Pattern Matching with Variables:
Fast Algorithms and New Hardness Results

Henning Fernau® Florin Manea? Robert Mercag®® Markus L. Schmid!

'Trier University, Germany
?Kiel University, Germany
3King’s College, London, UK

STACS 2015

Patterns with Variables

Finite alphabet of terminals ¥ = {a,b,c,d}

Set of variables X ={x1,x9,23,...}
Patterns a€e(ZUX)*T
Words weXnt
Substitution h:X — Xt
aO=Yi...Yn,

h(er) = (1) - - h(yn),
with h(a) = a, a € X.

Pattern Matching with Variables

pattern o matches word w = 3 substitution h : h(a) = w. |

Pattern Matching with Variables

pattern o matches word w = 3 substitution h : h(a) = w. |

QO =T]1XQ2TL1X3IT2
w=abbbaabbaaababa

Pattern Matching with Variables

pattern o matches word w = 3 substitution h : h(a) = w. |

a=abbxyabbxzxs
w=abbbaabbaaababa

Pattern Matching with Variables

pattern o matches word w = 3 substitution h : h(a) = w. |

a=abbbaabbxsba
w=abbbaabbaaababa

Pattern Matching with Variables

pattern o matches word w = 3 substitution h : h(a) = w. |

o =abbbaabbaaababa
w=abbbaabbaaababa

Pattern Matching with Variables

pattern o matches word w = 3 substitution h : h(a) = w. |

a=x1arebror| T2

w =bacbacbcbacbc

Pattern Matching with Variables

pattern o matches word w = 3 substitution h : h(a) = w. |

a=bacbaxsbrobacbxs

w=Dbacbacbcbacbc

Pattern Matching with Variables

pattern o matches word w = 3 substitution h : h(a) = w. |

o =bacbacbcbacbc

w =bacbacbcbacbc

Motivation

e Learning theory (inductive inference, PAC learning),
e language theory (pattern languages),

e combinatorics on words (word equations, unavoidable patterns,
ambiguity of morphisms, equality sets),

e pattern matching (parameterised matching, (generalised) function
matching),

e matchtest for regular expressions with backreferences (text editors
(grep, emacs), programming language (Perl, Java, Python)),

e database theory.

Complexity

Given a pattern a, a word w. Does o match w (i.e., 3h : h(a) = w)?

Matching Problem (MATCH) J

o MATCH is (in general) NP-complete.

Complexity

Matching Problem (MATCH)

Given a pattern a, a word w. Does o match w (i.e., 3h : h(a) = w)?

|

e MATCH is (in general) NP-complete.

e Bad news: MATCH remains hard if numerical parameters are
restricted (few exceptions):

» MATCH € P if number of variables or word length bounded (trivial).

» MATCH still hard if

* alphabet size 2,
* each variable has at most 2 occurrences,
* |h(z)| < 3 for every .

Complexity

Matching Problem (MATCH)

Given a pattern a, a word w. Does o match w (i.e., 3h : h(a) = w)?

|

e MATCH is (in general) NP-complete.

e Bad news: MATCH remains hard if numerical parameters are
restricted (few exceptions):

» MATCH € P if number of variables or word length bounded (trivial).

» MATCH still hard if

* alphabet size 2,
* each variable has at most 2 occurrences,
* |h(z)| < 3 for every .

e Good news: Tractable if structure of patterns is restricted.

Notation

var(a) Set of variables occurring in pattern o.

||, Number of occurrences of variable = in pattern .

Structural Restrictions of Patterns

e Regular Patterns:
lal, =1, z € var(«).
E.g., a = abzjxrobrzaaarsb.

Structural Restrictions of Patterns

e Regular Patterns:
lal, =1, z € var(«).
E.g., a = abzjxrobrzaaarsb.

e Non-Cross Patterns:
a=...x...y...T...is not possible.
E.g., a = x1abarjar|roxobarsrsrsbbrsars

Structural Restrictions of Patterns

o k-Repeated-Variable Patterns:
{x € var(a) | |a|z > 2} < k.
E.g., @ = x1abxroarsaxsbarsbbryroxs is a 1-repeated-variable

pattern.

Structural Restrictions of Patterns

o k-Repeated-Variable Patterns:

{x € var(a) | |a|z > 2} < k.
E.g., @ = x1abxroarsaxsbarsbbryroxs is a 1-repeated-variable

pattern.

e Pattern with Bounded Scope Coincidence Degree:
Scope (of z): shortest factor containing all occ. of x,
Scope coincidence degree: maximum number of coinciding scopes.

o] =

a9 =

I
|.’1} 1 |$ 2 T €3 X9

|-771 I[IQ x1 l‘ll ()

T3 -771| m2| T3

L3 $2| €r3 X3

scd(ag) =3
2

Structural Restrictions of Patterns - Complexity

Known results: MATCH is in P for
e regular patterns
@ non-cross patterns

e patterns with scd < k

O(lal + |wl),
O(lef[w[),
O(jal[wE3) (k + 2)2).

Structural Restrictions of Patterns - Complexity

Known results: MATCH is in P for

e regular patterns O(la + [wl),
@ non-cross patterns O(lal|wl?),
e patterns with scd < k O(|a[w[>+H3) (k + 2)2).

Our contribution:
e Find (efficient) algorithms for these cases.

e Can we extend our algorithms to the injective case (i. e., different
variables are replaced by different words)?

k-Repeated Variable Patterns

Lemma
MATCH for 1-repeated-variable patterns is solvable in O(|w|?). J

Theorem

MATCH for k-repeated-variable patterns is solvable in O (%) }

Non-Cross Patterns

Dynamic programming approach!
Q NON-CTOSS =

o = W WOy . . . QLpWy. var(a;) = {x;}, w; € *

Non-Cross Patterns

Dynamic programming approach!
« NON-Cross =
o = W WOy . . . QLpWy. var(a;) = {x;}, w; € *

Compute all sub-problems:

Does woaqwy ... w;—10; match w[l..5]? 1<i<l,1<j<|w|

Non-Cross Patterns
Case 1: o; = x;

Wo1wy ... W1 O

!
w(l..j]

Non-Cross Patterns
Case 1: o; = x;

wo1wy ... W;—1 T4

!
w(l..j]

Non-Cross Patterns
Case 1: o; = x;

wo1wy ... W;—1 T4

!
w(l..j]

wo1wy ... W51

Non-Cross Patterns
Case 1: o; = x;

wo1wy ... W;—1 T4

!
w(l..j]

wo1wy ... W51 x;

w(l..5] wlj’ + 1..7]

Non-Cross Patterns
Case 2a: a; = (z;)" (x; is mapped to primitive word t)

WL WY .« .. Wi—] QY

1
wll..j]

Non-Cross Patterns
Case 2a: a; = (z;)" (x; is mapped to primitive word t)

wod1wy ... Wi—1 Lixgj... T4

1
wll..7]

Non-Cross Patterns
Case 2a: a; = (z;)" (x; is mapped to primitive word t)

wod1wy ... Wi—1 Lixgj... T4

1
wll..7]

—

3 primitive word ¢ with t* suffix of wl[1..5] and

wo1wy ... Wi—1

!
w(l..j — (K[t])]

Non-Cross Patterns
Case 2a: a; = (z;)" (x; is mapped to primitive word t)

wod1wy ... Wi—1 Lixgj... T4

1
wll..7]

—

3 primitive word ¢ with t* suffix of wl[1..5] and

wo1wy ... Wi—1 TiTi ... T4

b I
w(l..j — (k|t])] t.. .t

Non-Cross Patterns

Case 2a: Find all primitive ¢ such that wl[1..5] has ¢* as a suffix!

Lemma (Crochemore, 1981)

Primitive uy, ug, us, |’LL1| < |UQ’ < |’U,3|, w=wiuiu;, 1 <1< 3=
2Jun| < |ugl.

= w has at most 2log |w| primitively rooted squares as suffix.

Non-Cross Patterns

Case 2a: Find all primitive ¢ such that wl[1..5] has ¢* as a suffix!

Lemma (Crochemore, 1981)

Primitive uy, ug, us, |’LL1| < |UQ’ < |’U,3|, w=wiuiu;, 1 <1< 3=
2Jun| < |ugl.

= w has at most 2log |w| primitively rooted squares as suffix.

Lemma

We can compute in O(nlogn) time all the sets
P, = {u | u primitive, u?® suffiz of w[l1..i]}, 1 <i < |w|.

= Case 2a can be done efficiently.

Non-Cross Patterns
Case 2b: a; = (1;)" (z; is mapped to some word t = v"*1)

wod1wy ... Wi—1 Lixgj... T4

1
wll..7]

Non-Cross Patterns
Case 2b: a; = (1;)" (z; is mapped to some word t = v"*1)

wod1wy ... Wi—1 Lixgj... T4

1
wll..7]

—

3 primitive word v with v* suffix of w(1..5] and

Wo W .« . . Wij—1X5T5 « . . T with h(z;) = P

1
w[L..j = kfo])]

Non-Cross Patterns

ly— l
Case 3: o; = xfoulelw B T up € BT

wo1Wwy ... Wi—1 Q4

i
wll..j]

Non-Cross Patterns

Y Y Ly 4
Case 3: o; = z;°uix;'ug ... ;" 1up1‘ip

0y

Lo
Wo1wy ... W;—1 JZZ» ulxi ug. ..

!
w(l..j]

uk€E+

Non-Cross Patterns

. V4 0 lp—1 V4
Case 3: o = z;°wiz; ' ug ... ;" "upz,” up € BT
4 y4 lp—1 /l
Wo1wy ... W;—1 .%’Z»OU1(IZZ-1UQ e ZC,L-p upa:i”
w(l..j]

e (, > 2: proceed similar to Case 2 (more involved, details omitted).

e /, = 1: find all primitive u,t such that tu,t is a suffix of w[1..7].

Non-Cross Patterns

Generalisation of Crochemore’s result:
Lemma J

For a fized v, w has O(log |w|) factors uwvu with uv primitive as suffizes.

Lemma

For fized v, w, we can compute in O(nlogn) time all the sets
RY = {u | wv primitive, uvu suffiz of w[l..i]}, 1 <i < |w|.

= Case 3 can be done efficiently.

Non-Cross Patterns

Theorem

MATCH for non-cross patterns is solvable in O(|w|mlog |w|), where m
1s the number of one-variable blocks of the pattern.

Theorem
MATCH for patterns with scope coincidence degree of at most k is

solvable i O (%), where m is the number of one-variable blocks
of the pattern.

Injective MATCH

INIMATcCH: Like MATCH, but we are looking for an injective
substitution h, i.e., x # y = h(z) # h(y).

Can we use our (or other) MATCH-algorithms also for INJMATCH?

)

INJMATCH remains NP-complete for patterns for which MATCH is
(trivially) in P.

J

Injective MATCH

Theorem
INJMATCH is NP-complete even for patterns x1xo...Tn, n > 1.

We prove NP-completeness of the equivalent problem

UNFACT

Instance: A word w and an integer k > 1.
Question: w = ujug ... up with &' >k and u; #uj, 1 <i<j < k?

Corollary

INJMATCH 45 NP-complete for reqular, non-cross, k-repeated-variable,
bounded scd patterns.

Hardness of INJMATCH - Proof Idea

3D-MATCH

Instance: An integer £ € N and a set
SC{(pgr)|1<p<l+1<qg<20+1<r <3}

Question: Does there exist a subset S’ of S with cardinality ¢ such that,
for each two elements (p,q,7), (p/,¢',r") €S, p#p', ¢ # ¢ and r # r'?

Hardness of INJMATCH - Proof Idea

3D-MATCH instance (S,¢): S = {s1,82,...,Sk}
Transform every s; = (p;, qi,7i), 1 <i < k, into
vi= % pi a Dbi1 bj2 ¢ a Dbz

)

*i, ©;, b; ; have only one occurrence!

b;4

i

Hardness of INJMATCH - Proof Idea

3D-MATCH instance (S,¢): S = {s1,82,...,Sk}
Transform every s; = (p;, qi,7i), 1 <i < k, into
vi= x pi a bix bip ¢ a bz bia i o a o

)

*i, ©;, b; ; have only one occurrence!

Let S’ C 8.

(pirsqisri) € S & xipi ab; biog; ab;3 bigar; ad;

(pisgismi) €S’ & x pia biibis ga bisbia ma o

Hardness of INJMATCH - Proof Idea

3D-MATCH instance (S,¢): S = {s1,82,...,Sk}
Transform every s; = (p;, qi,7i), 1 <i < k, into

vi= ki pi a bin bia g a biz bia rpoa 9
*i, ©;, b; ; have only one occurrence!

Let S’ C 8.

(pisqisri) € S & xip; ab;; biog; ab;3 bigar; ad;

(pisgismi) €S’ & x pia biibis ga bisbia ma o

v=ujUy ... u, withn=704+6(k—¥) and u; #uj;, 1 <i<j<n
<~
S’ is a solution of (S, ¢).

Alphabet Size

Our Reduction needs an unbounded alphabet!
Hardness of INJMATCH for fixed alphabets is open, but...

Theorem

INJMATCH (with constant alphabet) is NP-complete for regutar,
non-cross, k-repeated-variable, bounded scd patterns.

Thank you very much for your attention.

