
Spanner Evaluation over SLP-Compressed
Documents

Markus L. Schmid, Nicole Schweikardt

HU Berlin, Germany

PODS 2021

Document Spanners

Document Spanners

▶ Σ = {a, b, c, . . .} is an alphabet.

▶ X = {x, y, z, . . .} is a set of variables.

▶ D is a document over Σ.

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Document Spanners

▶ Σ = {a, b, c, . . .} is an alphabet.

▶ X = {x, y, z, . . .} is a set of variables.

▶ D is a document over Σ.

D = a b b a b c c a b c

=⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Document Spanners

▶ Σ = {a, b, c, . . .} is an alphabet.

▶ X = {x, y, z, . . .} is a set of variables.

▶ D is a document over Σ.

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Document Spanners

▶ Σ = {a, b, c, . . .} is an alphabet.

▶ X = {x, y, z, . . .} is a set of variables.

▶ D is a document over Σ.

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Document Spanners

▶ Σ = {a, b, c, . . .} is an alphabet.

▶ X = {x, y, z, . . .} is a set of variables.

▶ D is a document over Σ.

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Document Spanners

▶ Σ = {a, b, c, . . .} is an alphabet.

▶ X = {x, y, z, . . .} is a set of variables.

▶ D is a document over Σ.

D = a b b a b c c a b c =⇒

x y z

[2, 5⟩ [4, 7⟩ [1, 10⟩
[3, 5⟩ [5, 8⟩ [4, 7⟩
[1, 3⟩ [3, 10⟩ [2, 4⟩
...

...
...

Regular (Document) Spanners

Σ

ab

Σ

cc

Σ

Meta-symbols for variables x, y, . . . ∈ X :

▷x . . . ◁x (start and end position of span extracted by x),

▷y . . . ◁y (start and end position of span extracted by y).

D = abbababccca

abb ▷x ab◁xab ▷y cc◁yca =⇒ ([4, 6⟩, [8, 10⟩)
abb ▷x abab◁xc ▷y cc◁ya =⇒ ([4, 8⟩, [9, 11⟩)
...

Regular (Document) Spanners

Σ .x

ab

/x Σ .y

cc

/y Σ

Meta-symbols for variables x, y, . . . ∈ X :

▷x . . . ◁x (start and end position of span extracted by x),

▷y . . . ◁y (start and end position of span extracted by y).

D = abbababccca

abb ▷x ab◁xab ▷y cc◁yca =⇒ ([4, 6⟩, [8, 10⟩)
abb ▷x abab◁xc ▷y cc◁ya =⇒ ([4, 8⟩, [9, 11⟩)
...

Regular (Document) Spanners

Σ .x

ab

/x Σ .y

cc

/y Σ

Meta-symbols for variables x, y, . . . ∈ X :

▷x . . . ◁x (start and end position of span extracted by x),

▷y . . . ◁y (start and end position of span extracted by y).

D = abbababccca

abb ▷x ab◁xab ▷y cc◁yca =⇒ ([4, 6⟩, [8, 10⟩)
abb ▷x abab◁xc ▷y cc◁ya =⇒ ([4, 8⟩, [9, 11⟩)
...

Regular (Document) Spanners

Σ .x

ab

/x Σ .y

cc

/y Σ

Meta-symbols for variables x, y, . . . ∈ X :

▷x . . . ◁x (start and end position of span extracted by x),

▷y . . . ◁y (start and end position of span extracted by y).

D = abbababccca

abb ▷x ab◁xab ▷y cc◁yca =⇒ ([4, 6⟩, [8, 10⟩)
abb ▷x abab◁xc ▷y cc◁ya =⇒ ([4, 8⟩, [9, 11⟩)
...

Regular (Document) Spanners

Σ .x

ab

/x Σ .y

cc

/y Σ

Meta-symbols for variables x, y, . . . ∈ X :

▷x . . . ◁x (start and end position of span extracted by x),

▷y . . . ◁y (start and end position of span extracted by y).

D = abbababccca

abb ▷x ab◁xab ▷y cc◁yca

=⇒ ([4, 6⟩, [8, 10⟩)
abb ▷x abab◁xc ▷y cc◁ya =⇒ ([4, 8⟩, [9, 11⟩)
...

Regular (Document) Spanners

Σ .x

ab

/x Σ .y

cc

/y Σ

Meta-symbols for variables x, y, . . . ∈ X :

▷x . . . ◁x (start and end position of span extracted by x),

▷y . . . ◁y (start and end position of span extracted by y).

D = abbababccca

abb ▷x ab◁xab ▷y cc◁yca =⇒ ([4, 6⟩, [8, 10⟩)

abb ▷x abab◁xc ▷y cc◁ya =⇒ ([4, 8⟩, [9, 11⟩)
...

Regular (Document) Spanners

Σ .x

ab

/x Σ .y

cc

/y Σ

Meta-symbols for variables x, y, . . . ∈ X :

▷x . . . ◁x (start and end position of span extracted by x),

▷y . . . ◁y (start and end position of span extracted by y).

D = abbababccca

abb ▷x ab◁xab ▷y cc◁yca =⇒ ([4, 6⟩, [8, 10⟩)
abb ▷x abab◁xc ▷y cc◁ya =⇒ ([4, 8⟩, [9, 11⟩)
...

Regular Spanners � Notations

JMK denotes the spanner represented by an NFA M.

JMK(D) denotes the span-relation extracted from a document D.

A spanner S is a regular spanner if S = JMK for some NFA M.

Regular Spanners � Notations

JMK denotes the spanner represented by an NFA M.

JMK(D) denotes the span-relation extracted from a document D.

A spanner S is a regular spanner if S = JMK for some NFA M.

Regular Spanners � Notations

JMK denotes the spanner represented by an NFA M.

JMK(D) denotes the span-relation extracted from a document D.

A spanner S is a regular spanner if S = JMK for some NFA M.

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Since then intensely studied; many positive results.

A major result: linear preprocessing and constant delay enumeration

(Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019).

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Since then intensely studied; many positive results.

A major result: linear preprocessing and constant delay enumeration

(Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019).

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Since then intensely studied; many positive results.

A major result: linear preprocessing and constant delay enumeration

(Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019).

Approach of this Paper

Spanner Evaluation over Compressed Documents

Input: A spanner represented by an NFA M,

a document D given in a compressed form∗ S.
Task: Evaluate M on D (e. g., model checking, computing or

enumerating JMK(D))... but without decompressing S.

∗Compression Scheme: Straight-Line Programs (SLPs).

Straight-Line Programs

Straight-Line Programs

Straight-Line Program

A straight-line program for document D is a context-free grammar

S that describes the language {D}.

Straight-Line Programs

Example

Let S have rules

S0 → AB, A → CD, B → CE ,

C → Eb, D → cc, E → aa

S0

A B

C D C E

E E

a a a a a ab bc c

Straight-Line Programs

Example

Let S have rules

S0 → AB, A → CD, B → CE ,

C → Eb, D → cc, E → aa

S0

A B

C D C E

E E

a a a a a ab bc c

Straight-Line Programs

Example

Let S have rules

S0 → AB, A → CD, B → CE ,

C → Eb, D → cc, E → aa

S0

A B

C D C E

E E

a a a a a ab bc c

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

▶ Exponential compression rates.

▶ SLPs are mathematically easy to handle (⇒ good for

theoretical considerations).

▶ High practical relevance (SLPs cover many practically applied

dictionary-based compression schemes).

▶ Many approximations and heuristics exist that e�ciently

compute small SLPs.

▶ SLPs are suitable for algorithmics on compressed strings:

comparison, pattern matching, membership in a regular

language, retrieving subwords, etc.

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

▶ Exponential compression rates.

▶ SLPs are mathematically easy to handle (⇒ good for

theoretical considerations).

▶ High practical relevance (SLPs cover many practically applied

dictionary-based compression schemes).

▶ Many approximations and heuristics exist that e�ciently

compute small SLPs.

▶ SLPs are suitable for algorithmics on compressed strings:

comparison, pattern matching, membership in a regular

language, retrieving subwords, etc.

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

▶ Exponential compression rates.

▶ SLPs are mathematically easy to handle (⇒ good for

theoretical considerations).

▶ High practical relevance (SLPs cover many practically applied

dictionary-based compression schemes).

▶ Many approximations and heuristics exist that e�ciently

compute small SLPs.

▶ SLPs are suitable for algorithmics on compressed strings:

comparison, pattern matching, membership in a regular

language, retrieving subwords, etc.

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

▶ Exponential compression rates.

▶ SLPs are mathematically easy to handle (⇒ good for

theoretical considerations).

▶ High practical relevance (SLPs cover many practically applied

dictionary-based compression schemes).

▶ Many approximations and heuristics exist that e�ciently

compute small SLPs.

▶ SLPs are suitable for algorithmics on compressed strings:

comparison, pattern matching, membership in a regular

language, retrieving subwords, etc.

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

▶ Exponential compression rates.

▶ SLPs are mathematically easy to handle (⇒ good for

theoretical considerations).

▶ High practical relevance (SLPs cover many practically applied

dictionary-based compression schemes).

▶ Many approximations and heuristics exist that e�ciently

compute small SLPs.

▶ SLPs are suitable for algorithmics on compressed strings:

comparison, pattern matching, membership in a regular

language, retrieving subwords, etc.

Research Task

Spanner Evaluation over SLP-Compressed Documents

Input: A spanner represented by an NFA M,

an SLP S for a document D.

Non-emptiness: Check whether JMK(D) ̸= ∅.
Model Checking: Check whether t ∈ JMK(D) for a span-tuple t.
Computation: Compute JMK(D).
Enumeration: Enumerate JMK(D).

Results

Results

Theorem (Data Complexity)

Non-emptiness: O(size(S))
Model Checking: O(size(S))
Computation: O(size(S) · size(JMK(D)))
Enumeration: preprocessing time O(size(S)) and

delay O(log(|D |)).

Two remarks about combined-complexity:

▶ Sets of markers (�{ ▷x , ◁y, ▷z }�) as arc labels of the NFA (a.k.a.

extended variable-set automata), which makes the NFA larger.

▶ For the enumeration result, we require the NFA also to be

deterministic.

Results

Theorem (Data Complexity)

Non-emptiness: O(size(S))
Model Checking: O(size(S))
Computation: O(size(S) · size(JMK(D)))
Enumeration: preprocessing time O(size(S)) and

delay O(log(|D |)).

Two remarks about combined-complexity:

▶ Sets of markers (�{ ▷x , ◁y, ▷z }�) as arc labels of the NFA (a.k.a.

extended variable-set automata), which makes the NFA larger.

▶ For the enumeration result, we require the NFA also to be

deterministic.

Results

Theorem (Data Complexity)

Non-emptiness: O(size(S))
Model Checking: O(size(S))
Computation: O(size(S) · size(JMK(D)))
Enumeration: preprocessing time O(size(S)) and

delay O(log(|D |)).

Two remarks about combined-complexity:

▶ Sets of markers (�{ ▷x , ◁y, ▷z }�) as arc labels of the NFA (a.k.a.

extended variable-set automata), which makes the NFA larger.

▶ For the enumeration result, we require the NFA also to be

deterministic.

Proof Sketches

Non-Emptiness, Model-Checking and Computation

Follows (non-trivial) from known results about the regular

membership problem for SLP-compressed words:

Non-emptiness: O(size(S))
Model Checking: O(size(S))
Computation: O(size(S) · size(JMK(D)))

In the following: Sketch for Enumeration!

Non-Emptiness, Model-Checking and Computation

Follows (non-trivial) from known results about the regular

membership problem for SLP-compressed words:

Non-emptiness: O(size(S))
Model Checking: O(size(S))
Computation: O(size(S) · size(JMK(D)))

In the following: Sketch for Enumeration!

Non-Compressed Enumeration
(Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019)

[Amarilli et al. ICDT 2019, SIGMOD Rec., 2020]

Marking SLPs

S0

A B

C D C E

E E

a a a a a ab bc c

=⇒ enumerate partially decompressed SLPs.

Marking SLPs

S0

A B

C D C E

E E

a a a a a ab bc c

=⇒ enumerate partially decompressed SLPs.

Enumerating Partially Decompressed SLPs

S0〈1 	 5 	 6〉

A〈1 	 1 	 5〉 B〈5 	 6 	 6〉

C〈1 	 1, e〉 D〈1 	 5 	 5〉 C〈5 	 6 	 6〉 E〈6 	 6, e〉

E〈5 	 6 	 6〉 Tb〈6 	 6, e〉

Ta〈5 	 6,1〉

{ {(/y, 1)} }

Ta〈6 	 6, e〉

Tc〈1 	 5,1〉

{ {(.y , 1)} }

Tc〈5 	 5, e〉

0 5

0 3 0 3

0 1 0 2

0 1

Balancing SLPs

SLP Balancing Theorem, Ganardi, Jez and Lohrey, FOCS 2019:

Theorem

Any given SLP S can be balanced∗ in linear time.

∗ depth(S) = O(log(|D |)).

Future Work

Dynamic setting with updates!

Thank you very much for your attention.

