On the Parameterised Complexity of String Morphism Problems

Henning Fernau, Markus L. Schmid, Trier University

> Yngve Villanger, University of Bergen

Presented 12 December 2013 at FSTTCS

 $\Sigma := \{\mathtt{a},\mathtt{b}\}$ is a finite alphabet.

 $\Sigma := \{a, b\}$ is a finite alphabet.

 $w=\mathtt{a}\,\mathtt{b}\,\mathtt{b}\,\mathtt{a}\in\Sigma^*$ is a string.

$$\Sigma := \{a, b\}$$
 is a finite alphabet.

$$w=\mathtt{a}\,\mathtt{b}\,\mathtt{b}\,\mathtt{a}\in\Sigma^*$$
 is a string.

$$h: \Sigma \to \Sigma^*$$
 with

$$h(a) = bba$$

 $h(b) = aa$

is a morphism.

$$\Sigma := \{a, b\}$$
 is a finite alphabet.

$$w=\mathtt{a}\,\mathtt{b}\,\mathtt{b}\,\mathtt{a}\in\Sigma^*$$
 is a string.

$$h:\Sigma \to \Sigma^*$$
 with

$$h(a) = bba$$

 $h(b) = aa$

is a morphism.

$$h(w) = h(abba) = h(a)h(b)h(b)h(a) = bbaaaaabba.$$

 $\Sigma := \{a, b\}$ is a finite alphabet.

 $w = abba \in \Sigma^*$ is a string.

 $h: \Sigma \to \Sigma^*$ with

$$h(a) = bba$$

 $h(b) = aa$

is a morphism.

$$h(w) = h(abba) = h(a)h(b)h(b)h(a) = bbaaaaabba.$$

String Morphism Problem

Instance: Strings $u, w \in \Sigma^*$.

Question: Does there exist a morphism h with h(u) = w?

 $X = \{x_1, x_2, x_3, \ldots\}$ is the source alphabet of variables

 $X = \{x_1, x_2, x_3, \ldots\}$ is the source alphabet of variables

 Σ is the target alphabet of terminals

 $X = \{x_1, x_2, x_3, \ldots\}$ is the source alphabet of variables

 Σ is the target alphabet of terminals

 $u \in X^+$ is a source string

```
X=\{x_1,x_2,x_3,\ldots\} is the source alphabet of variables \Sigma is the target alphabet of terminals u\in X^+ is a source string w\in \Sigma^* is a target string
```

 $X = \{x_1, x_2, x_3, \ldots\}$ is the source alphabet of variables

 Σ is the target alphabet of terminals

 $u \in X^+$ is a source string

 $w \in \Sigma^*$ is a target string

 $h: X \to \Sigma^*$ is a morphism

$$X = \{x_1, x_2, x_3, \ldots\}$$
 is the source alphabet of variables

$$\Sigma$$
 is the target alphabet of terminals

$$u \in X^+$$
 is a source string

$$w \in \Sigma^*$$
 is a target string

$$h: X \to \Sigma^*$$
 is a morphism

$$h: (X \cup \Sigma) \to \Sigma^*$$
 with $h(a) = a$ for every $a \in \Sigma$ is a substitution

 $X = \{x_1, x_2, x_3, \ldots\}$ is the source alphabet of variables

 Σ is the target alphabet of terminals

 $u \in X^+$ is a source string

 $w \in \Sigma^*$ is a target string

 $h: X \to \Sigma^*$ is a morphism

 $h: (X \cup \Sigma) \to \Sigma^*$ with h(a) = a for every $a \in \Sigma$ is a substitution

h is non-erasing if $h(x) \neq \varepsilon$, $x \in X$

$$X = \{x_1, x_2, x_3, \ldots\}$$
 is the source alphabet of variables

$$\Sigma$$
 is the target alphabet of terminals

$$u \in X^+$$
 is a source string

$$w \in \Sigma^*$$
 is a target string

$$h: X \to \Sigma^*$$
 is a morphism

$$h: (X \cup \Sigma) \to \Sigma^*$$
 with $h(a) = a$ for every $a \in \Sigma$ is a substitution

h is non-erasing if
$$h(x) \neq \varepsilon$$
, $x \in X$

h is E-injective if
$$x \neq y$$
 and $\varepsilon \notin \{h(x), h(y)\}$ implies $h(x) \neq h(y)$

$$X = \{x_1, x_2, x_3, \ldots\}$$
 is the source alphabet of variables

$$\Sigma$$
 is the target alphabet of terminals

$$u \in X^+$$
 is a source string

$$w \in \Sigma^*$$
 is a target string

$$h: X \to \Sigma^*$$
 is a morphism

$$h: (X \cup \Sigma) \to \Sigma^*$$
 with $h(a) = a$ for every $a \in \Sigma$ is a substitution

h is non-erasing if
$$h(x) \neq \varepsilon$$
, $x \in X$

h is E-injective if
$$x \neq y$$
 and $\varepsilon \notin \{h(x), h(y)\}$ implies $h(x) \neq h(y)$

$$h$$
 is injective if it is non-erasing and E -injective

Example 1:

$$u = x_1 x_1 x_2 x_3 x_2$$

$$w = ababababab$$

Example 1:

$$u = ababx_2 x_3 x_2$$

$$w = ababababab$$

Example 1:

 $u = abababx_3 ab$ w = ababababab

Example 1:

u = abababababw = ababababab

Example 1:

$$u = ababababab$$

$$w = ababababab$$

Example 2:

$$u = x_1 a x_2 b x_2 x_1 x_2$$

$$w = b a c b a b b a c b$$

Example 2:

$$u = b a c b a x_2 b x_2 b a c b x_2$$

 $w = b a c b a b b a c b$

Example 2:

$$u = b a c b a b b a c b$$

 $w = b a c b a b b a c b$

Example 2:

$$u = b a c b a b b a c b$$

 $w = b a c b a b b a c b$

Example 3:

$$u = x_1 a x_2 b x_2 x_1 x_2$$

 $w = a b a a b b a b a b a b$

Example 3:

$$u = a b a x_2 b x_2 a b x_2$$

$$w = a b a a b b a b a b a b$$

Example 3:

$$u = a b a a b b a b a b a b$$

 $w = a b a a b b a b a b a b$

Example 3:

$$u = abaabbababab$$

 $w = abaabbababab$

Ex. 1: $h(x_1x_1x_2x_3x_2)$ = ababababab, h non-erasing, but not injective Ex. 2: $h(x_1ax_2bx_2x_1x_2)$ = bacbabbacb, h E-injective, but erasing Ex. 3: $h(x_1ax_2bx_2x_1x_2)$ = abaabbababab, h non-erasing, but not injective

Example 3:

$$u = abaabbababab$$

 $w = abaabbababab$

Ex. 1: $h(x_1x_1x_2x_3x_2)$ = ababababab, h non-erasing, but not injective Ex. 2: $h(x_1ax_2bx_2x_1x_2)$ = bacbabbacb, h E-injective, but erasing Ex. 3: $h(x_1ax_2bx_2x_1x_2)$ = abaabbababab, h non-erasing, but not injective

Ex. 2: \nexists non-erasing h with $h(x_1 a x_2 b x_2 x_1 x_2) = bacbabbacb$

Example 3:

$$u = abaabbababab$$

 $w = abaabbababab$

- Ex. 1: $h(x_1x_1x_2x_3x_2)$ = ababababab, h non-erasing, but not injective Ex. 2: $h(x_1ax_2bx_2x_1x_2)$ = bacbabbacb, h E-injective, but erasing
- Ex. 3: $h(x_1ax_2bx_2x_1x_2) = abaabbababab, h non-erasing, but not injective$
- Ex. 2: \nexists non-erasing h with $h(x_1 a x_2 b x_2 x_1 x_2) = bacbabbacb$
- Ex. 3: \sharp injective h with $h(x_1 a x_2 b x_2 x_1 x_2) = abaabbababab$

StrMorph

Instance: Two strings $u \in X^*$ and $w \in \Sigma^*$.

Question: Does there exist a morphism h with h(u) = w?

StrMorph

Instance: Two strings $u \in X^*$ and $w \in \Sigma^*$. Question: Does there exist a morphism h with h(u) = w?

StrSubst

Instance: Two strings $u \in (X \cup \Sigma)^*$ and $w \in \Sigma^*$. Question: Does there exist a substitution h with h(u) = w?

StrMorph

Instance: Two strings $u \in X^*$ and $w \in \Sigma^*$.

Question: Does there exist a morphism h with h(u) = w?

StrSubst

Instance: Two strings $u \in (X \cup \Sigma)^*$ and $w \in \Sigma^*$.

Question: Does there exist a substitution h with h(u) = w?

For $K \in \{StrMorph, StrSubst\}$,

Ne-K denotes the non-erasing version of K,

Inj-K denotes the E-injective version of K,

Ne-Inj-K denotes the non-erasing injective version of K.

StrMorph

Instance: Two strings $u \in X^*$ and $w \in \Sigma^*$.

Question: Does there exist a morphism h with h(u) = w?

StrSubst

Instance: Two strings $u \in (X \cup \Sigma)^*$ and $w \in \Sigma^*$.

Question: Does there exist a substitution h with h(u) = w?

For $K \in \{StrMorph, StrSubst\}$,

Ne-K denotes the non-erasing version of K,

Inj-K denotes the E-injective version of K,

Ne-Inj-K denotes the non-erasing injective version of K.

 $\mathsf{SMP} := \{ \textit{Z-} \mathsf{StrMorph}, \textit{Z-} \mathsf{StrSubst} \mid \textit{Z} \in \{\varepsilon, \mathsf{Ne}, \mathsf{Inj}, \mathsf{Ne-} \mathsf{Inj} \} \}.$

Applications

- Theoretical: Inductive inference (of Angluin's Pattern languages, computational aspects of string morphisms, parameterised pattern matching).
- Practical: Matchtest for regular expressions with backreferences (as implemented in Perl, Java, Python, . . .).

NP-Completeness

Theorem (Angluin 1980; Ehrenfeucht and Rozenberg 1979; Clifford, Harrow, Popa and Sach 2009; Fernau and S. 2013; ...)

All versions of the string morphism problem are NP-complete.

Some More Notation

For any source string u (e.g., $u:=x_1 ax_2x_1bax_2x_1x_3$),

Some More Notation

For any source string u (e.g., $u:=x_1\mathtt{a}x_2x_1\mathtt{b}\mathtt{a}x_2x_1x_3$),

var(u) is the set of variables in u, e.g. $var(u) = \{x_1, x_2, x_3\}$

Some More Notation

For any source string u (e.g., $u:=x_1ax_2x_1bax_2x_1x_3$), $var(u) \text{ is the set of variables in } u, \text{ e.g. } var(u) = \{x_1, x_2, x_3\}$ $|u|_X \text{ is the number of Occ. of } x \text{ in } u, \text{ e.g. } |u|_{X_1} = 3$

Types of string morphism problems:

- StrMorph, StrSubst.
- Ne-StrMorph, Ne-StrSubst.
- Inj-StrMorph, Inj-StrSubst.
- Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:

 $|\operatorname{var}(u)|$ Number of variables in the source string.

Types of string morphism problems:

- StrMorph, StrSubst.
- Ne-StrMorph, Ne-StrSubst.
- Inj-StrMorph, Inj-StrSubst.
- Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:

 $|\operatorname{\mathsf{var}}(u)|$ Number of variables in the source string.

|w| Length of the target string.

Types of string morphism problems:

- StrMorph, StrSubst.
- Ne-StrMorph, Ne-StrSubst.
- Inj-StrMorph, Inj-StrSubst.
- Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:

```
|var(u)| Number of variables in the source string.
```

w Length of the target string.

|h(x)| Max. length of substitution words.

Types of string morphism problems:

- StrMorph, StrSubst.
- Ne-StrMorph, Ne-StrSubst.
- Inj-StrMorph, Inj-StrSubst.
- Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:

```
|\operatorname{var}(u)| Number of variables in the source string.

|w| Length of the target string.

|h(x)| Max. length of substitution words.

|u|_{\times} Max. occ. per variable.
```

Types of string morphism problems:

- StrMorph, StrSubst.
- Ne-StrMorph, Ne-StrSubst.
- Inj-StrMorph, Inj-StrSubst.
- Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:

```
|\operatorname{var}(u)| Number of variables in the source string.

|w| Length of the target string.

|h(x)| Max. length of substitution words.

|u|_x Max. occ. per variable.

|\Sigma| Size of target alphabet.
```

Types of string morphism problems:

- StrMorph, StrSubst.
- Ne-StrMorph, Ne-StrSubst.
- Inj-StrMorph, Inj-StrSubst.
- Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:

```
|\operatorname{var}(u)| Number of variables in the source string.

|w| Length of the target string.

|h(x)| Max. length of substitution words.

|u|_x Max. occ. per variable.

|\Sigma| Size of target alphabet.
```

 2^3 types, 2^5 combinations of parameters ightarrow 256 parametrised versions of string morphism problems.

Parameterised problems Instances are of form (x, k), where $k \in \mathbb{N}$ is the parameter.

Parameterised problems Instances are of form (x, k), where $k \in \mathbb{N}$ is the parameter.

FPT Parameterised problems solvable in time

$$f(k)\times |x|^{O(1)},$$

where k is parameter and f is computable.

Parameterised problems Instances are of form (x, k), where $k \in \mathbb{N}$ is the parameter.

FPT Parameterised problems solvable in time

$$f(k)\times |x|^{O(1)},$$

where k is parameter and f is computable.

Parameterised reduction Reduction from (P, k) to (P', k') that runs in "FPT"-time (with respect to k) and k' only depends on k.

Parameterised problems Instances are of form (x, k), where $k \in \mathbb{N}$ is the parameter.

FPT Parameterised problems solvable in time

$$f(k)\times |x|^{O(1)},$$

where k is parameter and f is computable.

Parameterised reduction Reduction from (P, k) to (P', k') that runs in "FPT"-time (with respect to k) and k' only depends on k.

W[1] Parameterised problems as hard as k-Clique.

Parameterised problems Instances are of form (x, k), where $k \in \mathbb{N}$ is the parameter.

FPT Parameterised problems solvable in time

$$f(k)\times |x|^{O(1)},$$

where k is parameter and f is computable.

Parameterised reduction Reduction from (P, k) to (P', k') that runs in "FPT"-time (with respect to k) and k' only depends on k.

W[1] Parameterised problems as hard as k-Clique.

W[1]-hard problems Parameterised problems hard for W[1]. ("Fixed parameter intractable problems").

Problems	var(u)	w	$ u _{var}$	h	$ \Sigma $	Complexity
SMP	р	р	_	_	_	FPT
$\{{\sf Ne}, {\sf Ne-Inj}\}\text{-}\{{\sf StrMorph}, {\sf StrSubst}\}$	_	р	_	_	_	FPT
SMP	р	_	_	р	_	FPT
SMP	р	_	р	_	6	W[1]-hard
$\{\varepsilon, Inj\}$ - $\{StrMorph, StrSubst\}$	_	р	3	1	р	W[1]-hard

Problems	var(u)	w	$ u _{\text{var}}$	h	$ \Sigma $	Complexity
SMP	р	р	_	_	_	FPT
$\{{\sf Ne}, {\sf Ne-Inj}\}\text{-}\{{\sf StrMorph}, {\sf StrSubst}\}$	_	р	_	_	_	FPT
SMP	р	_	_	р	_	FPT
SMP	р	_	р	_	6	W[1]-hard
$\{\varepsilon, Inj\}$ - $\{StrMorph, StrSubst\}$	_	р	3	1	р	W[1]-hard

Problems	var(u)	w	$ u _{var}$	h	$ \Sigma $	Complexity
SMP	р	р	_	_	_	FPT
$\{{\sf Ne}, {\sf Ne-Inj}\}\text{-}\{{\sf StrMorph}, {\sf StrSubst}\}$	_	р	_	_	_	FPT
SMP	р	_	_	р	_	FPT
SMP	р	_	р	_	6	W[1]-hard
$\{\varepsilon, Inj\}$ - $\{StrMorph, StrSubst\}$	_	р	3	1	р	W[1]-hard

Problems	var(u)	w	$ u _{var}$	h	$ \Sigma $	Complexity
SMP	р	р	_	_	_	FPT
${Ne, Ne-Inj}-{StrMorph, StrSubst}$	_	р	_	_	_	FPT
SMP	р	_	_	р	_	FPT
SMP	р	_	р	_	6	W[1]-hard
$\{\varepsilon, Inj\}$ - $\{StrMorph, StrSubst\}$	_	р	3	1	р	<i>W</i> [1]-hard

Problems	var(u)	w	$ u _{var}$	h	$ \Sigma $	Complexity
SMP	р	р	_	_	_	FPT
${Ne, Ne-Inj}-{StrMorph, StrSubst}$	_	р	_	_	_	FPT
SMP	р	_	_	р	_	FPT
SMP	р	_	р	_	6	W[1]-hard
$\{\varepsilon, Inj\}$ - $\{StrMorph, StrSubst\}$	_	р	3	1	р	<i>W</i> [1]-hard

Problems	var(u)	w	$ u _{var}$	h	$ \Sigma $	Complexity
SMP	р	р	_	_	_	FPT
${Ne, Ne-Inj}-{StrMorph, StrSubst}$	_	р	_	_	_	FPT
SMP	р	_	_	р	_	FPT
SMP	р	_	р	_	6	W[1]-hard
$\{\varepsilon, Inj\}$ - $\{StrMorph, StrSubst\}$	_	р	3	1	р	<i>W</i> [1]-hard

Fixed Parameter Intractability

Theorem (Stephan, Yoshinaka, Zeugmann)

The problem Ne-StrSubst, parameterised by

- number of variables (|var(u)|),
- ullet cardinality of target alphabet ($|\Sigma|$) and
- maximum occurrences per variable $(|u|_{var})$,

is W[1]-hard.

Fixed Parameter Intractability

Theorem (Stephan, Yoshinaka, Zeugmann)

The problem Ne-StrSubst, parameterised by

- number of variables (|var(u)|),
- ullet cardinality of target alphabet $(|\Sigma|)$ and
- maximum occurrences per variable $(|u|_{var})$,

is W[1]-hard.

Theorem

For every $K \in SMP$, the problem K, parameterised by

- number of variables (|var(u)|),
- cardinality of target alphabet $(|\Sigma|)$ and
- maximum occurrences per variable $(|u|_{var})$,

is W[1]-hard.

Fixed Parameter Intractability

Theorem

 $\label{thm:continuity} The\ problems\ {\tt StrMorph},\ {\tt Inj-StrMorph},\ {\tt StrSubst}\ and\ {\tt Inj-StrSubst},\ parameterised\ by$

- length of the target string (|w|),
- cardinality of target alphabet $(|\Sigma|)$,
- maximum occurrences per variable (|u|_{var}) and
- maximum length of substitution words (|h(x)|),

are W[1]-hard.

k-Multicoloured-Clique

Instance A graph $\mathcal{G} := (V, E)$ and a partition V_1, V_2, \dots, V_k of V, such that every V_i is an independent set.

Parameter k.

Question Does G has a clique of size k?

k-Multicoloured-Clique

Instance A graph $\mathcal{G} := (V, E)$ and a partition V_1, V_2, \dots, V_k of V, such that every V_i is an independent set.

Parameter k.

Question Does G has a clique of size k?

k-Multicoloured-Clique

Instance A graph $\mathcal{G}:=(V,E)$ and a partition V_1,V_2,\ldots,V_k of V_i such that every V_i is an independent set.

Parameter k

Question Does G has a clique of size k?

Theorem (Fellows, Hermelin, Rosamond, and Vialette)

k-Multicoloured-Clique is W[1]-hard.

Sketch of the Reduction

 $(\mathcal{G}, V_1, V_2, \dots, V_k)$ is a k-Multicoloured-Clique instance. $\mathcal{G} = (V, E), V_i := \{v_{i,1}, v_{i,2}, \dots, v_{i,t_i}\}.$

Sketch of the Reduction

$$(\mathcal{G}, V_1, V_2, \dots, V_k)$$
 is a k -Multicoloured-Clique instance. $\mathcal{G} = (V, E), \ V_i := \{v_{i,1}, v_{i,2}, \dots, v_{i,t_i}\}.$

Target alphabet: $\Sigma := \{ \mathbf{a}_{\{i,j\}} \mid 1 \leq i \leq j \leq k, i \neq j \} \cup \{\$\},$ source alphabet: $X := \{ x_e \mid e \in E \}.$

Important: $|\Sigma| = O(k^2)$

Let $i, j \in \{1, 2, ..., k\}$, $i \neq j$, and let $e_1, e_2, ..., e_l$ be exactly the edges connecting a vertex from V_i with a vertex from V_i .

Let $i, j \in \{1, 2, ..., k\}$, $i \neq j$, and let $e_1, e_2, ..., e_l$ be exactly the edges connecting a vertex from V_i with a vertex from V_j .

$$\overline{u}_{i,j} := \$ x_{e_1} x_{e_2} \dots x_{e_l} \$,$$

$$\overline{w}_{i,j} := \$ a_{\{i,j\}} \$,$$

Let $i, j \in \{1, 2, ..., k\}$, $i \neq j$, and let $e_1, e_2, ..., e_l$ be exactly the edges connecting a vertex from V_i with a vertex from V_j .

$$\overline{u}_{i,j} := \$ x_{e_1} x_{e_2} \dots x_{e_l} \$,$$

$$\overline{w}_{i,j} := \$ a_{\{i,j\}} \$,$$

Let $i, j \in \{1, 2, ..., k\}$, $i \neq j$, and let $e_1, e_2, ..., e_l$ be exactly the edges connecting a vertex from V_i with a vertex from V_j .

$$\overline{u}_{i,j} := \$ x_{e_1} x_{e_2} \dots x_{e_l} \$,$$

$$\overline{w}_{i,j} := \$ a_{\{i,j\}} \$,$$

We combine all these gadgets to one big gadget:

$$\overline{u} := \overline{u}_{1,2} \, \overline{u}_{1,3} \dots \overline{u}_{1,k} \, \overline{u}_{2,3} \, \overline{u}_{2,4} \dots \overline{u}_{2,k} \dots \overline{u}_{k-1,k} ,
\overline{w} := \overline{w}_{1,2} \, \overline{w}_{1,3} \dots \overline{w}_{1,k} \, \overline{w}_{2,3} \, \overline{w}_{2,4} \dots \overline{w}_{2,k} \dots \overline{w}_{k-1,k} .$$

Important:

- $\bullet |\overline{w}| = O(k^2),$
- every variable has 1 occurrences.

$$\widehat{u}_{i,p} := x_{e_{1,1}} x_{e_{1,2}} \dots x_{e_{1,q_1}} x_{e_{2,1}} x_{e_{2,2}} \dots x_{e_{2,q_2}} \dots x_{e_{k,1}} x_{e_{k,2}} \dots x_{e_{k,q_k}},$$

$$\begin{split} \widehat{u}_{i,p} &:= x_{e_{1,1}} x_{e_{1,2}} \dots x_{e_{1,q_1}} x_{e_{2,1}} x_{e_{2,2}} \dots x_{e_{2,q_2}} \dots x_{e_{k,1}} x_{e_{k,2}} \dots x_{e_{k,q_k}} \,, \\ \widetilde{w}_i &:= \mathtt{a}_{\{i,1\}} \, \mathtt{a}_{\{i,2\}} \dots \mathtt{a}_{\{i,k\}} \,. \end{split}$$

$$\begin{array}{llll} \widehat{u}_{i,p} := & x_{e_{1,1}} x_{e_{1,2}} \dots x_{e_{1,q_1}} & x_{e_{2,1}} x_{e_{2,2}} \dots x_{e_{2,q_2}} & \dots & x_{e_{k,1}} x_{e_{k,2}} \dots x_{e_{k,q_k}} , \\ \\ \widetilde{w}_i := & \mathsf{a}_{\{i,1\}} & \mathsf{a}_{\{i,2\}} & \dots & \mathsf{a}_{\{i,k\}} . \end{array}$$

$$\begin{array}{llll} \widehat{u}_{i,p} := & x_{e_{1,1}} x_{e_{1,2}} \dots x_{e_{1,q_1}} & x_{e_{2,1}} x_{e_{2,2}} \dots x_{e_{2,q_2}} & \dots & x_{e_{k,1}} x_{e_{k,2}} \dots x_{e_{k,q_k}} \,, \\ \\ \widetilde{w}_i := & a_{\{i,1\}} & a_{\{i,2\}} & \dots & a_{\{i,k\}} \,. \end{array}$$

$$\widetilde{u}_i := \widehat{u}_{i,1} \, \widehat{u}_{i,2} \dots \widehat{u}_{i,p} \dots \widehat{u}_{i,t_i},$$

$$\widetilde{w}_i := a_{\{i,1\}} \, a_{\{i,2\}} \dots a_{\{i,i-1\}} \, a_{\{i,i+1\}} \, a_{\{i,i+2\}} \dots a_{\{i,k\}}.$$

$$\widehat{u}_{i,p} := x_{e_{1,1}} x_{e_{1,2}} \dots x_{e_{1,q_1}} \quad x_{e_{2,1}} x_{e_{2,2}} \dots x_{e_{2,q_2}} \quad \dots \quad x_{e_{k,1}} x_{e_{k,2}} \dots x_{e_{k,q_k}}, \\
\widetilde{w}_i := a_{\{i,1\}} \quad a_{\{i,2\}} \quad \dots \quad a_{\{i,k\}}.$$

$$\begin{split} \widetilde{u}_{i} &:= (\widehat{u}_{i,1})^{2} (\widehat{u}_{i,2})^{2} \dots (\widehat{u}_{i,p})^{2} \dots (\widehat{u}_{i,t_{i}})^{2}, \\ \widetilde{w}_{i} &:= (a_{\{i,1\}} a_{\{i,2\}} \dots a_{\{i,i-1\}} a_{\{i,i+1\}} a_{\{i,i+2\}} \dots a_{\{i,k\}})^{2}. \end{split}$$

 $e_{j,1},e_{j,2},\ldots,e_{j,q_j}$ are the edges between $v_{i,p}$ and a vertex in V_j .

$$\begin{array}{llll} \widehat{u}_{i,p} := & x_{e_{1,1}} x_{e_{1,2}} \dots x_{e_{1,q_1}} & x_{e_{2,1}} x_{e_{2,2}} \dots x_{e_{2,q_2}} & \dots & x_{e_{k,1}} x_{e_{k,2}} \dots x_{e_{k,q_k}} \,, \\ \\ \widetilde{w}_i := & \mathsf{a}_{\{i,1\}} & \mathsf{a}_{\{i,2\}} & \dots & \mathsf{a}_{\{i,k\}} \,. \end{array}$$

$$\begin{split} \widetilde{u}_i &:= (\widehat{u}_{i,1})^2 (\widehat{u}_{i,2})^2 \dots (\widehat{u}_{i,p})^2 \dots (\widehat{u}_{i,t_i})^2, \\ \widetilde{w}_i &:= (a_{\{i,1\}} a_{\{i,2\}} \dots a_{\{i,i-1\}} a_{\{i,i+1\}} a_{\{i,i+2\}} \dots a_{\{i,k\}})^2. \end{split}$$

Enforcer Gadget:

$$\widetilde{u} := \$ \widetilde{u}_1 \$ \widetilde{u}_2 \$ \dots \$ \widetilde{u}_k \$,$$

 $\widetilde{w} := \$ \widetilde{w}_1 \$ \widetilde{w}_2 \$ \dots \$ \widetilde{w}_k \$.$

Important:

- $\bullet |\widetilde{w}| = O(k^2),$
- every variable has 2 occurrences.

Results not covered in this talk

Theorem (W[1]- and W[P]-Membership)

All $K \in SMP$

- parameterised by |var(u)| and $|u|_{var}$ are in W[1],
- parameterised by |w| are in W[1],
- parameterised by |var(u)| are in W[P].

Theorem (ETH Lower Bound)

For every $K \in \{\text{StrMorph}, \text{StrSubst}\}\$ and $k_1, k_2 \in \mathbb{N}, \ k_2 \geq 2$, problem K, where $|h|, |\Sigma|$ are bounded by constants k_1, k_2 , resp., cannot be solved in time $(|u||w|)^{O(1)} \times 2^{o(|var(u)|)}$, unless ETH fails.

