Pattern Matching with Variables: Fast Algorithms and New Hardness Results

Henning Fernau¹ Florin Manea² Robert Mercaş^{2,3} Markus L. Schmid¹

¹Trier University, Germany ²Kiel University, Germany ³King's College, London, UK

STACS 2015

Patterns with Variables

Finite alphabet of terminals	$\Sigma = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$
Set of variables	$X = \{x_1, x_2, x_3, \ldots\}$
Patterns	$\alpha \in (\Sigma \cup X)^+$
Words	$w \in \Sigma^+$
Substitution	$h: X \to \Sigma^+$ $\alpha = y_1 \dots y_n,$ $h(\alpha) = h(y_1) \dots h(y_n),$ with $h(a) = a, a \in \Sigma.$

pattern α matches word $w \iff \exists \text{ substitution } h: h(\alpha) = w.$

pattern
$$\alpha$$
 matches word $w \iff \exists \text{ substitution } h: h(\alpha) = w.$

$$\alpha = x_1 x_2 x_1 x_3 x_2$$

 $w=\mathtt{abbbaaabbaaababa}$

pattern
$$\alpha$$
 matches word $w \iff \exists \text{ substitution } h: h(\alpha) = w.$

$$lpha={ t a}\,{ t b}\,{ t b}\,{ t x}_2\,{ t a}\,{ t b}\,{ t b}\,{ t x}_3\,{ t x}_2$$
 $w={ t a}\,{ t b}\,{ t b}\,{ t a}\,{ t a}\,{ t b}\,{ t b}\,{ t a}\,{ t a}\,{ t b}\,{ t a}$

pattern
$$\alpha$$
 matches word $w \iff \exists \text{ substitution } h: h(\alpha) = w.$

$$lpha=\mathtt{abbbaabb}x_3$$
ba $w=\mathtt{abbbaabbaaababa}$

pattern
$$\alpha$$
 matches word $w \iff \exists \text{ substitution } h: h(\alpha) = w.$

$$lpha={\tt abbbaabbaaababa}$$
 $w={\tt abbbaabbaaababa}$

pattern
$$\alpha$$
 matches word $w \iff \exists \text{ substitution } h: h(\alpha) = w.$

$$lpha = x_1 \, \mathbf{a} \, x_2 \mathbf{b} \, x_2 x_1 \, x_2$$

 $w = \mathbf{b} \, \mathbf{a} \, \mathbf{c} \, \mathbf{b} \, \mathbf{a} \, \mathbf{c} \, \mathbf{b} \, \mathbf{c} \, \mathbf{b} \, \mathbf{c} \, \mathbf{b} \, \mathbf{c} \, \mathbf{b} \, \mathbf{c}$

pattern α matches word $w \iff \exists \text{ substitution } h: h(\alpha) = w.$

$$\alpha = \mathtt{b}\,\mathtt{a}\,\mathtt{c}\,\mathtt{b}\,\mathtt{a}\,\mathtt{x}_2\mathtt{b}\,x_2\mathtt{b}\,\mathtt{a}\,\mathtt{c}\,\mathtt{b}\,x_2$$

$$w = \mathtt{b}\,\mathtt{a}\,\mathtt{c}\,\mathtt{b}\,\mathtt{a}\,\mathtt{c}\,\mathtt{b}\,\mathtt{c}\,\mathtt{b}\,\mathtt{a}\,\mathtt{c}\,\mathtt{b}\,\mathtt{c}$$

pattern α matches word $w \iff \exists \text{ substitution } h: h(\alpha) = w.$

$$\alpha = \mathtt{bacbacbcbacbc}$$

$$w = \mathtt{bacbacbcbacbc}$$

Motivation

- Learning theory (inductive inference, PAC learning),
- language theory (pattern languages),
- combinatorics on words (word equations, unavoidable patterns, ambiguity of morphisms, equality sets),
- pattern matching (parameterised matching, (generalised) function matching),
- matchtest for regular expressions with backreferences (text editors (grep, emacs), programming language (Perl, Java, Python)),
- database theory.

Complexity

Matching Problem (MATCH)

Given a pattern α , a word w. Does α match w (i. e., $\exists h : h(\alpha) = w$)?

• Match is (in general) NP-complete.

Complexity

Matching Problem (MATCH)

Given a pattern α , a word w. Does α match w (i. e., $\exists h : h(\alpha) = w$)?

- Match is (in general) NP-complete.
- Bad news: Match remains hard if numerical parameters are restricted (few exceptions):
 - ▶ MATCH $\in P$ if number of variables or word length bounded (trivial).
 - ► Match still hard if
 - ★ alphabet size 2,
 - ★ each variable has at most 2 occurrences,
 - ★ $|h(x)| \le 3$ for every x.

Complexity

Matching Problem (MATCH)

Given a pattern α , a word w. Does α match w (i. e., $\exists h : h(\alpha) = w$)?

- Match is (in general) NP-complete.
- Bad news: MATCH remains hard if numerical parameters are restricted (few exceptions):
 - ▶ MATCH ∈ P if number of variables or word length bounded (trivial).
 - ► Match still hard if
 - ★ alphabet size 2,
 - ★ each variable has at most 2 occurrences,
 - ★ $|h(x)| \le 3$ for every x.
- Good news: Tractable if structure of patterns is restricted.

Notation

 $var(\alpha)$ Set of variables occurring in pattern α .

 $|\alpha|_x$ Number of occurrences of variable x in pattern α .

• Regular Patterns:

$$|\alpha|_x = 1, x \in var(\alpha).$$

 $\text{E. g., } \alpha = \texttt{ab} x_1 x_2 \texttt{b} x_3 \texttt{aaa} x_4 \texttt{b}.$

• Regular Patterns:

$$|\alpha|_x = 1, x \in \text{var}(\alpha).$$

E. g.,
$$\alpha = abx_1x_2bx_3aaax_4b$$
.

• Non-Cross Patterns:

$$\alpha = \dots x \dots y \dots x \dots$$
 is not possible.

E. g.,
$$\alpha = x_1 abax_1 ax_1 x_2 x_2 bax_2 x_3 x_3 bbx_3 ax_3$$

• k-Repeated-Variable Patterns:

```
|\{x \in var(\alpha) \mid |\alpha|_x \ge 2\}| \le k.
```

E. g., $\alpha = x_1 abx_2 ax_2 ax_3 bax_2 bbx_4 x_2 x_5$ is a 1-repeated-variable pattern.

• k-Repeated-Variable Patterns:

 $\begin{aligned} &|\{x\in \text{var}(\alpha)\mid |\alpha|_x\geq 2\}|\leq k.\\ &\text{E. g., }\alpha=x_1\texttt{ab}x_2\texttt{a}x_2\texttt{a}x_3\texttt{ba}x_2\texttt{bb}x_4x_2x_5\text{ is a 1-repeated-variable pattern.} \end{aligned}$

• Pattern with Bounded Scope Coincidence Degree:

Scope (of x): shortest factor containing all occ. of x, Scope coincidence degree: maximum number of coinciding scopes.

Structural Restrictions of Patterns - Complexity

Known results: Match is in P for

- regular patterns
- non-cross patterns
- patterns with $scd \leq k$

$$\mathcal{O}(|\alpha| + |w|),$$

$$\mathcal{O}(|\alpha||w|^4),$$

$$\mathcal{O}(|\alpha||w|^{2(k+3)}(k+2)^2).$$

Structural Restrictions of Patterns - Complexity

Known results: Match is in P for

$$\mathcal{O}(|\alpha|+|w|),$$

$$\mathcal{O}(|\alpha||w|^4),$$

• patterns with
$$scd \leq k$$

$$\mathcal{O}(|\alpha||w|^{2(k+3)}(k+2)^2).$$

Our contribution:

- Find (efficient) algorithms for these cases.
- Can we extend our algorithms to the injective case (i.e., different variables are replaced by different words)?

k-Repeated Variable Patterns

Lemma

Match for 1-repeated-variable patterns is solvable in $\mathcal{O}(|w|^2)$.

Theorem

MATCH for k-repeated-variable patterns is solvable in $\mathcal{O}\left(\frac{|w|^{2k}}{((k-1)!)^2}\right)$.

Dynamic programming approach!

$$\alpha \text{ non-cross} \Rightarrow$$

$$\alpha = w_0 \alpha_1 w_1 \alpha_2 \dots \alpha_\ell w_\ell.$$

$$\operatorname{var}(\alpha_i) = \{x_i\}, \ w_i \in \Sigma^*$$

Dynamic programming approach!

$$\alpha \text{ non-cross} \Rightarrow$$

$$\alpha = w_0 \alpha_1 w_1 \alpha_2 \dots \alpha_\ell w_\ell.$$

$$\operatorname{var}(\alpha_i) = \{x_i\}, \ w_i \in \Sigma^*$$

Compute all sub-problems:

Does
$$w_0\alpha_1w_1...w_{i-1}\alpha_i$$
 match $w[1...j]$?

$$1 \leq i \leq \ell, \, 1 \leq j \leq |w|$$

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ \alpha_i$$

$$\downarrow$$

$$w[1..j]$$

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i$$

$$\downarrow$$

$$w[1...j]$$

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i$$

$$\downarrow$$

$$w[1..j]$$

$$\iff$$

$$w_0\alpha_1w_1\dots w_{i-1}$$
 \downarrow
 $w[1..j']$

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i$$

$$\downarrow$$

$$w[1..j]$$

$$\iff$$

$$w_0 \alpha_1 w_1 \dots w_{i-1}$$
 x_i

$$\downarrow \qquad \qquad \downarrow$$

$$w[1..j'] \qquad \qquad w[j'+1..j]$$

Case
$$2a: \alpha_i = (x_i)^k$$

 $(x_i \text{ is mapped to } \text{primitive word } t)$

 $w_0 \alpha_1 w_1 \dots w_{i-1} \ \alpha_i$ \downarrow w[1...j]

Case
$$2a: \alpha_i = (x_i)^k$$

 $(x_i \text{ is mapped to } \text{primitive word } t)$

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i x_i \dots x_i$$

$$\downarrow$$

$$w[1...j]$$

Case 2a: $\alpha_i = (x_i)^k$ (x_i is mapped to primitive word t)

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i x_i \dots x_i$$

$$\downarrow$$

$$w[1...j]$$

$$\iff$$

 \exists primitive word t with t^k suffix of w[1..j] and

$$\psi_0 \alpha_1 w_1 \dots w_{i-1}
\downarrow
w[1..j - (k|t|)]$$

Case
$$2a$$
: $\alpha_i = (x_i)^k$ (x_i is mapped to primitive word t)

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i x_i \dots x_i$$

$$\downarrow$$

$$w[1...j]$$

$$\iff$$

 \exists primitive word t with t^k suffix of w[1..j] and

$$w_0 \alpha_1 w_1 \dots w_{i-1}$$
 $x_i x_i \dots x_i$

$$\downarrow \qquad \qquad \downarrow$$

$$w[1..j - (k|t|)] \qquad tt \dots t$$

Case 2a: Find all primitive t such that w[1..j] has t^2 as a suffix!

Lemma (Crochemore, 1981)

Primitive $u_1, u_2, u_3, |u_1| < |u_2| < |u_3|, w = w_i u_i u_i, 1 \le i \le 3 \Rightarrow 2|u_1| < |u_3|.$

 $\Rightarrow w$ has at most $2 \log |w|$ primitively rooted squares as suffix.

Case 2a: Find all primitive t such that w[1..j] has t^2 as a suffix!

Lemma (Crochemore, 1981)

Primitive $u_1, u_2, u_3, |u_1| < |u_2| < |u_3|, w = w_i u_i u_i, 1 \le i \le 3 \Rightarrow 2|u_1| < |u_3|.$

 $\Rightarrow w$ has at most $2\log|w|$ primitively rooted squares as suffix.

Lemma

We can compute in $\mathcal{O}(n \log n)$ time all the sets $P_i = \{u \mid u \text{ primitive}, u^2 \text{ suffix of } w[1..i]\}, 1 \leq i \leq |w|.$

 \Rightarrow Case 2a can be done efficiently.

Case 2b:
$$\alpha_i = (x_i)^k$$

 $(x_i \text{ is mapped to some word } t = v^{h+1})$

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i x_i \dots x_i$$

$$\downarrow$$

$$w[1..j]$$

Case 2b:
$$\alpha_i = (x_i)^k$$
 (x_i is mapped to some word $t = v^{h+1}$)

$$w_0\alpha_1w_1\dots w_{i-1} \ x_ix_i\dots x_i$$

$$\downarrow$$

$$w[1...j]$$

$$\iff$$

 \exists primitive word v with v^k suffix of w[1..j] and

$$w_0 \alpha_1 w_1 \dots w_{i-1} x_i x_i \dots x_i$$
 with $h(x_i) = v^h$

$$\downarrow$$

$$w[1...j - k|v|)]$$

Case 3:
$$\alpha_i=x_i^{\ell_0}u_1x_i^{\ell_1}u_2\dots x_i^{\ell_{p-1}}u_px_i^{\ell_p}$$

$$w_0\alpha_1w_1\dots w_{i-1}\ \alpha_i$$

$$\downarrow$$

$$w[1..j]$$

 $u_k \in \Sigma^+$

Case 3:
$$\alpha_i = x_i^{\ell_0} u_1 x_i^{\ell_1} u_2 \dots x_i^{\ell_{p-1}} u_p x_i^{\ell_p}$$

$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i^{\ell_0} u_1 x_i^{\ell_1} u_2 \dots x_i^{\ell_{p-1}} u_p x_i^{\ell_p}$$

$$\downarrow$$

$$w[1..j]$$

 $u_k \in \Sigma^+$

Case 3:
$$\alpha_i = x_i^{\ell_0} u_1 x_i^{\ell_1} u_2 \dots x_i^{\ell_{p-1}} u_p x_i^{\ell_p}$$
 $u_k \in \Sigma^+$
$$w_0 \alpha_1 w_1 \dots w_{i-1} \ x_i^{\ell_0} u_1 x_i^{\ell_1} u_2 \dots x_i^{\ell_{p-1}} u_p x_i^{\ell_p}$$

$$\downarrow \\ w[1..j]$$

- $\ell_p \geq 2$: proceed similar to Case 2 (more involved, details omitted).
- $\ell_p = 1$: find all primitive $u_p t$ such that $t u_p t$ is a suffix of w[1..j].

Generalisation of Crochemore's result:

Lemma

For a fixed v, w has $\mathcal{O}(\log |w|)$ factors uvu with uv primitive as suffixes.

Lemma

For fixed v, w, we can compute in $\mathcal{O}(n \log n)$ time all the sets $R_i^v = \{u \mid uv \text{ primitive}, uvu \text{ suffix of } w[1..i]\}, 1 \leq i \leq |w|$.

 \Rightarrow Case 3 can be done efficiently.

Theorem

MATCH for non-cross patterns is solvable in $\mathcal{O}(|w|m \log |w|)$, where m is the number of one-variable blocks of the pattern.

Theorem

Match for patterns with scope coincidence degree of at most k is solvable in $\mathcal{O}\left(\frac{|w|^{2k}m}{((k-1)!)^2}\right)$, where m is the number of one-variable blocks of the pattern.

Injective MATCH

INJMATCH: Like MATCH, but we are looking for an injective substitution h, i.e., $x \neq y \Rightarrow h(x) \neq h(y)$.

Can we use our (or other) MATCH-algorithms also for INJMATCH?

InjMatch remains NP-complete for patterns for which Match is (trivially) in P.

Injective MATCH

Theorem

InjMatch is NP-complete even for patterns $x_1x_2...x_n$, $n \ge 1$.

We prove NP-completeness of the equivalent problem

UNFACT

Instance: A word w and an integer $k \geq 1$.

Question: $w = u_1 u_2 \dots u_{k'}$ with $k' \ge k$ and $u_i \ne u_j$, $1 \le i < j \le k$?

 $a_1 = a_1 a_2 \dots a_k$ with $b_1 = b_1$ and $a_1 \neq a_1, 1 \leq b_1 \leq b_2$

Corollary

 $\label{local-equation} \mbox{InjMatch} \ is \ NP\text{-}complete \ for \ regular, \ non\text{-}cross, \ k\text{-}repeated\text{-}variable, \\ bounded \ scd \ patterns.$

3D-MATCH

Instance: An integer $\ell \in \mathbb{N}$ and a set

 $S \subseteq \{(p,q,r) \mid 1 \le p < \ell + 1 \le q < 2\ell + 1 \le r \le 3\ell\}.$

Question: Does there exist a subset S' of S with cardinality ℓ such that, for each two elements $(p,q,r), (p',q',r') \in S', p \neq p', q \neq q'$ and $r \neq r'$?

3D-MATCH instance (S, ℓ) : $S = \{s_1, s_2, \dots, s_k\}$ Transform every $s_i = (\mathbf{p_i}, \mathbf{q_i}, \mathbf{r_i}), 1 \le i \le k$, into

 \star_i , \diamond_i , $b_{i,j}$ have only one occurrence!

3D-MATCH instance (S, ℓ) : $S = \{s_1, s_2, \dots, s_k\}$ Transform every $s_i = (p_i, q_i, r_i), 1 \le i \le k$, into

 \star_i , \diamond_i , $b_{i,j}$ have only one occurrence!

Let
$$S' \subseteq S$$
.

$$(p_i,q_i,r_i)
otin S' \qquad \Leftrightarrow \star_i p_i \quad \text{ ab}_{i,1} \quad \text{ b}_{i,2} q_i \quad \text{ ab}_{i,3} \quad \text{ b}_{i,4} r_i \quad \text{ a} \diamond_i$$

$$(p_i,q_i,r_i) \in S' \quad \Leftrightarrow \quad \star_i \quad extbf{\emph{p}}_i extbf{a} \quad extbf{\emph{b}}_{i,1} extbf{\emph{b}}_{i,2} \quad extbf{\emph{q}}_i extbf{a} \quad extbf{\emph{b}}_{i,3} extbf{\emph{b}}_{i,4} \quad extbf{\emph{r}}_i extbf{a} \quad extstyle extstyle extstyle extstyle extbf{\emph{c}}_i$$

3D-MATCH instance (S, ℓ) : $S = \{s_1, s_2, \dots, s_k\}$ Transform every $s_i = (p_i, q_i, r_i), 1 \le i \le k$, into

 \star_i , \diamond_i , $b_{i,j}$ have only one occurrence!

Let
$$S' \subseteq S$$
.

S' is a solution of (S, ℓ) .

$$(p_i, q_i, r_i) \in S' \quad \Leftrightarrow \quad \star_i \quad \mathbf{p_i} \mathbf{a} \quad \mathbf{b}_{i,1} \mathbf{b}_{i,2} \quad \mathbf{q_i} \mathbf{a} \quad \mathbf{b}_{i,3} \mathbf{b}_{i,4} \quad \mathbf{r_i} \mathbf{a} \quad \diamond_i$$
 $v = u_1 u_2 \dots u_n \text{ with } n = 7\ell + 6(k - \ell) \text{ and } u_i \neq u_j, \ 1 \leq i < j \leq n$
 \iff

 $(p_i, q_i, r_i) \notin S' \quad \Leftrightarrow \star_i p_i \quad \text{ab}_{i,1} \quad \text{b}_{i,2} q_i \quad \text{ab}_{i,3} \quad \text{b}_{i,4} r_i \quad \text{a} \diamond_i$

Alphabet Size

Our Reduction needs an unbounded alphabet!

Hardness of InjMatch for fixed alphabets is open, but...

Theorem

InjMatch (with constant alphabet) is NP-complete for $\frac{regular}{r}$, non-cross, $\frac{k-repeated-variable}{r}$, bounded scd patterns.

Thank you very much for your attention.