Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number

Katrin Casel1, Joel D. Day2, Pamela Fleischmann3, Tomasz Kociumaka4, Florin Manea3, Markus L. Schmid5

1 HPI, University of Potsdam, Germany
2 Loughborough University, UK
3 Kiel University, Germany
4 University of Warsaw, Poland, and Bar-Ilan University, Israel
5 Trier University, Germany

Theorietag 2019 – Marburg
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence:

marked blocks:

maximum number of marked blocks:
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

$$a \ d \ a \ b \ a \ d \ b \ d \ a \ e \ c \ b \ c \ b$$

marking sequence: b

marked blocks: 4
maximum number of marked blocks: 4
A Solitaire Game on Strings

The Game

Given: String \(\alpha \) over (finite) alphabet \(\Sigma = \{a_1, a_2, \ldots, a_n\} \).

Objective: Mark all symbols \(a_1, a_2, \ldots, a_n \) in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: b, c

marked blocks: 3
maximum number of marked blocks: 4
The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

$\text{a d a b a d b d a e c b c b}$

marking sequence: b, c, e

marked blocks: 3
maximum number of marked blocks: 4
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

```
 a d a b a d b d a e c b c b
```

marking sequence: b, c, e, d

marked blocks: 4
maximum number of marked blocks: 4
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

```
adabaadbdaecbcb
```

marking sequence: b, c, e, d, a

marked blocks: 1
maximum number of marked blocks: 4
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence:

marked blocks:

maximum number of marked blocks:
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

| a | d | a | b | a | d | b | d | a | e | c | b | c | b |

marking sequence: d

marked blocks: 3

maximum number of marked blocks: 3
The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

$a \ d \ a \ b \ a \ d \ b \ d \ a \ e \ c \ b \ c \ b$

marking sequence: d, a

marked blocks: 3

maximum number of marked blocks: 3
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\sum = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

\[a \ d \ a \ b \ a \ d \ b \ d \ a \ e \ c \ b \ c \ b \]

marking sequence: \(d, a, b\)

marked blocks: 3

maximum number of marked blocks: 3
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

```
adabaadbdaeccbcb
```
marking sequence: d, a, b, c

marked blocks: 2
maximum number of marked blocks: 3
A Solitaire Game on Strings

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

$\text{a d a b a d b d a e c b c b}$

marking sequence: d, a, b, c, e

marked blocks: 1
maximum number of marked blocks: 3
The Locality Number

Let $X = \{x_1, x_2, \ldots, x_n\}$ be a finite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma : \{1, 2, \ldots, |X|\} \rightarrow X$) is a **marking sequence**.
The Locality Number

Let $X = \{x_1, x_2, \ldots, x_n\}$ be a finite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma : \{1, 2, \ldots, |X|\} \rightarrow X$) is a **marking sequence**.

Marking Number

The **marking number** $\pi_\sigma(\alpha)$ (of σ with respect to α) is the maximum number of marked blocks obtained while marking α according to σ.
The Locality Number

Let $X = \{x_1, x_2, \ldots, x_n\}$ be a finite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma : \{1, 2, \ldots, |X|\} \rightarrow X$) is a **marking sequence**.

Marking Number

The **marking number** $\pi_\sigma(\alpha)$ (of σ with respect to α) is the maximum number of marked blocks obtained while marking α according to σ.

Locality Number

A string α over X is **k-local** $\iff \pi_\sigma(\alpha) \leq k$, for some marking sequence σ.

The **locality number** of α is $\text{loc}(\alpha) = \min\{k \mid \alpha \text{ is } k\text{-local}\}$.
The Locality Number

Example

Let \(\alpha = \text{adabadbdaecbcb} \), \(\sigma_1 = (b, c, e, d, a) \), \(\sigma_2 = (d, a, b, c, e) \).
The Locality Number

Example

Let $\alpha = \text{adabadbdaecbcb}$, $\sigma_1 = (b, c, e, d, a)$, $\sigma_2 = (d, a, b, c, e)$

$\pi_{\sigma_1}(\alpha) = 4 \implies \text{loc}(\alpha) \leq 4$
The Locality Number

Example

Let $\alpha = \text{adabaddaecedcbb}$, $\sigma_1 = (b, c, e, d, a)$, $\sigma_2 = (d, a, b, c, e)$

$\pi_{\sigma_1}(\alpha) = 4 \ (\Rightarrow \ \text{loc}(\alpha) \leq 4)$

$\pi_{\sigma_2}(\alpha) = 3 \ (\Rightarrow \ \text{loc}(\alpha) \leq 3)$
The Locality Number

Example

Let \(\alpha = \text{adabadbdaecbcb} \), \(\sigma_1 = (b, c, e, d, a) \), \(\sigma_2 = (d, a, b, c, e) \)

\[\pi_{\sigma_1}(\alpha) = 4 \implies \text{loc}(\alpha) \leq 4 \]

\[\pi_{\sigma_2}(\alpha) = 3 \implies \text{loc}(\alpha) \leq 3 \]

\(\text{loc}(\alpha) = 3 \)
The Locality Number

Example

Let \(\alpha = \text{adabadbdaecbcb} \), \(\sigma_1 = (b, c, e, d, a) \), \(\sigma_2 = (d, a, b, c, e) \)

\[
\pi_{\sigma_1}(\alpha) = 4 \implies \text{loc}(\alpha) \leq 4
\]

\[
\pi_{\sigma_2}(\alpha) = 3 \implies \text{loc}(\alpha) \leq 3
\]

\[
\text{loc}(\alpha) = 3
\]

Motivation

Pattern matching with variables.

Marking sequence = dynamic programming algorithm

\(\sim \) XP-algorithms w.r.t. parameter \(\text{loc}(\alpha) \).
Known Results and Open Problems

Computing the locality number

Loc

<table>
<thead>
<tr>
<th>Input:</th>
<th>String (\alpha \in \Sigma^*), (k \in \mathbb{N}).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question:</td>
<td>(\text{loc}(\alpha) \leq k)?</td>
</tr>
</tbody>
</table>

MinLoc denotes the corresponding minimisation problem.

Known Results

- \(\text{Loc} \in \text{XP} \) w.r.t. parameter \(k \) (i.e., in \(\text{P} \) for fixed \(k \)).

Open Problems

- Is \(\text{Loc} \) NP-complete?
- Is \(\text{Loc} \in \text{FPT} \) (w.r.t. \(k \) or \(|\Sigma| \))?
- Are there good approximation algorithms for MinLoc?
Known Results and Open Problems

Computing the locality number

<table>
<thead>
<tr>
<th>Loc</th>
<th>Input: String $\alpha \in \Sigma^*$, $k \in \mathbb{N}$.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Question: $\text{loc}(\alpha) \leq k$?</td>
</tr>
</tbody>
</table>

MinLoc denotes the corresponding minimisation problem.
Known Results and Open Problems

Computing the locality number

Loc
Input: String $\alpha \in \Sigma^*$, $k \in \mathbb{N}$.
Question: $\text{loc}(\alpha) \leq k$?

MinLoc denotes the corresponding minimisation problem.

Known Results

Loc $\in \text{XP}$ w.r.t. parameter k (i.e., in P for fixed k).
Known Results and Open Problems

Computing the locality number

Loc

Input: String $\alpha \in \Sigma^*$, $k \in \mathbb{N}$.

Question: $\text{loc}(\alpha) \leq k$?

MinLoc denotes the corresponding minimisation problem.

Known Results

Loc $\in \text{XP}$ w.r.t. parameter k (i.e., in P for fixed k).

Open Problems

- Is Loc NP-complete?
- Is Loc $\in \text{FPT}$ (w.r.t. k or $|\Sigma|$)?
- Are there good approximation algorithms for MinLoc?
Let $G = (V, E)$ be a (multi)graph with $V = \{v_1, \ldots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.
Let $G = (V, E)$ be a (multi)graph with $V = \{v_1, \ldots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}$.

Cutwidth

Cutwidth of L: $cw(L) = \max \{|C(V_j^1, V_j^2)| \mid 0 \leq j \leq n\}$

Cutwidth of G: $cw(G) = \min \{cw(L) \mid L \text{ is linear arrangement for } G\}$.

Linear Arrangements and Cut width

Linear arrangement of G: sequence $L = (v_{j_1}^1, v_{j_2}^2, \ldots, v_{j_n}^n)$, where (j_1, j_2, \ldots, j_n) is a permutation of $(1, 2, \ldots, n)$.
Cutwidth

Let $G = (V, E)$ be a (multi)graph with $V = \{v_1, \ldots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}$.

Size of a cut: $|C(V_1, V_2)|$.
Let $G = (V, E)$ be a (multi)graph with $V = \{v_1, \ldots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}$.

Size of a cut: $|C(V_1, V_2)|$.

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence $L = (v_{j_1}, v_{j_2}, \ldots, v_{j_n})$, where (j_1, j_2, \ldots, j_n) is a permutation of $(1, 2, \ldots, n)$.
Cutwidth

Let $G = (V, E)$ be a (multi)graph with $V = \{v_1, \ldots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $\mathcal{C}(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}$.

Size of a cut: $|\mathcal{C}(V_1, V_2)|$.

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence $L = (v_{j_1}, v_{j_2}, \ldots, v_{j_n})$, where (j_1, j_2, \ldots, j_n) is a permutation of $(1, 2, \ldots, n)$.

Cutwidth of L: $\text{cw}(L) = \max\{|\mathcal{C}(\{v_{j_1}, v_{j_2}, \ldots, v_{j_i}\}, \{v_{j_{i+1}}, \ldots, v_{j_n}\})| \mid 0 \leq i \leq n\}$.
Cutwidth

Let $G = (V, E)$ be a (multi)graph with $V = \{v_1, \ldots, v_n\}$.

Cuts

- **Cut**: partition (V_1, V_2) of V.
- **Cut set**: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}$.
- **Size of a cut**: $|C(V_1, V_2)|$.

Linear Arrangements and Cutwidth

- **Linear arrangement of G**: sequence $L = (v_{j_1}, v_{j_2}, \ldots, v_{j_n})$, where (j_1, j_2, \ldots, j_n) is a permutation of $(1, 2, \ldots, n)$.
- **Cutwidth of L**: $\text{cw}(L) = \max\{|C(\{v_{j_1}, v_{j_2}, \ldots, v_{j_i}\}, \{v_{j_{i+1}}, \ldots, v_{j_n}\})| \mid 0 \leq i \leq n\}$
- **Cutwidth of G**: $\text{cw}(G) = \min\{\text{cw}(L) \mid L \text{ is lin. arr. for } G\}.$
Graph G:

![Graph](image)

Linear arrangement with cut width 5:

$u \quad v \quad w \quad x \quad y \quad z$

Linear arrangement with cut width 3:

$w \quad u \quad x \quad v \quad y \quad z$

$\text{cw}(G) = 3$
Cutwidth – Example

Graph G:

Linear arrangement with cutwidth 5:
Cutwidth – Example

Graph G:

Linear arrangement with cutwidth 5:
Cutwidth – Example

Graph G:

Linear arrangement with cutwidth 5:

Linear arrangement with cutwidth 3:

$$cw(G) = 3$$
Cutwidth – Example

Graph G:

Linear arrangement with cutwidth 5:

Linear arrangement with cutwidth 3:
Cutwidth – Example

Graph G:

```
  y
 /|
/  |
u---v---z
  |   |
  w---x
```

Linear arrangement with cutwidth 5:

```
u--v--w--x--y--z
```

Linear arrangement with cutwidth 3:

```
w--u--x--v--y--z
```

$\text{cw}(G) = 3$
Computing the Cutwidth

Cutwidth problem

Cutwidth

Input: (Multi)graph G, $k \in \mathbb{N}$.
Question: $\text{cw}(\alpha) \leq k$?
Computing the Cutwidth

<table>
<thead>
<tr>
<th>Cutwidth problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutwidth</td>
</tr>
<tr>
<td>Input: (Multi)graph G, $k \in \mathbb{N}$.</td>
</tr>
<tr>
<td>Question: $cw(\alpha) \leq k$?</td>
</tr>
</tbody>
</table>

MinCutwidth denotes the corresponding minimisation problem.
Computing the Cutwidth

Cutwidth problem

Cutwidth

- **Input:** (Multi)graph G, $k \in \mathbb{N}$.
- **Question:** $\text{cw}(\alpha) \leq k$?

MinCutwidth denotes the corresponding minimisation problem.

Known Results

- Cutwidth is NP-complete.
- Cutwidth \in FPT (w.r.t. k).
- Exact exponential algorithms, linear fpt-algorithms, approximation algorithms...
Loc \leq \text{Cutwidth}

\Sigma = \{a, b, c, d\}
\alpha = abcabcdbada
k = 2.
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abcpcbada$
$k = 2.$

Construct multigraph $H_{\alpha,k} = (V, E)$:

- nodes a, b, c, d
- edges between a, b, c, d based on α
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = \text{abcbcdbada}$
$k = 2.$

Construct multigraph $H_{\alpha,k} = (V, E)$:

```
\begin{tikzpicture}
  \node [shape=circle,draw=black] (A) at (0,0) {a};
  \node [shape=circle,draw=black] (B) at (1,0) {b};
  \node [shape=circle,draw=black] (C) at (0,-1) {c};
  \node [shape=circle,draw=black] (D) at (1,-1) {d};

  \path (A) edge (B);

\end{tikzpicture}
```
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abcbcdbada$
$k = 2.$

Construct multigraph $H_{\alpha,k} = (V, E)$:

\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) {a};
 \node (b) at (1,0) {b};
 \node (c) at (0,-1) {c};
 \node (d) at (1,-1) {d};
 \draw (a) -- (b);
\end{tikzpicture}
\end{center}

Lemma $cw(H_{\alpha,k}) = 2k$ if and only if $lo c(\alpha) \leq k$.
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abc bcd bda$
$k = 2.$

Construct multigraph $H_{\alpha, k} = (V, E)$:

Diagram of the multigraph $H_{\alpha, k}$ with vertices a, b, c, d and edges ab, bc, cd, db. The marking sequence is (c, b, d, a).

Lemma $\text{cw}(H_{\alpha, k}) = 2k$ if and only if $\text{loc}(\alpha) \leq k$.

Loc \leq \text{Cutwidth}

\[\Sigma = \{a, b, c, d\} \]
\[\alpha = abc\text{bcdbada} \]
\[k = 2. \]

Construct multigraph
\[H_{\alpha,k} = (V, E): \]

\[a \rightarrow b \]
\[c \rightarrow d \]
\[\]
Construct multigraph $H_{\alpha,k} = (V, E)$:

$$\Sigma = \{a, b, c, d\}$$

$$\alpha = abc\text{bcd}bada$$

$$k = 2.$$
Loc \leq \text{Cutwidth}

\[\Sigma = \{a, b, c, d\} \]
\[\alpha = abc\text{bcd}b\text{ada} \]
\[k = 2. \]

Construct multigraph
\[H_{\alpha,k} = (V, E): \]

\[\alpha = \text{abc\text{bcd}b\text{ada}} \]
\[k = 2. \]
Loc \leq \text{Cutwidth}

\[\Sigma = \{a, b, c, d\} \]
\[\alpha = abc\text{bcdabada} \]
\[k = 2. \]

Construct multigraph \(H_{\alpha,k} = (V, E) \):

![Graph Diagram]
Loc ≤ Cutwidth

\[\Sigma = \{a, b, c, d\} \]
\[\alpha = \text{abcycdbada} \]
\[k = 2. \]

Construct multigraph

\[H_{\alpha, k} = (V, E) : \]

\[\text{Marking sequence: } (c, b, d, a) \]
Loc \leq \text{Cutwidth}

\Sigma = \{a, b, c, d\}
\alpha = abcbcdbada
k = 2.

Construct multigraph $H_{\alpha,k} = (V, E)$:
Loc ≤ Cutwidth

$$\Sigma = \{a, b, c, d\}$$
$$\alpha = abcdbada$$
$$k = 2.$$
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abcbcdbada$
$k = 2.$

Construct multigraph $H_{\alpha, k} = (V, E)$:

$\Sigma = \{a, b, c, d\}$
$\alpha = abcbcdbada$
$k = 2.$
$\Sigma = \{a, b, c, d\}$

$\alpha = abc\text{bcdbada}$

$k = 2$.

Construct multigraph $H_{\alpha, k} = (V, E)$:
Construct multigraph $H_{\alpha,k} = (V, E)$:

Marking sequence: (c, b, d, a)
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abc\text{bcdbada}$
$k = 2$.

Construct multigraph $H_{\alpha,k} = (V, E)$:

Marking sequence: (c, b, d, a)
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abcdbcdbada$
$k = 2.$

Construct multigraph $H_{\alpha,k} = (V, E)$:

$\alpha = a \ b \ c \ b \ c \ d \ b \ a \ d \ a$

Marking sequence: (c, b, d, a)
\[\Sigma = \{a, b, c, d\} \]
\[\alpha = abcdbcdbada \]
\[k = 2. \]

Construct multigraph \(H_{\alpha, k} = (V, E) \):

Marking sequence: \((c, b, d, a)\)
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abcdbadbada$
$k = 2.$

Construct multigraph $H_{\alpha, k} = (V, E)$:

Marking sequence: (c, b, d, a)
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abccbdaba$
$k = 2.$

Construct multigraph $H_{\alpha,k} = (V, E)$:

Marking sequence: (c, b, d, a)
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abcbcdabada$
$k = 2.$

Construct multigraph $H_{\alpha,k} = (V, E)$:

Marking sequence: (c, b, d, a)
Loc \leq Cutwidth

$\Sigma = \{a, b, c, d\}$
$\alpha = abc\text{bcdbada}$
$k = 2.$

Construct multigraph $H_{\alpha,k} = (V, E)$:

Marking sequence: (c, b, d, a)
Loc \leq \text{Cutwidth}

\[\Sigma = \{a, b, c, d\} \]
\[\alpha = \text{abcdbada} \]
\[k = 2. \]

Construct multigraph \(H_{\alpha,k} = (V, E) \):

Marking sequence: \((c, b, d, a)\)

Lemma

\(\text{cw}(H_{\alpha,k}) = 2k \) if and only if \(\text{loc}(\alpha) \leq k \).
Cutwidth ≤ Loc

$G = (V, E)$:

![Graph Diagram]

$\alpha = \{x, v\}$

Lemma

$\forall e \in E: cw(G) \leq loc(\alpha e) \leq cw(G) + 1$

$\exists e \in E: loc(\alpha e) = cw(G)$.

Cutwidth \leq Loc

$G = (V, E)$:

$u \quad v \quad z$

$w \quad x$
Cutwidth $\leq \text{Loc}$

$G = (V, E)$:
Cutwidth \leq Loc

$G = (V, E)$:

$\alpha \{x, v\} = x$

Lemma

$\forall e \in E$: $cw(G) \leq lo c(\alpha e) \leq cw(G) + 1$

$\exists e \in E$: $lo c(\alpha e) = cw(G)$.
Cutwidth \leq Loc

$G = (V, E)$:

$\alpha = \{x, v\}$

Lemma

$\forall e \in E: cw(G) \leq lo(c(\alpha e)) \leq cw(G) + 1$

$\exists e \in E: lo(c(\alpha e)) = cw(G)$.
Cutwidth \leq Loc

$G = (V, E)$:

$x \ w \ u$
Cutwidth \leq Loc

$G = (V, E)$:

\[\{x, v\} = x \quad w \quad u \quad x \]
Cutwidth \leq Loc

$G = (V, E)$:

$\{x, v\} = x w u x w$

$\exists e \in E: \text{loc}(\alpha e) = \text{cw}(G)$.
Cutwidth \leq Loc

$G = (V, E)$:

$\alpha \{ x, v \} = \alpha (G)$

Lemma: $\forall e \in E$, $cw(G) \leq loc(\alpha e) \leq cw(G) + 1$.

$\exists e \in E$, $loc(\alpha e) = cw(G)$.

$w \ x \ u \ x \ w \ u$
Cutwidth \leq Loc

$G = (V, E)$:

\[
x w u x w u x
\]
Cutwidth \leq Loc

$G = (V, E)$:

$\alpha\{x, v\} = x \ x \ u \ x \ w \ u \ x \ v$

Lemma

$\forall e \in E: cw(G) \leq loc(\alpha e) \leq cw(G) + 1$

$\exists e \in E: loc(\alpha e) = cw(G)$.
Cutwidth \(\leq \) Loc

\[G = (V, E): \]

\begin{align*}
&x \ x \ w \ u \ x \ w \ u \ x \ v \ u
\end{align*}
Cutwidth \leq Loc

$G = (V, E)$:

$x\;w\;u\;x\;w\;u\;x\;v\;u\;v\;y\;z\;v\;y\;z\;v$
Cutwidth \leq Loc

$G = (V, E)$:

$$\alpha\{x, v\} = x \overset{w}{\rightarrow} u \overset{x}{\rightarrow} w \overset{u \times v}{\rightarrow} u \overset{v}{\rightarrow} v \overset{y, z, v}{\rightarrow} y \overset{z, v}{\rightarrow} z \overset{v}{\rightarrow} v$$
Cutwidth \leq Loc

$G = (V, E)$:

$\alpha\{x, v\} = x w u x w u x v u v y z v y z v$

Lemma

$\forall e \in E : cw(G) \leq loc(\alpha_e) \leq cw(G) + 1$

$\exists e \in E : loc(\alpha_e) = cw(G)$.
Consequences
Consequences

<table>
<thead>
<tr>
<th>Approximation Meta-Theorem</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MinCutwidth</th>
<th>MinLoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time:</td>
<td>$O(f(</td>
<td>E</td>
</tr>
<tr>
<td>Appr. ratio:</td>
<td>$r(\text{opt},</td>
<td>E</td>
</tr>
</tbody>
</table>
Approximation Meta-Theorem

<table>
<thead>
<tr>
<th></th>
<th>MinCutwidth</th>
<th>MinLoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time:</td>
<td>$O(f(</td>
<td>E</td>
</tr>
<tr>
<td>Appr. ratio:</td>
<td>$r(\text{opt},</td>
<td>E</td>
</tr>
<tr>
<td>Run time:</td>
<td>$O(n(f(</td>
<td>E</td>
</tr>
<tr>
<td>Appr. ratio:</td>
<td>$r(\text{opt},</td>
<td>E</td>
</tr>
</tbody>
</table>
Consequences

Approximation Meta-Theorem

<table>
<thead>
<tr>
<th></th>
<th>MinCutwidth</th>
<th>MinLoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time:</td>
<td>$O(f(</td>
<td>E</td>
</tr>
<tr>
<td>Appr. ratio:</td>
<td>$r(\text{opt},</td>
<td>E</td>
</tr>
</tbody>
</table>

Theorem

The problem Loc

- is NP-complete,
 (even if every symbol has at most 3 occurrences)
Consequences

Approximation Meta-Theorem

<table>
<thead>
<tr>
<th></th>
<th>MinCutwidth</th>
<th>MinLoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time:</td>
<td>$O(f(</td>
<td>E</td>
</tr>
<tr>
<td>Appr. ratio:</td>
<td>$r(\text{opt},</td>
<td>E</td>
</tr>
<tr>
<td>Run time:</td>
<td>$O(n(f(</td>
<td>E</td>
</tr>
<tr>
<td>Appr. ratio:</td>
<td>$r(\text{opt},</td>
<td>E</td>
</tr>
</tbody>
</table>

Theorem

The problem Loc

- is NP-complete,
 - (even if every symbol has at most 3 occurrences)
- can be solved in $O^*(2|\Sigma|)$,
Consequences

Approximation Meta-Theorem

<table>
<thead>
<tr>
<th></th>
<th>MinCutwidth</th>
<th>MinLoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time:</td>
<td>$O(f(</td>
<td>E</td>
</tr>
<tr>
<td>Appr. ratio:</td>
<td>$r(\text{opt},</td>
<td>E</td>
</tr>
</tbody>
</table>

Theorem

The problem Loc

- is NP-complete,
 (even if every symbol has at most 3 occurrences)
- can be solved in $O^*(2^{2\Sigma})$,
- in FPT (w.r.t. parameter k), with linear fpt-algorithm.
Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.
Path-Decompositions and Pathwidth

<table>
<thead>
<tr>
<th>Path-decompositions as tree-decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Path-decompositions as marking procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $G = (V, E)$ be a graph.</td>
</tr>
<tr>
<td>Path-decomposition Q of G:</td>
</tr>
</tbody>
</table>
Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let $G = (V, E)$ be a graph.

Path-decomposition Q of G:

- Initially all vertices are blue.
Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let $G = (V, E)$ be a graph.

Path-decomposition Q of G:

- Initially all vertices are blue.
- Until all vertices are blue again,
 - color a vertex red that has never been red before, or
 - color a red vertex blue again,
Path-Decompositions and Pathwidth

<table>
<thead>
<tr>
<th>Path-decompositions as tree-decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Path-decompositions as marking procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $G = (V, E)$ be a graph.</td>
</tr>
<tr>
<td>Path-decomposition Q of G:</td>
</tr>
<tr>
<td>▶ Initially all vertices are blue.</td>
</tr>
<tr>
<td>▶ Until all vertices are blue again,</td>
</tr>
<tr>
<td>▶ color a vertex red that has never been red before, or</td>
</tr>
<tr>
<td>▶ color a red vertex blue again,</td>
</tr>
<tr>
<td>▶ such that each two adjacent vertices are red at the same time.</td>
</tr>
</tbody>
</table>
Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let $G = (V, E)$ be a graph.

Path-decomposition Q of G:

- Initially all vertices are blue.
- Until all vertices are blue again,
 - color a vertex red that has never been red before, or
 - color a red vertex blue again,
- such that each two adjacent vertices are red at the same time.

$pw(Q)$: Max. number of marked vertices.
Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition
A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-decompositions as marking procedures
Let $G = (V, E)$ be a graph.
Path-decomposition Q of G:
- Initially all vertices are blue.
- Until all vertices are blue again,
 - color a vertex red that has never been red before, or
 - color a red vertex blue again,
- such that each two adjacent vertices are red at the same time.

$pw(Q)$: Max. number of marked vertices.
$pw(G)$: Min. $pw(Q)$ over all path-decompositions.
Computing the Pathwidth

<table>
<thead>
<tr>
<th>Pathwidth problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathwidth</td>
</tr>
<tr>
<td>Input: Graph G, $k \in \mathbb{N}$.</td>
</tr>
<tr>
<td>Question: $pw(\alpha) \leq k$?</td>
</tr>
</tbody>
</table>
Computing the Pathwidth

Pathwidth problem

Input: Graph G, $k \in \mathbb{N}$.

Question: $\text{pw}(\alpha) \leq k$?

MinPathwidth denotes the corresponding minimisation problem.
Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: Graph G, $k \in \mathbb{N}$.
Question: $pw(\alpha) \leq k$?

MinPathwidth denotes the corresponding minimisation problem.

Known Results

- Pathwidth is NP-complete.
- Pathwidth \in FPT (w.r.t. k).
- Exact exponential algorithms, linear fpt-algorithms, approximation algorithms...
Loc \leq Pathwidth

$\alpha = c a b a c a b a c$
$\alpha = c a b a c a b a c$

G_α:

![Graph diagram]
$\alpha = \text{c a b a c a b a c}$

G_α:

[Graph diagram]
$\alpha = c a b a c a b a c$

\mathcal{G}_α:

![Graph with nodes and edges representing \mathcal{G}_α.]
Loc \leq Pathwidth

$\alpha = c\, a\, b\, a\, c\, a\, b\, a\, c$

G_α:
Results

Lemma

\[\text{loc}(\alpha) \leq \text{pw}(G_{\alpha}) \leq 2 \text{loc}(\alpha). \]
Lemma

$\text{loc}(\alpha) \leq \text{pw}(G_\alpha) \leq 2\text{loc}(\alpha)$.

Lemma

$\exists \alpha : \text{pw}(G_\alpha) = 2\text{loc}(\alpha)$,

$\exists \beta : \text{loc}(\beta) = \text{pw}(G_\beta)$.
Results

Lemma
\[\text{loc}(\alpha) \leq \text{pw}(G_\alpha) \leq 2 \text{loc}(\alpha). \]

Lemma
\[\exists \alpha : \text{pw}(G_\alpha) = 2 \text{loc}(\alpha), \]
\[\exists \beta : \text{loc}(\beta) = \text{pw}(G_\beta). \]

Theorem
There is an \(O(\sqrt{\log(\text{opt}) \log(n)}) \)-approx. algo. for MinLoc.
Consequences for Cutwidth

<table>
<thead>
<tr>
<th>MinCutwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leighton and Rao, JACM 1999: $O(\log(n) \log(n))$-approximation.</td>
</tr>
<tr>
<td>(Based on more general approximation techniques for edge-seperators)</td>
</tr>
</tbody>
</table>
Consequences for Cutwidth

<table>
<thead>
<tr>
<th>MinCutwidth</th>
<th>Leighton and Rao, JACM 1999: (O(\log(n) \log(n)))-approximation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Based on more general approximation techniques for edge-seperators)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MinPathwidth</th>
<th>Feige et al., SICOMP 2008: (O(\sqrt{\log(\text{opt}) \log(n)}))-approximation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Based on more general approximation techniques for vertex-seperators)</td>
</tr>
</tbody>
</table>
Consequences for Cutwidth

<table>
<thead>
<tr>
<th>MinCutwidth</th>
<th>Leighton and Rao, JACM 1999: $O(\log(n) \log(n))$-approximation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Based on more general approximation techniques for edge-seperators)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MinPathwidth</th>
<th>Feige et al., SICOMP 2008: $O(\sqrt{\log(\text{opt}) \log(n)})$-approximation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Based on more general approximation techniques for vertex-seperators)</td>
</tr>
</tbody>
</table>

| MinCutwidth \leq MinLoc \leq MinPathwidth | There is an $O(\sqrt{\log(\text{opt}) \log(h)})$-approximation algorithm for MinCutwidth on multigraphs with h edges. |
Direct Reduction: MinCutwidth \leq MinPathwidth