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String Morphisms

Y := {a,b} is a finite alphabet.
w=abba € X" is a string.
h:¥ — X* with

is a morphism.

h(w) = h(abba) = h(a) h(b) h(v) h(a) =bbaaaaabba.

String Morphism Problem

Instance: Strings u,w € L*.
Question: Does there exist a morphism h with h(u) = w?
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Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables

Y is the target alphabet of terminals

u € X is a source string

w € X* is a target string

h: X — X£*is a morphism

h:(XUZX)— T* with h(a) = a for every a € ¥ is a substitution
his non-erasing if h(x) #¢, x € X

h is E-injective if x # y and ¢ ¢ {h(x), h(y)} implies h(x) # h(y)

h is injective if it is non-erasing and E-injective
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Some Examples

Example 3:
u=abaabbababab
w =abaabbababab
Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective

1
Ex. 2: h(xjaxpbxax1x2) = bacbabbacb, h E-injective, but erasing
Ex. 3: h(xjaxobxoxix2) = abaabbababab, h non-erasing, but not injective

Ex. 2 39 non-erasing h with h(x;axabxaxix2) = bacbabbacb
Ex. 3: # injective h with h(xyaxabxax1x2) = abaabbababab
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Different Versions of String Morphism Problems

StrMorph

Instance: Two strings u € X* and w € L*.
Question: Does there exist a morphism h with h(u) = w?

StrSubst

Instance: Two strings u € (X UX)* and w € £*.
Question: Does there exist a substitution h with h(u) = w?

For K € {StrMorph, StrSubst},

Ne-K denotes the non-erasing version of K,

Inj-K denotes the E-injective version of K,

Ne-Inj-K denotes the non-erasing injective version of K.

SMP := {Z- StrMorph, Z- StrSubst | Z € {e,Ne, Inj, Ne- Inj}}.



Applications

@ Theoretical: Inductive inference (of Angluin's Pattern languages,
computational aspects of string morphisms, parameterised pattern
matching).

@ Practical: Matchtest for regular expressions with backreferences (as
implemented in Perl, Java, Python, ...).



NP-Completeness

Theorem (Angluin 1980; Ehrenfeucht and Rozenberg 1979; Clifford,
Harrow, Popa and Sach 2009; Fernau and S. 2013; ...)

All versions of the string morphism problem are NP-complete.
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\ulx is the number of Occ. of x in u, e.g. |ulx, =3
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Different Versions
Types of string morphism problems:
@ StrMorph, StrSubst.
@ Ne-StrMorph, Ne-StrSubst.
@ Inj-StrMorph, Inj-StrSubst.
@ Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:
|var(u)| Number of variables in the source string.
|w| Length of the target string.
|h(x)| Max. length of substitution words.
|u|x Max. occ. per variable.

|~| Size of target alphabet.

23 types, 2° combinations of parameters —
256 parametrised versions of string morphism problems.
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Parameterised Complexity Theory

Parameterised problems Instances are of form (x, k), where k € N is the
parameter.

FPT Parameterised problems solvable in time
F(K) x [x|°0),

where k is parameter and f is computable.

Parameterised reduction Reduction from (P, k) to (P’, k’) that runs in
“FPT"-time (with respect to k) and k" only
depends on k.
WI[1] Parameterised problems as hard as k-Clique.

WI[1]-hard problems Parameterised problems hard for W[1].
(“Fixed parameter intractable problems”).
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Theorem (Stephan, Yoshinaka, Zeugmann)
The problem Ne-StrSubst, parameterised by

)I
e cardinality of target alphabet (|X|) and

@ maximum occurrences per variable (|ulyar),
is W[1]-hard.

e number of variables (|var(u)

Theorem

For every K € SMP, the problem K, parameterised by
@ number of variables (|var(u)|),
e cardinality of target alphabet (|X|) and

@ maximum occurrences per variable (|ulvar),

is W(1]-hard.




Fixed Parameter Intractability

Theorem

The problems StrMorph, Inj-StrMorph, StrSubst and Inj-StrSubst,
parameterised by

o length of the target string (|w|),

e cardinality of target alphabet (|X|),

@ maximum occurrences per variable (|u|var) and

e maximum length of substitution words (|h(x)|),
are W(1]-hard.
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k-Multicoloured-Clique

k-Multicoloured-Clique

Instance A graph G := (V, E) and a partition V;, V>,
such that every V; is an independent set.
Parameter k.

Question Does G has a clique of size k7

...,Vk of V,

Theorem (Fellows, Hermelin, Rosamond, and Vialette)
k-Multicoloured-Clique is W([1]-hard.
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Sketch of the Reduction

(G, V1, Va,..., Vi) is a k-Multicoloured-Clique instance.
g - (V7 E)1 \/I = {Vi,17 Vi727 RN Vi,t,’}'

Target alphabet: ¥ = {af; j |1 < i <j< k,i#j}U{$},
source alphabet: X := {x. | e € E}.

Important: |Z| = O(k?)
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Sketch of the Reduction - Main Gadget

Let i,j € {1,2,...,k}, i #J, and let e, e,. .., e be exactly the edges
connecting a vertex from V; with a vertex from V;.

Uij = %Xe, Xe, - .. X, $,

Wi j ::$a{,-d-}$,

We combine all these gadgets to one big gadget:

Ui=uppUy3... Uy o3 lpg...Uxk ... Ug_ 1k,
WI=WioW13... W1 kWa3W24...Wok ... Wk_1k-
Important:
o |w| = O(k?),

@ every variable has 1 occurrences.
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Sketch of the Reduction - Enforcer Gadget

€1,€2,---,€q are the edges between v; , and a vertex in V.

Uip = XepiXeps: Xerq XepiXezs:--Xepq Xey 1 Xez - - -
Wi = afi1} a2} afik} -
Ui :=Uj1 Ujp...Uip...Ujg,

w; =

Wi 1= afj1} i 2} - - - Afji—1} A{i,i4+1} &{i,i+2} - - - ALk} -

Xek,qk ’



Sketch of the Reduction - Enforcer Gadget

ej71, ej72, ..

Uip =

w; =

€,q; are the edges between v; , and a vertex in V.

)
Xe1’1Xe172 e Xelqu Xez’lxeu e Xez’q2 N XekleE.k’2 . Xek,qk ,
a{i,l} a{i72} e a{,-7k} .

~ (N2 (2 ~ \2 ~ 2

up = (Ui,l) (u,-72) - (U,‘7p) - (u,-7tl.) ,

~_ 2

Wi = (g1} agi2) - B0i-1) Bfii+1} 3fiit2) - 3fiky)”



Sketch of the Reduction - Enforcer Gadget

€1,€2,---,€q are the edges between v; , and a vertex in V.

Uip = XeyXeyn -+ Xerq XerxiXero--+Xerg, -+ XepiXexn---Xepgq s
1 2 k
Wii= 31y a{i2} o ik

b; = (Ui)* (@i2)? - (i) - (G,

Wi = (2gi1} a(i2} - - - &{i,i—1} A7, i+1} 3{i,i+2} - - - a{iyk})2 :
Enforcer Gadget:
=% $ms...$u$,

wi=SwSm$... Sw$.

=2

Important:
o |w| = O(k?),
@ every variable has 2 occurrences.



Results not covered in this talk

Theorem (W/[1]- and W[P]-Membership)

All K € SMP
e parameterised by |var(u)| and |ul|var are in W[1],
e parameterised by |w| are in W([1],

e parameterised by |var(u)| are in W[P].

Theorem (ETH Lower Bound)

For every K € {StrMorph, StrSubst} and ki, ko € N, ko > 2, problem K,
where |h|, |X| are bounded by constants ki, kp, resp., cannot be solved in
time (|u||w|)®®) x 20(var(¥)) " ynless ETH fails.




Thank you very much for your attention.
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