Closure Properties of Pattern Languages

Daniel Reidenbach1, Joel D. Day1, Markus L. Schmid2

1Loughborough University, UK
2Trier University, Germany

DLT 2014
Basic Definitions and Notation

\[\Sigma \quad \text{Terminal} \quad \{a, b, c\} \]
Basic Definitions and Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Terminals</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ</td>
<td>{a, b, c}</td>
<td>{x_1, x_2, x_3, \ldots}</td>
</tr>
<tr>
<td>\mathcal{X}</td>
<td>{a, b, c}</td>
<td>{x_1, x_2, x_3, \ldots}</td>
</tr>
</tbody>
</table>
Basic Definitions and Notation

Σ \hspace{1cm} Terminals \hspace{1cm} \{a, b, c\}

X \hspace{1cm} Variables \hspace{1cm} \{x_1, x_2, x_3, \ldots\}

$w \in \Sigma^*$ \hspace{1cm} Word \hspace{1cm} abaacba
Basic Definitions and Notation

\[\Sigma \quad \text{Terminals} \quad \{a, b, c\} \]

\[X \quad \text{Variables} \quad \{x_1, x_2, x_3, \ldots\} \]

\[w \in \Sigma^* \quad \text{Word} \quad \text{abaacba} \]

\[\alpha \in (\Sigma \cup X)^+ \quad \text{Pattern} \quad \alpha := x_1 ax_2 x_1 bax_2 x_1 x_3 \]
Pattern Languages

Morphism Mapping $h : \Gamma_1^* \rightarrow \Gamma_2^*$ with $h(x \cdot y) = h(x) \cdot h(y)$; h is nonerasing iff, for every $a \in \Gamma_1$, $h(a) \neq \varepsilon$.
Pattern Languages

Morphism Mapping \(h : \Gamma_1^* \to \Gamma_2^* \) with \(h(x \cdot y) = h(x) \cdot h(y) \); \(h \) is nonerasing iff, for every \(a \in \Gamma_1 \), \(h(a) \neq \varepsilon \).

Substitution Morphism \(h : (\Sigma \cup X)^* \to \Sigma^* \) with \(h(a) = a, \ a \in \Sigma \).
Pattern Languages

Morphism Mapping $h : \Gamma_1^* \rightarrow \Gamma_2^*$ with $h(x \cdot y) = h(x) \cdot h(y)$;
h is nonerasing iff, for every $a \in \Gamma_1$, $h(a) \neq \varepsilon$.

Substitution Morphism $h : (\Sigma \cup X)^* \rightarrow \Sigma^*$ with $h(a) = a$, $a \in \Sigma$.

E-pattern lang. $L_{E,\Sigma}(\alpha) := \{h(\alpha) \mid h \text{ is a substitution}\}$.
Pattern Languages

Morphism Mapping \(h : \Gamma_1^* \to \Gamma_2^* \) with \(h(x \cdot y) = h(x) \cdot h(y) \); \(h \) is nonerasing iff, for every \(a \in \Gamma_1 \), \(h(a) \neq \varepsilon \).

Substitution Morphism \(h : (\Sigma \cup X)^* \to \Sigma^* \) with \(h(a) = a \), \(a \in \Sigma \).

E-pattern lang. \(L_{E,\Sigma}(\alpha) := \{ h(\alpha) \mid h \) is a substitution \}\).

NE-pattern lang. \(L_{NE,\Sigma}(\alpha) := \{ h(\alpha) \mid h \) is nonerasing substitution \}\).
An Example

\[\alpha = x_1 \text{ aa } x_2 \text{ } x_1 \text{ } x_2 \text{ } cb \text{ } x_1 \]
An Example

\[\alpha = x_1 \text{ aa } x_2 \text{ x_1 } x_2 \text{ cb } x_1 \]

\[\text{acaaabcbaacabcbacbac} \]
An Example

\[\alpha = x_1 \ a a \ x_2 \ x_1 \ x_2 \ cb \ x_1 \]

\[ac a a a b c b a c a b c b a c b a c b \]
An Example

\[\alpha = x_1 \text{ } aa \text{ } x_2 \text{ } x_1 \text{ } x_2 \text{ } cb \text{ } x_1 \]

acaaabcbaacabcbacdbac
An Example

\[\alpha = x_1 \text{aa} x_2 x_1 x_2 \text{cb} x_1 \]

acaaabcbaacabcbacbac
An Example

\[\alpha = x_1 \text{ aa } x_2 \text{ x}_1 \text{ x}_2 \text{ cb } x_1 \]

\[\text{acaaabcbaacabcbacbac} \]

\[h(\alpha) = \text{acaaabcbaacabcbacbac} \in L_{NE, \{a,b,c\}}(\alpha), \]
where \(h(x_1) = \text{ac} \), \(h(x_2) = \text{abcba} \), \(h(a) = a \), \(h(b) = b \).
An Example

\(\alpha = x_1 \ aa \ x_2 \ x_1 \ x_2 \ cb \ x_1 \)

\[\text{acaaabcbaacabcbacbac} \]

\(h(\alpha) = \text{acaaabcbaacabcbacbac} \in L_{\text{NE,\{a,b,c\}}}(\alpha), \)
where \(h(x_1) = \text{ac}, \ h(x_2) = \text{abcba}, \ (h(a) = a, \ h(b) = b). \)

\[\text{ccbaaccbcbccb} \notin L_{\text{NE,\{a,b,c\}}}(\alpha) \]
An Example

\[\alpha = x_1 \text{ aa } x_2 x_1 x_2 \text{ cb } x_1 \]

\[acaaabcbaacabcbacbac \]

\[h(\alpha) = acaaabcbaacabcbacbac \in L_{NE,\{a,b,c\}}(\alpha), \]
where \(h(x_1) = ac, \ h(x_2) = abcba, \ (h(a) = a, \ h(b) = b). \]

\[ccbaaccbcbccb \notin L_{NE,\{a,b,c\}}(\alpha) \]
\[ccbaaccbcbccb \in L_{E,\{a,b,c\}}(\alpha) \]
Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)

Later investigated from a purely language theoretical point of view. Independently developed in the pattern matching community. Practically applied in so-called regular expressions with backreferences (Perl, Java, Python, ...). Relations to combinatorics on words: pattern avoidability, ambiguity of morphisms, word equations, equality sets.
Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)

- Later investigated from a purely language theoretical point of view.
Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)
- Later investigated from a purely language theoretical point of view.
- Independently developed in the pattern matching community.

Relations to combinatorics on words: pattern avoidability, ambiguity of morphisms, word equations, equality sets.
Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)

- Later investigated from a purely language theoretical point of view.

- Independently developed in the pattern matching community.

- Practically applied in so-called regular expressions with backreferences (Perl, Java, Python, ...).
Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)

- Later investigated from a purely language theoretical point of view.

- Independently developed in the pattern matching community.

- Practically applied in so-called regular expressions with backreferences (Perl, Java, Python, ...).

- Relations to combinatorics on words: pattern avoidability, ambiguity of morphisms, word equations, equality sets.
Some Background Information on Pattern Languages

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>
Some Background Information on Pattern Languages

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Inclusion</td>
<td>undecidable</td>
</tr>
</tbody>
</table>

- Equivalence (NE-case) is trivial.
- Equivalence (E-case) is open.
- Inclusion (terminal-free, E-case) is NP-complete.
- Equivalence (terminal-free, E-case) is NP-complete.
Some Background Information on Pattern Languages

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Inclusion</td>
<td>undecidable</td>
</tr>
<tr>
<td>Equivalence (NE-case)</td>
<td>trivial</td>
</tr>
<tr>
<td>Equivalence (terminal-free, E-case)</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>
Some Background Information on Pattern Languages

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Inclusion</td>
<td>undecidable</td>
</tr>
<tr>
<td>Equivalence (NE-case)</td>
<td>trivial</td>
</tr>
<tr>
<td>Equivalence (E-case)</td>
<td>open</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some Background Information on Pattern Languages

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Inclusion</td>
<td>undecidable</td>
</tr>
<tr>
<td>Equivalence (NE-case)</td>
<td>trivial</td>
</tr>
<tr>
<td>Equivalence (E-case)</td>
<td>open</td>
</tr>
<tr>
<td>Inclusion (terminal-free, E-case)</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>
Some Background Information on Pattern Languages

<table>
<thead>
<tr>
<th>Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membership</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Inclusion</td>
<td>undecidable</td>
</tr>
<tr>
<td>Equivalence (NE-case)</td>
<td>trivial</td>
</tr>
<tr>
<td>Equivalence (E-case)</td>
<td>open</td>
</tr>
<tr>
<td>Inclusion (terminal-free, E-case)</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Equivalence (terminal-free, E-case)</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>
Closure Properties

Angluin 1979:

Pattern Languages are not closed under

- union
 \[L_{NE,\Sigma}(a) \cup L_{NE,\Sigma}(b) = \{a, b\} \]

- intersection
 \[L_{NE,\Sigma}(a) \cap L_{NE,\Sigma}(b) = \emptyset \]

- complement
 \[\{a, b\}^* \setminus L_{NE,\Sigma}(a) \]

- Kleene plus
 \[(L_{NE,\{a,b\}}(a))^* \ (L_{NE,\{a,b\}}(a))^+ \]

- homomorphism
 \[h(L_{NE,\{a,b\}}(x)) = (L(a))^+, \ h(a) = h(b) = a \]

- inv. homo.
 \[g^{-1}(L_{NE,\{a,b\}}(aaa)) = \{aaa, ab, ba\}, \ g(a) = a, \ g(b) \]
Closure Properties

Angluin 1979:

Pattern Languages are **not closed** under

- union
 \[L_{\text{NE},\Sigma}(a) \cup L_{\text{NE},\Sigma}(b) = \{a, b\} \]
- intersection
 \[L_{\text{NE},\Sigma}(a) \cap L_{\text{NE},\Sigma}(b) = \emptyset \]
- complement
 \[\{a, b\}^* \setminus L_{\text{NE},\Sigma}(a) \]
- Kleene plus
 \[(L_{\text{NE},\{a,b\}}(a))^* \ ((L_{\text{NE},\{a,b\}}(a))^+) \]
- homomorphism
 \[h(L_{\text{NE},\{a,b\}}(x)) = (L(a))^+, \ h(a) = h(b) = a \]
- inv. homo.
 \[g^{-1}(L_{\text{NE},\{a,b\}}(aaa)) = \{aaa, ab, ba\}, \ g(a) = a, \ g(b) \]

Pattern Languages are **closed** under

- concatenation
 \[L(\alpha) \cdot L(\beta) = L(\alpha \cdot \beta) \]
- reversal
 \[(L(\alpha))^R = L(\alpha^R) \]
Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.
Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.

- Normally leads to insights and techniques that yield a better understanding of the class.
Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.
- Normally leads to insights and techniques that yield a better understanding of the class.
- In the case of pattern languages the existing closure properties fail to contribute to our understanding of their intrinsic properties.
Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.

- Normally leads to insights and techniques that yield a better understanding of the class.

- In the case of pattern languages the existing closure properties fail to contribute to our understanding of their intrinsic properties.

- All examples for non-closure require terminal symbols in the patterns (what about the closure of terminal-free pattern languages).
Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.
- Normally leads to insights and techniques that yield a better understanding of the class.
- In the case of pattern languages the existing closure properties fail to contribute to our understanding of their intrinsic properties.
- All examples for non-closure require terminal symbols in the patterns (what about the closure of terminal-free pattern languages).
- Can we characterise those pairs \((\alpha, \beta)\) of patterns, for which \(L(\alpha) \cup L(\beta)\) or \(L(\alpha) \cap L(\beta)\) are pattern languages?
Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages
Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.
Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Let $\Sigma = \{a, b\}$ and $\alpha = x_1x_2x_2x_1x_3x_1$.
Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Let $\Sigma = \{a, b\}$ and $\alpha = x_1 x_2 x_2 x_1 x_3 x_1$.

\[
\begin{align*}
\beta_1 &= x_1 x_2 x_2 x_1 x_3 x_1, \\
\beta_2 &= x_2 x_2 x_3, \\
\beta_3 &= x_1 x_1 x_3 x_1, \\
\beta_4 &= x_1 x_2 x_2 x_1 x_1, \\
\beta_5 &= x_3, \\
\beta_6 &= x_2 x_2, \\
\beta_7 &= x_1 x_1 x_1.
\end{align*}
\]

$L_{E,\Sigma}(\alpha) = \bigcup_{i=1}^{6} L_{NE,\Sigma}(\beta_i)$.

Is this the only way of how unions of E- or unions of NE-pattern languages can be a NE- or a E-pattern languages, respectively?
Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Let $\Sigma = \{a, b\}$ and $\alpha = x_1 x_2 x_2 x_1 x_3 x_1$.

$\beta_1 = x_1 x_2 x_2 x_1 x_3 x_1$, $\gamma_1 = a x_1 a x_2 a x_2 a x_1 a x_3 a x_1$,
$\beta_2 = x_2 x_2 x_3$, $\gamma_2 = b x_1 a x_2 a x_2 b x_1 a x_3 b x_1$,
$\beta_3 = x_1 x_1 x_3 x_1$, $\gamma_3 = a x_1 b x_2 b x_2 a x_1 a x_3 a x_1$,
$\beta_4 = x_1 x_2 x_2 x_1 x_1$, $\gamma_4 = a x_1 a x_2 a x_2 a x_1 b x_3 a x_1$,
$\beta_5 = x_3$, $\gamma_5 = a x_1 b x_2 b x_2 a x_1 b x_3 a x_1$,
$\beta_6 = x_2 x_2$, $\gamma_6 = b x_1 a x_2 a x_2 b x_1 b x_3 b x_1$,
$\beta_7 = x_1 x_1 x_1$. $\gamma_7 = b x_1 b x_2 b x_2 b x_1 a x_3 b x_1$,

$L_{E, \Sigma}(\alpha) = \bigcup_{i=1}^{6} L_{NE, \Sigma}(\beta_i)$.

$L_{NE, \Sigma}(\alpha) = \bigcup_{i=1}^{8} L_{E, \Sigma}(\gamma_i)$.

Is this the only way of how unions of E- or unions of NE-pattern languages can be a NE- or a E-pattern languages, respectively?
Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Let $\Sigma = \{a, b\}$ and $\alpha = x_1x_2x_2x_1x_3x_1$.

$\beta_1 = x_1x_2x_2x_1x_3x_1$, $\gamma_1 = ax_1ax_2ax_2ax_1ax_3ax_1$,
$\beta_2 = x_2x_2x_3$, $\gamma_2 = bx_1ax_2ax_2bx_1ax_3bx_1$,
$\beta_3 = x_1x_1x_3x_1$, $\gamma_3 = ax_1bx_2bx_2ax_1ax_3ax_1$,
$\beta_4 = x_1x_2x_2x_1x_1$, $\gamma_4 = ax_1ax_2ax_2ax_1bx_3ax_1$,
$\beta_5 = x_3$, $\gamma_5 = ax_1bx_2bx_2ax_1bx_3ax_1$,
$\beta_6 = x_2x_2$, $\gamma_6 = bx_1ax_2ax_2bx_1bx_3bx_1$,
$\beta_7 = x_1x_1x_1$, $\gamma_7 = bx_1bx_2bx_2bx_1ax_3bx_1$.

$L_{E,\Sigma}(\alpha) = \bigcup_{i=1}^{6} L_{NE,\Sigma}(\beta_i)$. $L_{NE,\Sigma}(\alpha) = \bigcup_{i=1}^{8} L_{E,\Sigma}(\gamma_i)$.

Is this the only way of how unions of E- or unions of NE- pattern languages can be a NE- or a E-pattern languages, respectively?
Closure of Terminal-Free Pattern Languages

Terminal-free pattern languages . . .

- . . . have been a recent focus of interest in the research of pattern languages.
Terminal-free pattern languages . . .

- . . . have been a recent focus of interest in the research of pattern languages.

- . . . have better decidability properties (inclusion and equivalence is decidable in the E-case).
Closure of Terminal-Free Pattern Languages

Terminal-free pattern languages . . .

- . . . have been a recent focus of interest in the research of pattern languages.

- . . . have better decidability properties (inclusion and equivalence is decidable in the E-case).

- . . . have open closure properties.
Union of Terminal-Free Pattern Languages

Theorem

Let \(Z, Z' \in \{ E, NE \} \) and \(\alpha, \beta, \gamma \) patterns.

\[
L_{Z, \Sigma}(\alpha) \cup L_{Z, \Sigma}(\beta) = L_{Z', \Sigma}(\gamma) \\
\iff \\
L_{Z, \Sigma}(\alpha) \subseteq L_{Z, \Sigma}(\beta) \text{ and } L_{Z, \Sigma}(\beta) = L_{Z', \Sigma}(\gamma) \text{ or } \text{ or } \\
L_{Z, \Sigma}(\beta) \subseteq L_{Z, \Sigma}(\alpha) \text{ and } L_{Z, \Sigma}(\alpha) = L_{Z', \Sigma}(\gamma).
\]
Theorem

Let $Z, Z' \in \{E, NE\}$ and α, β, γ patterns.

\[L_{Z,\Sigma}(\alpha) \cup L_{Z,\Sigma}(\beta) = L_{Z',\Sigma}(\gamma) \]

\[\iff \]

\[L_{Z,\Sigma}(\alpha) \subseteq L_{Z,\Sigma}(\beta) \text{ and } L_{Z,\Sigma}(\beta) = L_{Z',\Sigma}(\gamma) \text{ or } \]

\[L_{Z,\Sigma}(\beta) \subseteq L_{Z,\Sigma}(\alpha) \text{ and } L_{Z,\Sigma}(\alpha) = L_{Z',\Sigma}(\gamma). \]

\[\Rightarrow \text{ full characterisation of } L_z(\alpha) \cup L_z(\beta) = L_{Z'}(\gamma), \ Z, Z' \in \{E, NE\}. \]
Union of Terminal-Free Pattern Languages

Theorem

Let $Z, Z' \in \{E, NE\}$ and α, β, γ patterns.

$$L_{Z, \Sigma(\alpha)} \cup L_{Z, \Sigma(\beta)} = L_{Z', \Sigma(\gamma)}$$

\iff

$$L_{Z, \Sigma(\alpha)} \subseteq L_{Z, \Sigma(\beta)} \text{ and } L_{Z, \Sigma(\beta)} = L_{Z', \Sigma(\gamma)} \text{ or }$$

$$L_{Z, \Sigma(\beta)} \subseteq L_{Z, \Sigma(\alpha)} \text{ and } L_{Z, \Sigma(\alpha)} = L_{Z', \Sigma(\gamma)}.$$

\Rightarrow full characterisation of $L_Z(\alpha) \cup L_Z(\beta) = L_{Z'}(\gamma), Z, Z' \in \{E, NE\}$.

Inclusion is decidable for terminal-free E-pattern languages, but still open for terminal-free NE-pattern languages.
Intersection of Terminal-Free Pattern Languages

Theorem

Let $Z \in \{E, NE\}$. Then $L_{Z,\Sigma}(x_1x_1) \cap L_{Z,\Sigma}(x_1x_1x_1) = L_{Z,\Sigma}(x_1^6)$.
Intersection of Terminal-Free Pattern Languages

Theorem

Let $Z \in \{E, NE\}$. Then $L_{Z, \Sigma}(x_1x_1) \cap L_{Z, \Sigma}(x_1x_1x_1) = L_{Z, \Sigma}(x_1^6)$.

Theorem

$L_{NE, \Sigma}(x_1x_2x_1) \cap L_{NE, \Sigma}(x_1x_1x_2)$ is not a terminal-free NE-pattern language.
Intersection of Terminal-Free Pattern Languages

Theorem

Let $Z \in \{E, NE\}$. Then $L_{Z,\Sigma}(x_1 x_1) \cap L_{Z,\Sigma}(x_1 x_1 x_1) = L_{Z,\Sigma}(x_1^6)$.

Theorem

$L_{NE,\Sigma}(x_1 x_2 x_1) \cap L_{NE,\Sigma}(x_1 x_1 x_2)$ is not a terminal-free NE-pattern language.

Theorem

$L_{E,\Sigma}(x_1 x_2 x_1^2 x_2 x_1^3 x_2^2) \cap L_{E,\Sigma}(x_3 x_4^2 x_3^2 x_4^6 x_3^3)$ is not a tf-E-pattern language.
Proof Sketch

Let $\alpha = x_1 x_2 x_1^2 x_2 x_1^3 x_2^2$ and $\beta = x_3 x_4^2 x_3^2 x_4^6 x_3^3$.
Proof Sketch

Let $\alpha = x_1 x_2 x_1^2 x_2 x_1^3 x_2^2$ and $\beta = x_3 x_4^2 x_3^2 x_4^6 x_3^3$.

$L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ equals the solutions of

$$x_1 x_2 x_1 x_2 x_1 x_1 x_1 x_2 x_2 = x_3 x_4 x_4 x_3 x_3 x_4 x_4 x_4 x_4 x_4 x_4 x_4 x_4 x_3 x_3 x_3 .$$
Proof Sketch

Let $\alpha = x_1 x_2 x_1^2 x_2 x_1^3 x_2^2$ and $\beta = x_3 x_4^2 x_3^2 x_4^6 x_3^3$.

$L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ equals the solutions of

$$x_1 x_2 x_1 x_1 x_2 \quad x_1 x_1 x_1 x_2 x_2 = x_3 x_4 x_4 x_3 x_3 x_4 x_4 \quad x_4 x_4 x_4 x_4 x_3 x_3 x_3 x_3.$$
Proof Sketch

Let \(\alpha = x_1 x_2 x_1^2 x_2 x_1^3 x_2^2 \) and \(\beta = x_3 x_4^2 x_3^2 x_4^6 x_3^3 \).

\(L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta) \) equals the solutions of

\[
\begin{align*}
x_1 x_2 x_1 x_1 x_2 &= x_3 x_4 x_4 x_3 x_3 x_4 x_4 \\
x_1 x_1 x_1 x_2 x_2 &= x_4 x_4 x_4 x_4 x_3 x_3 x_3
\end{align*}
\]
Proof Sketch

Let $\alpha = x_1 x_2 x_1^2 x_2 x_1^3 x_2^2$ and $\beta = x_3 x_4^2 x_3^2 x_4^6 x_3^3$.

$L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ equals the solutions of

\[
\begin{align*}
x_1 x_2 x_1 x_1 x_2 &= x_3 x_5 x_3 x_3 x_5 \\
x_1 x_1 x_1 x_2 x_2 &= x_5 x_5 x_3 x_3 x_3 \\
x_5 &= x_4 x_4
\end{align*}
\]
Proof Sketch

Let \(\alpha = x_1 x_2 x_1^2 x_2 x_1^3 x_2^2 \) and \(\beta = x_3 x_4^2 x_3^2 x_4^6 x_3^3 \).

\(L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta) \) equals the solutions of

\[
\begin{align*}
x_1 x_2 x_1 x_1 x_2 &= x_3 x_5 x_3 x_3 x_5 \\
x_1 x_1 x_1 x_2 x_2 &= x_5 x_5 x_3 x_3 x_3 \\
x_5 &= x_4 x_4
\end{align*}
\]
Proof Sketch

Let $\alpha = x_1 x_2 x_1^2 x_2 x_1^3 x_2^2$ and $\beta = x_3 x_4^2 x_3^2 x_4^6 x_3^3$.

$L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ equals the solutions of

\[
\begin{align*}
 x_1 x_2 x_1 x_1 x_2 &= x_3 x_5 x_3 x_3 x_5 \\
 x_1 x_1 x_1 x_2 x_2 &= x_5 x_5 x_3 x_3 x_3 \\
 x_5 &= x_4 x_4
\end{align*}
\]

\Rightarrow all solutions to the equations are periodic.
Proof Sketch

Let $\alpha = x_1 x_2 x_1^2 x_2 x_1^3 x_2^2$ and $\beta = x_3 x_4^2 x_3^2 x_4^6 x_3^3$.

$L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ equals the solutions of

\[
\begin{align*}
x_1 x_2 x_1 x_1 x_2 &= x_3 x_5 x_3 x_3 x_5 \\
x_1 x_1 x_1 x_2 x_2 &= x_5 x_5 x_3 x_3 x_3 \\
x_5 &= x_4 x_4
\end{align*}
\]

\Rightarrow all solutions to the equations are periodic.

Lemma: If $\alpha = \beta$ has only periodic solutions and $L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ is a terminal-free E-pattern language, then $a^k \in L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ implies $k = \ell |w|$ for some $\ell \geq 1$.

Proof Sketch

Let $\alpha = x_1x_2x_1^2x_2x_1^3x_2^2$ and $\beta = x_3x_4^2x_3^2x_4^6x_3^3$.

$L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ equals the solutions of

\[
\begin{align*}
x_1x_2x_1x_1x_2 &= x_3x_5x_3x_3x_5 \\
x_1x_1x_1x_2x_2 &= x_5x_5x_3x_3x_3 \\
x_5 &= x_4x_4
\end{align*}
\]

\Rightarrow all solutions to the equations are periodic.

Lemma: If $\alpha = \beta$ has only periodic solutions and $L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ is a terminal-free E-pattern language, then $a^k \in L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ implies $k = \ell |w|$ for some $\ell \geq 1$.

Since a^6 is the shortest element in $L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$ and $a^8 \in L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta)$, we obtain a contradiction.
Other Closure Properties of TF Pattern Languages

Theorem
Let $|\Sigma| \geq 2$. The terminal-free NE- and E-pattern languages, with respect to Σ, are not closed under
- morphisms,
- inverse morphisms,
- Kleene plus and
- Kleene star.

Theorem
For every terminal-free pattern α, the complement of $L_{E,\Sigma}(\alpha)$ is not a terminal-free E-pattern language and the complement of $L_{NE,\Sigma}(\alpha)$ is not a terminal-free NE-pattern language.
Closure Properties of General Pattern Languages

Closure under complement is fully characterised:

Theorem

For every pattern α, the complement of $L_{E,\Sigma}(\alpha)$ is not an E-pattern language and the complement of $L_{NE,\Sigma}(\alpha)$ is not a NE-pattern language.
Main Research Question

For $Z, Z' \in \{E, \text{NE}\}$ and $\circ \in \{\cup, \cap\}$, are there α, β such that

- $L_{Z,\Sigma}(\alpha) \circ L_{Z,\Sigma}(\beta)$ is not a Z'-pattern language? ✓
- $L_{Z,\Sigma}(\alpha) \circ L_{Z,\Sigma}(\beta)$ is a Z'-pattern language?
Main Research Question

For $Z, Z' \in \{E, NE\}$ and $\circ \in \{\cup, \cap\}$, are there α, β such that

- $L_{Z, \Sigma}(\alpha) \circ L_{Z, \Sigma}(\beta)$ is not a Z'-pattern language? ✓
- $L_{Z, \Sigma}(\alpha) \circ L_{Z, \Sigma}(\beta)$ is a Z'-pattern language?

Characterise the α, β for which $L_{Z, \Sigma}(\alpha) \circ L_{Z, \Sigma}(\beta)$ is a Z'-pattern language?
There are simple examples for the situation that

- \(L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta) \) is an E-pattern language.
- \(L_{NE,\Sigma}(\alpha) \cap L_{NE,\Sigma}(\beta) \) is an NE-pattern language.
- \(L_{NE,\Sigma}(\alpha) \cap L_{NE,\Sigma}(\beta) \) is an E-pattern language.
Intersection of General Pattern Languages

There are simple examples for the situation that

- \(L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta) \) is an E-pattern language.
- \(L_{NE,\Sigma}(\alpha) \cap L_{NE,\Sigma}(\beta) \) is an NE-pattern language.
- \(L_{NE,\Sigma}(\alpha) \cap L_{NE,\Sigma}(\beta) \) is an E-pattern language.

Open:

- Are there \(\alpha, \beta \), such that \(L_{E,\Sigma}(\alpha) \cap L_{E,\Sigma}(\beta) \) is NE-pattern language?
There are simple examples for the situation that

- $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ is an E-pattern language.
- $L_{NE, \Sigma}(\alpha) \cap L_{NE, \Sigma}(\beta)$ is an NE-pattern language.
- $L_{NE, \Sigma}(\alpha) \cap L_{NE, \Sigma}(\beta)$ is an E-pattern language.

Open:

- Are there α, β, such that $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ is NE-pattern language?
- Characterisations?
Union of General Pattern Languages

There are simple examples for the situation that

- \(L_{NE,\Sigma}(\alpha) \cup L_{NE,\Sigma}(\beta) \) is an NE-pattern language.
- \(L_{E,\Sigma}(\alpha) \cup L_{E,\Sigma}(\beta) \) is an NE-pattern language.
- \(L_{NE,\Sigma}(\alpha) \cup L_{NE,\Sigma}(\beta) \) is an E-pattern language.
Union of General Pattern Languages

There are simple examples for the situation that

- $L_{NE,\Sigma}(\alpha) \cup L_{NE,\Sigma}(\beta)$ is an NE-pattern language.
- $L_{E,\Sigma}(\alpha) \cup L_{E,\Sigma}(\beta)$ is an NE-pattern language.
- $L_{NE,\Sigma}(\alpha) \cup L_{NE,\Sigma}(\beta)$ is an E-pattern language.

Examples for the situation that $L_{E,\Sigma}(\alpha) \cup L_{E,\Sigma}(\beta)$ is an E-pattern language exist, but are much more complicated.
Example for “E ∪ E = E” and alphabet size 2:

Σ = \{a, b\},
\[\alpha = x_1ax_2bx_2ax_3,\]
\[\beta = x_1ax_2bbx_2ax_3,\]
\[\gamma = x_1ax_2bx_3ax_4.\]

\[L_{E, \Sigma}(\alpha) \cup L_{E, \Sigma}(\beta) = L_{E, \Sigma}(\gamma),\]
\[L_{E, \Sigma}(\alpha) \nsubseteq L_{E, \Sigma}(\beta),\]
\[L_{E, \Sigma}(\beta) \nsubseteq L_{E, \Sigma}(\alpha).\]
Example for “E ∪ E = E” and alphabet size 2:

\[\Sigma = \{a, b\}, \quad \alpha = x_1 ax_2 bx_2 ax_3, \]
\[\beta = x_1 ax_2 bbx_2 ax_3, \quad \gamma = x_1 ax_2 bx_3 ax_4. \]

Proof sketch:

\[L_{E,\Sigma}(\alpha) \cup L_{E,\Sigma}(\beta) = L_{E,\Sigma}(\gamma), \]
\[L_{E,\Sigma}(\alpha) \not\subseteq L_{E,\Sigma}(\beta), \]
\[L_{E,\Sigma}(\beta) \not\subseteq L_{E,\Sigma}(\alpha). \]
Example for “$E \cup E = E$” and alphabet size 2:

\[
\Sigma = \{a, b\}, \\
\alpha = x_1ax_2bx_2ax_3, \\
\beta = x_1ax_2bbx_2ax_3, \\
\gamma = x_1ax_2bx_3ax_4.
\]

Proof sketch:

$L_{E,\Sigma}(\alpha) \subseteq L_{E,\Sigma}(\gamma)$ and
$L_{E,\Sigma}(\beta) \subseteq L_{E,\Sigma}(\gamma)$ is obvious.
Example for “$E \cup E = E$” and alphabet size 2:

$$\Sigma = \{a, b\},$$
$$\alpha = x_1ax_2bx_2ax_3,$$
$$\beta = x_1ax_2bbx_2ax_3,$$
$$\gamma = x_1ax_2bx_3ax_4.$$

Proof sketch:

$$L_{E,\Sigma}(\alpha) \subseteq L_{E,\Sigma}(\gamma)$$ and
$$L_{E,\Sigma}(\beta) \subseteq L_{E,\Sigma}(\gamma)$$ is obvious.

Let $w \in L_{E,\Sigma}(\gamma)$
Example for “$E \cup E = E$” and alphabet size 2:

$\Sigma = \{ a, b \}$,
$\alpha = x_1 ax_2 bx_2 ax_3$,
$\beta = x_1 ax_2 bbx_2 ax_3$,
$\gamma = x_1 ax_2 bx_3 ax_4$.

Proof sketch:

$L_{E,\Sigma}(\alpha) \subseteq L_{E,\Sigma}(\gamma)$ and
$L_{E,\Sigma}(\beta) \subseteq L_{E,\Sigma}(\gamma)$ is obvious.

Let $w \in L_{E,\Sigma}(\gamma)$
$w = u \ a \ b^n \ a \ v$,

$\Sigma = \{ a, b \}$,
$\alpha = x_1 ax_2 bx_2 ax_3$,
$\beta = x_1 ax_2 bbx_2 ax_3$,
$\gamma = x_1 ax_2 bx_3 ax_4$.

$L_{E,\Sigma}(\alpha) \cup L_{E,\Sigma}(\beta) = L_{E,\Sigma}(\gamma),$
$L_{E,\Sigma}(\alpha) \not\subseteq L_{E,\Sigma}(\beta),$
$L_{E,\Sigma}(\beta) \not\subseteq L_{E,\Sigma}(\alpha)$.

Union of General Pattern Languages
Example for “E ∪ E = E” and alphabet size 2:

\[\Sigma = \{ a, b \}, \]
\[\alpha = x_1 ax_2 bx_2 ax_3, \]
\[\beta = x_1 ax_2 bx_2 bx_2 ax_3, \]
\[\gamma = x_1 ax_2 bx_3 ax_4. \]

Proof sketch:

\[L_{E, \Sigma}(\alpha) \subseteq L_{E, \Sigma}(\gamma) \] and
\[L_{E, \Sigma}(\beta) \subseteq L_{E, \Sigma}(\gamma) \] is obvious.

Let \(w \in L_{E, \Sigma}(\gamma) \)
\[w = u a b^n a v, \]
\(n \) is even \(\Rightarrow w \in L_{E, \Sigma}(\beta). \)
Example for “E ∪ E = E” and alphabet size 2:

\[\Sigma = \{a, b\}, \]
\[\alpha = x_1ax_2bx_2ax_3, \]
\[\beta = x_1ax_2bbx_2ax_3, \]
\[\gamma = x_1ax_2bx_3ax_4. \]

\[L_E,\Sigma(\alpha) \cup L_E,\Sigma(\beta) = L_E,\Sigma(\gamma), \]
\[L_E,\Sigma(\alpha) \nsubseteq L_E,\Sigma(\beta), \]
\[L_E,\Sigma(\beta) \nsubseteq L_E,\Sigma(\alpha). \]

Proof sketch:

\[L_E,\Sigma(\alpha) \subseteq L_E,\Sigma(\gamma) \text{ and } \]
\[L_E,\Sigma(\beta) \subseteq L_E,\Sigma(\gamma) \text{ is obvious.} \]

Let \(w \in L_E,\Sigma(\gamma) \)
\[w = uab^nava, \]
\[n \text{ is even } \Rightarrow w \in L_E,\Sigma(\beta). \]
\[n \text{ is odd } \Rightarrow w \in L_E,\Sigma(\alpha). \]
Example for “$E \cup E = E$” and alphabet size 3:

$\Sigma = \{a, b, c\}$,

$\alpha = x_1 a x_2 x_3^6 x_4 x_5^6 x_6 b x_7 a x_2 x_8 x_9^{12} x_4 x_5^{12} x_6 b x_{10}$,

$\beta = x_1 a x_2 x_3^6 x_4^2 x_5^5 x_6 x_7 b x_8 a x_2 x_9^{12} x_4 x_5^{10} x_{10}^{12} x_7 b x_{11}$,

$\gamma = x_1 a x_2 x_3^6 x_4^2 x_5^3 x_6 x_7 b x_8 a x_2 x_9^{12} x_4 x_5^{6} x_{10}^{12} x_7 b x_{11}$.

$L_{E, \Sigma}(\alpha) \cup L_{E, \Sigma}(\beta) = L_{E, \Sigma}(\gamma),$

$L_{E, \Sigma}(\alpha) \not\subseteq L_{E, \Sigma}(\beta),$

$L_{E, \Sigma}(\beta) \not\subseteq L_{E, \Sigma}(\alpha)$.
Union of General Pattern Languages

Example for “$E \cup E = E$” and alphabet size 4:

$\Sigma = \{a, b, c, d\}$,

$\alpha := x_1 ax_2 x_3^2 x_4^2 x_5 x_6 b x_7 a x_2 x_8^2 x_4 x_9 x_6 b$
$\qquad x_{10} c x_{11} x_{12}^2 x_{13}^2 x_{14}^2 x_{15} x_{16} d x_{17} c x_{11} x_{18}^2 x_{13}^2 x_{14}^2 x_{19} x_{16} d$
$\qquad x_{20} x_{13}^2 x_{14}^2 x_{13}^2 x_{14}^2 x_{19} x_{14} x_{21} x_{6}$,

$\beta := x_1 ax_2 x_3^2 x_4^2 x_5^2 x_6^2 x_7 b x_8 a x_2 x_9^2 x_4 x_5^2 x_10^2 x_7 b$
$\qquad x_{11} c x_{12} x_{13}^2 x_{14}^2 x_{16} d x_{17} c x_{12} x_{18}^2 x_{14}^2 x_{19} x_{16} d$
$\qquad x_{20} x_{14}^6 x_{21} x_{4}^2 x_{5}^2 x_{4}^2 x_{5}^2 x_{4}^2 x_{5}^2$ and

$\gamma := x_1 ax_2 x_3^2 x_4^2 x_5^2 x_6^2 x_7 b x_8 a x_2 x_9^2 x_4 x_5^2 x_10^2 x_7 b$
$\qquad x_{11} c x_{12} x_{13}^2 x_{14}^2 x_{15} x_{16} d x_{17} c x_{12} x_{19}^2 x_{14}^2 x_{15}^2 x_{20} x_{17} d$
$\qquad x_{21} x_{14}^2 x_{15}^2 x_{14}^2 x_{15}^2 x_{15}^2 x_{22}^2 x_{4}^2 x_5^2 x_4^2 x_5^2 x_4^2 x_5^2$.

$L_{E,\Sigma}(\alpha) \cup L_{E,\Sigma}(\beta) = L_{E,\Sigma}(\gamma)$, $L_{E,\Sigma}(\alpha) \not\subseteq L_{E,\Sigma}(\beta)$, $L_{E,\Sigma}(\beta) \not\subseteq L_{E,\Sigma}(\alpha)$.
Necessary Condition for $E \cup E = E$

\[\alpha = \alpha_0 u_1 \alpha_1 u_2 \alpha_2 \cdots \alpha_{n-1} u_n, \]
\[\beta = \beta_0 v_1 \beta_1 v_2 \beta_2 \cdots \beta_{m-1} v_m, \]
\[\gamma = \gamma_0 w_1 \gamma_1 w_2 \gamma_2 \cdots \gamma_{m-1} w_k, \]
\[\alpha_i, \beta_i, \gamma_i \in X^+, \ u_i, v_i, w_i \in \Sigma^+. \]
Necessary Condition for $E \cup E = E$

$\alpha = \alpha_0 u_1 \alpha_1 u_2 \alpha_2 \ldots \alpha_{n-1} u_n,$
$\beta = \beta_0 v_1 \beta_1 v_2 \beta_2 \ldots \beta_{m-1} v_m,$
$\gamma = \gamma_0 w_1 \gamma_1 w_2 \gamma_2 \ldots \gamma_{m-1} w_k,$
$\alpha_i, \beta_i, \gamma_i \in X^+, u_i, v_i, w_i \in \Sigma^+.$

$L_{E,\Sigma}(\alpha) \cup L_{E,\Sigma}(\beta) = L_{E,\Sigma}(\gamma)$

\implies

$w_0 w_1 \ldots w_k = u_0 u_1 \ldots u_k$ and $w_0 w_1 \ldots w_k$ subsequence of $v_0 v_1 \ldots v_k$ or
$w_0 w_1 \ldots w_k = v_0 v_1 \ldots v_k$ and $w_0 w_1 \ldots w_k$ subsequence of $u_0 u_1 \ldots u_k$
Necessary Condition for $\text{NE} \cup \text{NE} = \text{NE}$

Let $\{a, b\} \subseteq \Sigma$, let α, β and γ be patterns with neither

- $L_{\text{NE},\Sigma}(\alpha) \subseteq L_{\text{NE},\Sigma}(\beta)$, $\beta = \gamma$ nor
- $L_{\text{NE},\Sigma}(\beta) \subseteq L_{\text{NE},\Sigma}(\alpha)$, $\alpha = \gamma$.
Necessary Condition for $NE \cup NE = NE$

Let $\{a, b\} \subseteq \Sigma$, let α, β and γ be patterns with neither

- $L_{NE,\Sigma}(\alpha) \subseteq L_{NE,\Sigma}(\beta)$, $\beta = \gamma$ nor
- $L_{NE,\Sigma}(\beta) \subseteq L_{NE,\Sigma}(\alpha)$, $\alpha = \gamma$.

Let $\alpha = \delta_0 a \delta_1 a \delta_2 \ldots \delta_{m-1} a \delta_m$, $\beta = \delta_0 b \delta_1 b \delta_2 \ldots \delta_{m-1} b \delta_m$, $\gamma = \delta_0 x \delta_1 x \delta_2 \ldots \delta_{m-1} x \delta_m$, where $m \geq 1$, $\delta_i \in (X \cup \Sigma)^*$, $0 \leq i \leq m$.

\[
L_{NE,\Sigma}(\alpha) \cup L_{NE,\Sigma}(\beta) = L_{NE,\Sigma}(\gamma)
\]
Characterisations for $\text{NE} \cup \text{NE} = \text{E}$

Let $|\Sigma| \geq 2$, let α, β and γ be patterns.
Characterisations for $\text{NE} \cup \text{NE} = E$

Let $|\Sigma| \geq 2$, let α, β and γ be patterns.

$$L_{\text{NE}, \Sigma}(\alpha) \cup L_{\text{NE}, \Sigma}(\beta) = L_{E, \Sigma}(\gamma)$$

\iff

$\alpha = u_1 u_2 \ldots u_{m+1} \in \Sigma^+$ and $\beta = \gamma = u_1 x^{j_1} u_2 x^{j_2} \ldots x^{j_m} u_{m+1}, j_i \in \mathbb{N}_0$.
Characterisations for \(\text{NE} \cup \text{NE} = \text{E} \)

Let \(|\Sigma| \geq 2\), let \(\alpha, \beta\) and \(\gamma\) be patterns.

Let \(\alpha = u_1 \ u_2 \ldots u_{m+1} \in \Sigma^+ \) and \(\beta = \gamma = u_1 \ x_1^{j_1} \ u_2 \ x_2^{j_2} \ldots \ x_m^{j_m} \ u_{m+1}, j_i \in \mathbb{N}_0\).

This corresponds to the canonical way of expressing \(\text{E}\)-pattern languages by unions of \(\text{NE}\)-pattern languages.
Characterisations for $E \cup E = NE$

Let $\{a_1, a_2, \ldots, a_\ell\} \subseteq \Sigma$, $\ell \geq 2$, let $\alpha_1, \alpha_2, \ldots, \alpha_\ell, \gamma$ be patterns with $L_{E,\Sigma}(\alpha_i) \neq L_{E,\Sigma}(\alpha_j)$.
Characterisations for $E \cup E = NE$

Let $\{a_1, a_2, \ldots, a_\ell\} \subseteq \Sigma$, $\ell \geq 2$, let $\alpha_1, \alpha_2, \ldots, \alpha_\ell$, γ be patterns with $L_{E, \Sigma}(\alpha_i) \neq L_{E, \Sigma}(\alpha_j)$.

\[
\bigcup_{i=1}^{\ell} L_{E, \Sigma}(\alpha_i) = L_{NE, \Sigma}(\gamma)
\]

\iff

$\Sigma = \{a_1, a_2, \ldots, a_\ell\}$

$\gamma = u_1 \times u_2 \times u_3 \ldots u_k \times u_{k+1}$

$\alpha_i = u_1 \alpha'_i a_i \alpha''_i u_2 \alpha'_i a_i \alpha''_i u_3 \ldots u_k \alpha'_i a_i \alpha''_i u_{k+1}$

$\alpha'_i, \alpha''_i \in X^*$ and, there exists a variable y_i with exactly one occurrence in $\alpha'_i a_i \alpha''_i$.

Thank you very much for your attention.