2020]

Marking SLPs

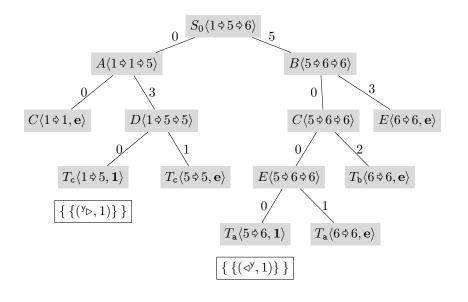


Marking SLPs



⇒ enumerate *partially decompressed* SLPs.

Enumerating Partially Decompressed SLPs



Balancing SLPs

SLP Balancing Theorem, Ganardi, Jez and Lohrey, FOCS 2019:

Theorem

Any given SLP \mathcal{S} can be balanced* in linear time.

* depth(S) = O(log(|D|)).

Future Work

 $Dynamic\ setting\ with\ updates!$