On the Parameterised Complexity
of String Morphism Problems

Henning Fernau, Markus L. Schmid,
Trier University

Yngve Villanger,
University of Bergen

Presented 12 December 2013 at FSTTCS



String Morphisms

Y := {a,b} is a finite alphabet.



String Morphisms

Y := {a,b} is a finite alphabet.

w=abba € X" is a string.



String Morphisms

Y := {a,b} is a finite alphabet.
w=abba € X" is a string.
h:¥ — X* with

is a morphism.



String Morphisms

Y := {a,b} is a finite alphabet.
w=abba € X" is a string.
h:¥ — X* with

is a morphism.

h(w) = h(abba) = h(a) h(b) h(v) h(a) =bbaaaaabba.



String Morphisms

Y := {a,b} is a finite alphabet.
w=abba € X" is a string.
h:¥ — X* with

is a morphism.

h(w) = h(abba) = h(a) h(b) h(v) h(a) =bbaaaaabba.

String Morphism Problem

Instance: Strings u,w € L*.
Question: Does there exist a morphism h with h(u) = w?




Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables



Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables

Y is the target alphabet of terminals



Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables
Y is the target alphabet of terminals

u € X is a source string



Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables
Y is the target alphabet of terminals
u € X is a source string

w € X* is a target string



Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables
Y is the target alphabet of terminals

u € X is a source string

w € X* is a target string

h: X — X£*is a morphism



Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables
Y is the target alphabet of terminals

u € X is a source string

w € X* is a target string

h: X — X£*is a morphism

h:(XUZX)— T* with h(a) = a for every a € ¥ is a substitution



Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables

Y is the target alphabet of terminals

u € X is a source string

w € X* is a target string

h: X — X£*is a morphism

h:(XUZX)— T* with h(a) = a for every a € ¥ is a substitution

his non-erasing if h(x) #¢, x € X



Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables

Y is the target alphabet of terminals

u € X is a source string

w € X* is a target string

h: X — X£*is a morphism

h:(XUZX)— T* with h(a) = a for every a € ¥ is a substitution
his non-erasing if h(x) #¢, x € X

h is E-injective if x # y and ¢ ¢ {h(x), h(y)} implies h(x) # h(y)



Some Notations and Definitions

X = {x1,x2,x3,...} is the source alphabet of variables

Y is the target alphabet of terminals

u € X is a source string

w € X* is a target string

h: X — X£*is a morphism

h:(XUZX)— T* with h(a) = a for every a € ¥ is a substitution
his non-erasing if h(x) #¢, x € X

h is E-injective if x # y and ¢ ¢ {h(x), h(y)} implies h(x) # h(y)

h is injective if it is non-erasing and E-injective



Some Examples

Example 1:

U = X1 X1 X2 X3 X2
w =ababababab



Some Examples

Example 1:

U:ababX2X3X2
w =ababababab



Some Examples

Example 1:

u=abababxzab
w =ababababab



Some Examples

Example 1:

u=ababababab
w =ababababab



Some Examples

Example 1:

u=ababababab
w =ababababab

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective



Some Examples

Example 2:

u = x1 axobxoxy Xo
w=bacbabbach

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective



Some Examples

Example 2:

u=bacbaxbxbacbx
w =bacbabbach

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective



Some Examples

Example 2:

u=Dbacbabbach
w =bacbabbach

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective



Some Examples

Example 2:

u=Dbacbabbach
w =bacbabbach

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective
Ex. 2: h(xjaxpbxax1x2) = bacbabbacb, h E-injective, but erasing



Some Examples

Example 3:

uU=x1axpbxoxy X
w =abaabbababab

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective
Ex. 2: h(xjaxpbxax1x2) = bacbabbacb, h E-injective, but erasing



Some Examples

Example 3:

u=abaxxbxxabx
w =abaabbababab

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective
Ex. 2: h(xjaxpbxax1x2) = bacbabbacb, h E-injective, but erasing



Some Examples

Example 3:

u=abaabbababab
w =abaabbababab

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective
Ex. 2: h(xjaxpbxax1x2) = bacbabbacb, h E-injective, but erasing



Some Examples

Example 3:

u=abaabbababab
w =abaabbababab

Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective
Ex. 2: h(xjaxpbxax1x2) = bacbabbacb, h E-injective, but erasing
Ex. 3: h(xjaxobxoxix2) = abaabbababab, h non-erasing, but not injective



Some Examples

Example 3:
u=abaabbababab
w =abaabbababab
Ex h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective

. 1
Ex. 2: h(xjaxpbxax1x2) = bacbabbacb, h E-injective, but erasing
Ex. 3: h(xjaxobxoxix2) = abaabbababab, h non-erasing, but not injective

Ex. 2: 39 non-erasing h with h(x;axabxaxix2) = bacbabbacb



Some Examples

Example 3:
u=abaabbababab
w =abaabbababab
Ex. 1: h(x1x1x2x3x2) = ababababab, h non-erasing, but not injective

1
Ex. 2: h(xjaxpbxax1x2) = bacbabbacb, h E-injective, but erasing
Ex. 3: h(xjaxobxoxix2) = abaabbababab, h non-erasing, but not injective

Ex. 2 39 non-erasing h with h(x;axabxaxix2) = bacbabbacb
Ex. 3: # injective h with h(xyaxabxax1x2) = abaabbababab



Different Versions of String Morphism Problems

StrMorph

Instance: Two strings u € X* and w € L*.
Question: Does there exist a morphism h with h(u) = w?




Different Versions of String Morphism Problems

StrMorph

Instance: Two strings u € X* and w € L*.
Question: Does there exist a morphism h with h(u) = w?

StrSubst

Instance: Two strings u € (X UX)* and w € £*.
Question: Does there exist a substitution h with h(u) = w?




Different Versions of String Morphism Problems

StrMorph

Instance: Two strings u € X* and w € L*.
Question: Does there exist a morphism h with h(u) = w?

StrSubst

Instance: Two strings u € (X UX)* and w € £*.
Question: Does there exist a substitution h with h(u) = w?

For K € {StrMorph, StrSubst},

Ne-K denotes the non-erasing version of K,

Inj-K denotes the E-injective version of K,

Ne-Inj-K denotes the non-erasing injective version of K.



Different Versions of String Morphism Problems

StrMorph

Instance: Two strings u € X* and w € L*.
Question: Does there exist a morphism h with h(u) = w?

StrSubst

Instance: Two strings u € (X UX)* and w € £*.
Question: Does there exist a substitution h with h(u) = w?

For K € {StrMorph, StrSubst},

Ne-K denotes the non-erasing version of K,

Inj-K denotes the E-injective version of K,

Ne-Inj-K denotes the non-erasing injective version of K.

SMP := {Z- StrMorph, Z- StrSubst | Z € {e,Ne, Inj, Ne- Inj}}.



Applications

@ Theoretical: Inductive inference (of Angluin's Pattern languages,
computational aspects of string morphisms, parameterised pattern
matching).

@ Practical: Matchtest for regular expressions with backreferences (as
implemented in Perl, Java, Python, ...).



NP-Completeness

Theorem (Angluin 1980; Ehrenfeucht and Rozenberg 1979; Clifford,
Harrow, Popa and Sach 2009; Fernau and S. 2013; ...)

All versions of the string morphism problem are NP-complete.




Some More Notation

For any source string u (e. g., u:= xjaxpx;baxpx1x3),



Some More Notation

For any source string u (e. g., u:= xjaxpx;baxpx1x3),

var(u) is the set of variables in u, e. g. var(u) = {x1,x2, x3}



Some More Notation

For any source string u (e. g., u:= xjaxpx;baxpx1x3),

var(u) is the set of variables in u, e. g. var(u) = {x1,x2, x3}

\ulx is the number of Occ. of x in u, e.g. |ulx, =3



Different Versions
Types of string morphism problems:
@ StrMorph, StrSubst.
@ Ne-StrMorph, Ne-StrSubst.
@ Inj-StrMorph, Inj-StrSubst.
@ Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:

|var(u)| Number of variables in the source string.



Different Versions
Types of string morphism problems:
@ StrMorph, StrSubst.
@ Ne-StrMorph, Ne-StrSubst.
@ Inj-StrMorph, Inj-StrSubst.
@ Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:
|var(u)| Number of variables in the source string.
|w| Length of the target string.



Different Versions
Types of string morphism problems:
@ StrMorph, StrSubst.
@ Ne-StrMorph, Ne-StrSubst.
@ Inj-StrMorph, Inj-StrSubst.
@ Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:
|var(u)| Number of variables in the source string.
|w| Length of the target string.
|h(x)| Max. length of substitution words.



Different Versions
Types of string morphism problems:
@ StrMorph, StrSubst.
@ Ne-StrMorph, Ne-StrSubst.
@ Inj-StrMorph, Inj-StrSubst.
@ Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:
|var(u)| Number of variables in the source string.
|w| Length of the target string.
|h(x)| Max. length of substitution words.

|u|x Max. occ. per variable.



Different Versions
Types of string morphism problems:
@ StrMorph, StrSubst.
@ Ne-StrMorph, Ne-StrSubst.
@ Inj-StrMorph, Inj-StrSubst.
@ Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:
|var(u)| Number of variables in the source string.
|w| Length of the target string.
|h(x)| Max. length of substitution words.
|u|x Max. occ. per variable.
|~| Size of target alphabet.



Different Versions
Types of string morphism problems:
@ StrMorph, StrSubst.
@ Ne-StrMorph, Ne-StrSubst.
@ Inj-StrMorph, Inj-StrSubst.
@ Ne-Inj-StrMorph, Ne-Inj-StrSubst.

Parameters of string morphism problems:
|var(u)| Number of variables in the source string.
|w| Length of the target string.
|h(x)| Max. length of substitution words.
|u|x Max. occ. per variable.

|~| Size of target alphabet.

23 types, 2° combinations of parameters —
256 parametrised versions of string morphism problems.



Parameterised Complexity Theory

Parameterised problems Instances are of form (x, k), where k € N is the
parameter.



Parameterised Complexity Theory

Parameterised problems Instances are of form (x, k), where k € N is the
parameter.

FPT Parameterised problems solvable in time
F(k) x [x[°0),

where k is parameter and f is computable.



Parameterised Complexity Theory

Parameterised problems Instances are of form (x, k), where k € N is the
parameter.

FPT Parameterised problems solvable in time
F(k) x [x[°0),

where k is parameter and f is computable.

Parameterised reduction Reduction from (P, k) to (P’, k’) that runs in
“FPT"-time (with respect to k) and k" only
depends on k.



Parameterised Complexity Theory

Parameterised problems Instances are of form (x, k), where k € N is the
parameter.

FPT Parameterised problems solvable in time
F(K) x [x|°0),

where k is parameter and f is computable.

Parameterised reduction Reduction from (P, k) to (P’, k’) that runs in
“FPT"-time (with respect to k) and k" only
depends on k.

WI[1] Parameterised problems as hard as k-Clique.



Parameterised Complexity Theory

Parameterised problems Instances are of form (x, k), where k € N is the
parameter.

FPT Parameterised problems solvable in time
F(K) x [x|°0),

where k is parameter and f is computable.

Parameterised reduction Reduction from (P, k) to (P’, k’) that runs in
“FPT"-time (with respect to k) and k" only
depends on k.
WI[1] Parameterised problems as hard as k-Clique.

WI[1]-hard problems Parameterised problems hard for W[1].
(“Fixed parameter intractable problems”).



Summary

‘ Problems ‘ lvar(u)] ‘ |w| ‘ |u|var ‘ | ‘ || H CompIeX|ty‘
SMP o p| - |—-|—-|FPT

{Ne, Ne- Inj}-{StrMorph, StrSubst} - p| - | -] - ||[FPT

SMP P - - |p FPT

SMP p -l p |- W{1]-hard
{e,Inj}-{StrMorph, StrSubst} - pl 3 |1 W{1]-hard




Summary

’Problems ‘ lvar(u)] ‘ |w| ‘ |u|var ‘ | ‘ || H Complexity‘
SMP o p| - |—-|—-|FPT

{Ne, Ne- Inj}-{StrMorph, StrSubst} - p| - | -] - ||[FPT

SMP P - |p FPT

SMP p -l p |- W{1]-hard
{e,Inj}-{StrMorph, StrSubst} - pl 3 |1 W{1]-hard




Summary

’Problems ‘ lvar(u)] ‘ |w| ‘ |u|var ‘ | ‘ || H Complexity‘
SMP o p| - |—-|—-|FPT

{Ne, Ne- Inj}-{StrMorph, StrSubst} - p| - | -] - ||[FPT

SMP P - |p FPT

SMP p -l p |- W{1]-hard
{e,Inj}-{StrMorph, StrSubst} - pl 3 |1 W{1]-hard




Summary

’Problems ‘ lvar(u)] ‘ |w| ‘ |u|var ‘ | ‘ || H Complexity‘
SMP o p| - |—-|—-|FPT

{Ne, Ne- Inj}-{StrMorph, StrSubst} - p| — |—-1| - ||[FPT

SMP P - |p FPT

SMP p -l p |- W{1]-hard
{e,Inj}-{StrMorph, StrSubst} - pl 3 |1 W{1]-hard




Summary

’Problems ‘ lvar(u)] ‘ |w| ‘ |u|var ‘ | ‘ || H Complexity‘
SMP o p| - |—-|—-|FPT

{Ne, Ne- Inj}-{StrMorph, StrSubst} - p| — |—-1| - ||[FPT

SMP P - |p FPT

SMP p -l p |- W{1]-hard
{e,Inj}-{StrMorph, StrSubst} - pl 3 |1 W{1]-hard




Summary

’Problems ‘ lvar(u)] ‘ |w| ‘ |u|var ‘ | ‘ || H Complexity‘
SMP o p| - |—-|—-|FPT

{Ne, Ne- Inj}-{StrMorph, StrSubst} - p| — |—-1| - ||[FPT

SMP P - |p FPT

SMP p -l p |- W{1]-hard
{e,Inj}-{StrMorph, StrSubst} - pl 3 |1 W{1]-hard




Fixed Parameter Intractability

Theorem (Stephan, Yoshinaka, Zeugmann)
The problem Ne-StrSubst, parameterised by

),

e cardinality of target alphabet (|X|) and

e number of variables (|var(u)

e maximum occurrences per variable (|u|yar),
is W[1]-hard.




Fixed Parameter Intractability

Theorem (Stephan, Yoshinaka, Zeugmann)
The problem Ne-StrSubst, parameterised by

)I
e cardinality of target alphabet (|X|) and

@ maximum occurrences per variable (|ulyar),
is W[1]-hard.

e number of variables (|var(u)

Theorem

For every K € SMP, the problem K, parameterised by
@ number of variables (|var(u)|),
e cardinality of target alphabet (|X|) and

@ maximum occurrences per variable (|ulvar),

is W(1]-hard.




Fixed Parameter Intractability

Theorem

The problems StrMorph, Inj-StrMorph, StrSubst and Inj-StrSubst,
parameterised by

o length of the target string (|w|),

e cardinality of target alphabet (|X|),

@ maximum occurrences per variable (|u|var) and

e maximum length of substitution words (|h(x)|),
are W(1]-hard.




k-Multicoloured-Clique

k-Multicoloured-Clique

Instance A graph G := (V, E) and a partition V;, V>,
such that every V; is an independent set.

Parameter k.

Question Does G has a clique of size k7

...,Vk of V,




k-Multicoloured-Clique




k-Multicoloured-Clique







k-Multicoloured-Clique




k-Multicoloured-Clique

k-Multicoloured-Clique

Instance A graph G := (V, E) and a partition V;, V>,
such that every V; is an independent set.

Parameter k.

Question Does G has a clique of size k7

...,Vk of V,




k-Multicoloured-Clique

k-Multicoloured-Clique

Instance A graph G := (V, E) and a partition V;, V>,
such that every V; is an independent set.
Parameter k.

Question Does G has a clique of size k7

...,Vk of V,

Theorem (Fellows, Hermelin, Rosamond, and Vialette)
k-Multicoloured-Clique is W([1]-hard.




Sketch of the Reduction

G, Vi, Vo,..., V) is a k-Multicoloured-Clique instance.
g - (V7 E)1 \/I = {Vi,17 Vi727 sy Vi,t,’}'



Sketch of the Reduction

(G, V1, Va,..., Vi) is a k-Multicoloured-Clique instance.
g - (V7 E)1 \/I = {Vi,17 Vi727 RN Vi,t,’}'

Target alphabet: ¥ = {af; j |1 < i <j< k,i#j}U{$},
source alphabet: X := {x. | e € E}.

Important: |Z| = O(k?)



Sketch of the Reduction - Main Gadget




Sketch of the Reduction - Main Gadget

Let i,j € {1,2,...,k}, i #J, and let e, e,. .., e be exactly the edges
connecting a vertex from V; with a vertex from V;.



Sketch of the Reduction - Main Gadget

Let i,j € {1,2,...,k}, i #J, and let e, e,. .., e be exactly the edges
connecting a vertex from V; with a vertex from V;.

Uij = %Xe, Xe, - .. X, $,

Wi j ::$a{,-d-}$,



Sketch of the Reduction - Main Gadget




Sketch of the Reduction - Main Gadget

Let i,j € {1,2,...,k}, i #J, and let e, e,. .., e be exactly the edges
connecting a vertex from V; with a vertex from V;.

Uij = %Xe, Xe, - .. X, $,

Wi j ::$a{,-d-}$,



Sketch of the Reduction - Main Gadget

Let i,j € {1,2,...,k}, i #J, and let e, e,. .., e be exactly the edges
connecting a vertex from V; with a vertex from V;.

Uij = %Xe, Xe, - .. X, $,

Wi j ::$a{,-d-}$,

We combine all these gadgets to one big gadget:

Ui=uppUy3... Uy o3 lpg...Uxk ... Ug_ 1k,
WI=WioW13... W1 kWa3W24...Wok ... Wk_1k-
Important:
o |w| = O(k?),

@ every variable has 1 occurrences.



Sketch of the Reduction - Main Gadget




Sketch of the Reduction - Main Gadget




Sketch of the Reduction - Main Gadget




Sketch of the Reduction - Enforcer Gadget




Sketch of the Reduction - Enforcer Gadget

€1, €2, -, €q are the edges between v; , and a vertex in V.



Sketch of the Reduction - Enforcer Gadget

€1, €2, -, €q are the edges between v; , and a vertex in V.

Uip = Xey 1 Xerz - - - et gy Xez1 Xez 2 -+ - Xen gy - - - Xey 1 Xey 2 - Xey g, >



Sketch of the Reduction - Enforcer Gadget

€1,€2,---,€q are the edges between v; , and a vertex in V.

U,',p = Xel,lxel,z e Xel,ql Xezlee272 .. .Xez’q2 N Xekle(.;.k’2 e Xek,qk y

Wi 1= agi1} a2} - - ALk} -



Sketch of the Reduction - Enforcer Gadget

€1,€2,---,€q are the edges between v; , and a vertex in V.
Uip 1= XeyyXers---Xerq XexiXers:-Xenqy -+ XepiXews---Xepq, s

Wi = afi1} a2} e ik}



Sketch of the Reduction - Enforcer Gadget

€1,€2,---,€q are the edges between v; , and a vertex in V.

Uip = XepiXeps: Xerq XepiXezs:--Xepq Xey 1 Xez - - -
Wi = afi1} a2} afik} -
Ui :=Uj1 Ujp...Uip...Ujg,

w; =

Wi 1= afj1} i 2} - - - Afji—1} A{i,i4+1} &{i,i+2} - - - ALk} -

Xek,qk ’



Sketch of the Reduction - Enforcer Gadget

ej71, ej72, ..

Uip =

w; =

€,q; are the edges between v; , and a vertex in V.

)
Xe1’1Xe172 e Xelqu Xez’lxeu e Xez’q2 N XekleE.k’2 . Xek,qk ,
a{i,l} a{i72} e a{,-7k} .

~ (N2 (2 ~ \2 ~ 2

up = (Ui,l) (u,-72) - (U,‘7p) - (u,-7tl.) ,

~_ 2

Wi = (g1} agi2) - B0i-1) Bfii+1} 3fiit2) - 3fiky)”



Sketch of the Reduction - Enforcer Gadget

€1,€2,---,€q are the edges between v; , and a vertex in V.

Uip = XeyXeyn -+ Xerq XerxiXero--+Xerg, -+ XepiXexn---Xepgq s
1 2 k
Wii= 31y a{i2} o ik

b; = (Ui)* (@i2)? - (i) - (G,

Wi = (2gi1} a(i2} - - - &{i,i—1} A7, i+1} 3{i,i+2} - - - a{iyk})2 :
Enforcer Gadget:
=% $ms...$u$,

wi=SwSm$... Sw$.

=2

Important:
o |w| = O(k?),
@ every variable has 2 occurrences.



Results not covered in this talk

Theorem (W/[1]- and W[P]-Membership)

All K € SMP
e parameterised by |var(u)| and |ul|var are in W[1],
e parameterised by |w| are in W([1],

e parameterised by |var(u)| are in W[P].

Theorem (ETH Lower Bound)

For every K € {StrMorph, StrSubst} and ki, ko € N, ko > 2, problem K,
where |h|, |X| are bounded by constants ki, kp, resp., cannot be solved in
time (|u||w|)®®) x 20(var(¥)) " ynless ETH fails.




Thank you very much for your attention.



	String Morphism Problems

