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Abstract

Pattern languages are generalisations of the copy language, which is a standard
textbook example of a context-sensitive and non-context-free language. In this
work, we investigate a counter-intuitive phenomenon: with respect to alphabets
of size 2 and 3, pattern languages can be regular or context-free in an unexpected
way. For this regularity and context-freeness of pattern languages, we give
several sufficient and necessary conditions and improve known results.

Keywords: Pattern Languages, Regular Languages, Context-Free Languages

1. Introduction

Within the scope of this paper, a pattern is a finite sequence of terminal
symbols and variables, taken from two disjoint alphabets Σ and X. We say
that such a pattern α generates a word w if w can be obtained from α by
substituting arbitrary words of terminal symbols for all variables in α, where,
for any variable, the substitution word must be identical for all of its occurrences
in α. More formally, a substitution is therefore a terminal-preserving morphism,
i. e., a morphism σ : (Σ∪X)∗ → Σ∗ that satisfies σ(a) = a for every a ∈ Σ. The
pattern language L(α) is then simply the set of all words that can be obtained
from α by arbitrary substitutions. For example, the language generated by
α1 := x1x1abax2 (where Σ := {a, b} and X ⊃ {x1, x2}) is the set of all words
over {a, b} that have any square as a prefix, an arbitrary suffix and the factor
aba in between. Hence, e. g., w1 := abbabbabaaa and w2 := bbaba are included
in L(α1), whereas w3 := abbababb and w4 := bbbabaaa are not.

Pattern languages were introduced by Angluin [1] in 1980 in order to for-
malise the process of computing commonalities of words in some given set. Her
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original definition disallows the substitution of the empty word for the vari-
ables, and therefore these languages are also referred to as nonerasing pattern
languages (or NE-pattern languages for short). This notion of pattern languages
was soon afterwards extended by Shinohara [20], who included the empty word
as an admissible substitution word, leading to the definition of extended or eras-
ing pattern languages (or E-pattern languages for short). Thus, in the above
example, w2 is contained in the E-pattern language, but not in the NE-pattern
language of α1. As revealed by numerous studies, the small difference between
the definitions of NE- and E-pattern languages entails substantial differences
between some of the properties of the resulting (classes of) formal languages
(see, e. g., Mateescu and Salomaa [14] for a survey).

Pattern languages have not only been intensively studied within the scope
of inductive inference (see, e. g., Lange and Wiehagen [12], Rossmanith and
Zeugmann [19], Reidenbach [17] and, for a survey, Ng and Shinohara [15]), but
their properties are closely connected to a variety of fundamental problems in
computer science and discrete mathematics, such as for (un-)avoidable patterns
(cf. Jiang et al. [10]), word equations (cf. Mateescu and Salomaa [13]), the
ambiguity of morphisms (cf. Freydenberger et al. [7]), equality sets (cf. Harju
and Karhumäki [8]) and extended regular expressions (cf. Câmpeanu et al. [4]).
Therefore, quite a number of basic questions for pattern languages are still open
or have been resolved just recently (see, e. g., Freydenberger and Reidenbach [6],
Bremer and Freydenberger [3]).

If a pattern contains each of its variables once, then this pattern can be
interpreted as a regular expression, and therefore its language is regular. In
contrast to this, if a pattern has at least one variable with multiple occurrences,
then its languages is a variant of the well known copy language {xx | x ∈ Σ∗},
which for |Σ| ≥ 2 is a standard textbook example of a context-sensitive and
non-context-free language. Nevertheless, there are some well-known example
patterns of the latter type that generate regular languages. For instance, the
NE-pattern language of α2 := x1x2x2x3 is regular for |Σ| = 2, since squares are
unavoidable for binary alphabets, which means that the language is co-finite.
Surprisingly, for terminal alphabets of size 2 and 3, there are even certain E-
and NE-pattern languages that are context-free but not regular. This recent
insight is due to Jain et al. [9] and solves a longstanding open problem.

It is the purpose of our paper to further investigate this counter-intuitive
existence of languages that appear to be variants of the copy language, but
are nevertheless regular or context-free. Thus, we wish to establish criteria
where the seemingly high complexity of a pattern does not translate into a
high complexity of its language. Since, as demonstrated by Jain et al., this
phenomenon does not occur for E-pattern languages if the pattern does not
contain any terminal symbols or if the size of the terminal alphabet is at least
4, our investigations focus on patterns with terminal symbols and on small
alphabets of sizes 2 or 3.

2



2. Definitions and Known Results

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A,
a string (over A) is a finite sequence of symbols from A, and ε stands for the
empty string. The notation A+ denotes the set of all nonempty strings over A,
and A∗ := A+∪{ε}. For the concatenation of two strings w1, w2 we write w1 ·w2

or simply w1w2. We say that a string v ∈ A∗ is a factor of a string w ∈ A∗ if
there are u1, u2 ∈ A∗ such that w = u1 · v · u2. If u1 or u2 is the empty string,
then v is a prefix (or a suffix, respectively) of w. The notation |K| stands for
the size of a set K or the length of a string K.

If we wish to refer to the symbol at a certain position j, 1 ≤ j ≤ n, in a
string w = a1 · a2 · · · · · an, ai ∈ A, 1 ≤ i ≤ n, then we use w[j] := aj and if the
length of a string is unknown, then we denote its last symbol by w[−] := w[|w|].
Furthermore, for each j, j′, 1 ≤ j < j′ ≤ |w|, let w[j, j′] := aj · aj+1 · · · · · aj′
and w[j,−] := w[j, |w|].

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if and only if, for
every a ∈ A, h(a) 6= ε. Let Σ be a finite alphabet of so-called terminal symbols
and X a countably infinite set of variables with Σ ∩ X = ∅. We normally
assume X := {x1, x2, x3, . . .}. A pattern is a nonempty string over Σ ∪ X, a
terminal-free pattern is a nonempty string over X and a word is a string over
Σ. For any pattern α, we refer to the set of variables in α as var(α) and for
any x ∈ var(α), |α|x denotes the number of occurrences of x in α. A morphism
h : (Σ ∪X)

∗ → Σ∗ is called a substitution if h(a) = a for every a ∈ Σ.

Definition 1. Let α ∈ (Σ ∪ X)∗ be a pattern. The E-pattern language of α
is defined by LE,Σ(α) := {h(α) | h : (Σ ∪X)

∗ → Σ∗ is a substitution}. The
NE-pattern language of α is defined by LNE,Σ(α) := {h(α) | h : (Σ ∪X)

∗ →
Σ∗ is a nonerasing substitution}.

We denote the class of regular languages, context-free languages, E-pattern
languages over Σ and NE-pattern languages over Σ by REG, CF, E-PATΣ and
NE-PATΣ, respectively. We use regular expressions as they are commonly de-
fined (see, e. g., Yu [22]) and for any regular expression r, L(r) denotes the
language described by r.

We recapitulate regular and block-regular patterns as defined by Shino-
hara [21] and Jain et al. [9]. A pattern α is a regular pattern if, for every
x ∈ var(α), |α|x = 1. Every factor of variables of α that is delimited by terminal
symbols is called a variable block. More precisely, for every i, j, 1 ≤ i ≤ j ≤ |α|,
α[i, j] is a variable block if and only if α[k] ∈ X, i ≤ k ≤ j, α[i− 1] ∈ Σ or i = 1
and α[j + 1] ∈ Σ or j = |α|. A pattern α is block-regular if in every variable
block of α there occurs at least one variable x with |α|x = 1. Let Z ∈ {E,NE}.
The class of Z-pattern languages defined by regular patterns and block-regular
patterns are denoted by Z-PATΣ,reg and Z-PATΣ,b-reg, respectively. To avoid
any confusion, we explicitly mention that the term regular pattern always refers
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to a pattern with the syntactical property of being a regular pattern and a reg-
ular E- or NE-pattern language is a pattern language that is regular, but that
is not necessarily given by a regular pattern.

In order to prove some of the technical claims in this paper, the following
two versions of the pumping lemma for regular languages as stated by Yu [22]
shall be used.

Pumping Lemma 1. Let L ⊆ Σ∗ be a regular language. Then there is a
constant n, depending on L, such that for every w ∈ L with |w| ≥ n there exist
x, y, z ∈ Σ∗ such that w = xyz and

1. |xy| ≤ n,

2. |y| ≥ 1,

3. xykz ∈ L for every k ∈ N0.

Pumping Lemma 2. Let L ⊆ Σ∗ be a regular language. Then there is a
constant n, depending on L, such that for all u, v, w ∈ Σ∗, if |w| ≥ n, then there
exist x, y, z ∈ Σ∗, y 6= ε, such that w = xyz and, for every k ∈ N0, uxykzv ∈ L
if and only if uwv ∈ L.

We also need the following generalisation of Ogden’s Lemma:

Lemma 3 (Bader and Moura [2]). Let L ⊆ Σ∗ be a context-free language.
Then there is a constant n, such that for every z ∈ L, if d positions in z are
“distinguished” and e positions are “excluded”, with d > n(e+1), then there exist
u, v, w, x, y ∈ Σ∗ such that z = uvwxy and

1. vx contains at least one distinguished position and no excluded positions,

2. if r is the number of distinguished positions in vwx and s is the number
of excluded positions in vwx, then r ≤ n(s+1),

3. uviwxiy ∈ L for every i ∈ N0.

Next, we give a summary of subclasses of patterns for which characterisations
of the corresponding regular and context-free pattern languages are known.

It can be easily shown that every E- or NE-pattern language over a unary
alphabet is a regular language (cf. Reidenbach [16] for further details). Hence,
the classes of regular and context-free pattern languages over a unary alphabet
are trivially characterised. Jain et al. [9] show that for any alphabet of cardinal-
ity at least 4, the regular and context-free E-pattern languages are characterised
by the class of regular patterns.

Theorem 4 (Jain et al. [9]). Let Σ be an arbitrary alphabet. If |Σ| ≥ 4, then
(E-PATΣ ∩REG) = (E-PATΣ ∩CF) = E-PATΣ,reg.

Unfortunately, the above mentioned cases are the only complete characteri-
sations of regular or context-free pattern languages that are known to date. In
particular, characterisations of the regular and context-free E-pattern languages
with respect to alphabets with cardinality 2 and 3, and characterisations of the
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regular and context-free NE-pattern languages with respect to alphabets with
cardinality at least 2 are still missing. In the following, we shall briefly sum-
marise the known results in this regard and the reader is referred to Jain et
al. [9] and Reidenbach [16] for further details.

Jain et al. [9] show that there exist regular E-pattern languages with respect
to alphabet sizes 2 and 3 that cannot be described by regular patterns. More-
over, there exist non-regular context-free E-pattern languages with respect to
alphabet sizes 2 and 3. Regarding NE-pattern languages, it is shown that, for
every alphabet Σ with cardinality at least 2, the class (NE-PATΣ ∩REG) is not
characterised by regular patterns and with respect to alphabet sizes 2 and 3 it
is not characterised by block-regular patterns either. Furthermore, for alphabet
sizes 2 and 3, there exist non-regular context-free NE-pattern languages and for
alphabets with cardinality of at least 4 this question is still open.

3. Regularity and Context-Freeness of Pattern Languages: Sufficient
Conditions and Necessary Conditions

Since their introduction by Shinohara [21], it has been known that, for both
the E and NE case and for any terminal alphabet, regular patterns can only
describe regular languages. This is an immediate consequence of the fact that
regular patterns do not use the essential mechanism of patterns, i. e., repeating
variables in order to define sets of words that contain repeated occurrences of
variable factors. Jain et al. [9] extend the concept of regular patterns to block-
regular patterns, defined in Section 2. By definition, every regular pattern is a
block-regular pattern. Furthermore, in the E case, every block-regular pattern
α is equivalent to the regular pattern obtained from α by substituting every
variable block by a single occurrence of a variable.

Proposition 5. Let Σ be some terminal alphabet and let α ∈ (Σ ∪ X)∗ be a
pattern. If α is regular, then LNE,Σ(α) ∈ REG. If α is block-regular, then
LE,Σ(α) ∈ REG.

As mentioned in Section 2, for alphabets of size at least 4, both the class
of regular patterns and the class of block-regular patterns characterise the set
of regular and context-free E-pattern languages. However, in the NE case as
well as in the E case with respect to alphabets of size 2 or 3, Jain et al. [9]
demonstrate that block-regular patterns do not characterise the set of regular
or context-free pattern languages.

Obviously, the regularity of languages given by regular patterns or block-
regular patterns follows from the fact that there are variables that occur only
once in the pattern. Hence, it is the next logical step to ask whether or not the
existence of variables with only one occurrence is also necessary for the regularity
or the context-freeness of a pattern language. With respect to terminal-free
patterns, a positive answer to this question can be easily derived from existing
results by Jain et al. [9].
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Theorem 6 (Jain et al. [9]). Let Σ be a terminal alphabet with |Σ| ≥ 2 and
let α be a terminal-free pattern with |α|x ≥ 2, for every x ∈ var(α). Then
LE,Σ(α) /∈ CF and LNE,Σ(α) /∈ REG.

Proof. Let Σ′ be an alphabet with |Σ′| = 2 and Σ′ ⊆ Σ. By Lemma 11 of [9],
it follows that LE,Σ′(α) /∈ CF. Since LE,Σ(α) ∩ Σ′∗ equals LE,Σ′(α) and since
the class of context-free languages is closed under intersection with regular sets,
we can conclude that LE,Σ(α) /∈ CF.

In order to show LNE,Σ(α) /∈ REG, we can apply the proof of Theorem 6.a
of [9], which states that for any terminal alphabet Σ′ with |Σ′| ≥ 4 and for
any pattern β that is not block-regular, LNE,Σ′(β) is not a regular language.
However, for terminal-free patterns in which every variable occurs at least twice
this proof also works for an alphabet of size 2 and 3, since we do not need the
two terminal symbols to both sides of the variable block (see [9] for details). 2

We can note that Proposition 5 and Theorem 6 characterise the regular and
context-free E-pattern languages given by terminal-free patterns with respect
to alphabets of size at least 2. More precisely, for every alphabet Σ with |Σ| ≥ 2
and for every terminal-free pattern α, if α is block-regular, then LE,Σ(α) is
regular (and, thus, also context-free) and if α is not block-regular, then every
variable of α occurs at least twice, which implies that LE,Σ(α) is neither regular
nor context-free.

However, for the NE case, we cannot hope for such a simple characterisation.
This is due to the close relationship between the regularity of NE-pattern lan-
guages and the combinatorial phenomenon of unavoidable patterns, as already
mentioned in Section 1.

In the following, we concentrate on E-pattern languages over alphabets of
size 2 and 3 (since for all other alphabet sizes complete characterisations are
known) that are given by patterns that are not terminal-free (since, as described
above, the characterisation of regular and context-free E-pattern languages given
by terminal-free patterns has been settled). Nevertheless, some of our results
also hold for the NE case and we shall always explicitly mention if this is the
case.

The next two results present a sufficient condition for the non-regularity
and a sufficient condition for the non-context-freeness of pattern languages over
small alphabets. More precisely, we generalise Theorem 6 to patterns that are
not necessarily terminal-free. The first result states that for a pattern α (that
may contain terminal symbols), if every variable in α occurs at least twice, then
both the E- and NE-pattern language of α, with respect to alphabets of size at
least 2, is not regular.

Theorem 7. Let Σ be a terminal alphabet with |Σ| ≥ 2, let α ∈ (Σ ∪X)∗, and
let Z ∈ {E,NE}. If, for every x ∈ var(α), |α|x ≥ 2, then LZ,Σ(α) /∈ REG.

Proof. We only prove that LNE,Σ(α) /∈ REG since LE,Σ(α) /∈ REG can be
shown in exactly the same way. To this end, we assume to the contrary that
LNE,Σ(α) ∈ REG and we let n be the constant from Pumping Lemma 2 with
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respect to LNE,Σ(α). Furthermore, we assume that α := u0 · y1 · u1 · y2 · u2 ·
· · · · uk−1 · yk · uk, where yi ∈ X, 1 ≤ i ≤ k, and ui ∈ Σ∗, 0 ≤ i ≤ k. Now, we
let w be the word obtained from α by substituting every variable by the word
banbna, i. e.,

w = u0 · banbna · u1 · banbna · u2 · · · · · uk−1 · banbna · uk .

By first applying Pumping Lemma 2 to the factor banbna that results from y1,
then to the factor banbna that results from y2 and so on, we can obtain the
word

w′ := u0 · ban1bn2a · u1 · ban3bn4a · u2 · · · · · uk−1 · ban2k−1bn2ka · uk ,

where n × |α| < n1, and, for every i, 1 ≤ i ≤ 2k − 1, ni × |α| < ni+1. We
shall now show that w′ /∈ LNE,Σ(α). To this end, we assume to the contrary
that there exists a substitution h with h(α) = w′. Let p, 1 ≤ p ≤ |α|, be
such that α[p,−] is the shortest suffix of α such that bn2ka · uk is a suffix of
h(α[p,−]). If h(α[p,−]) = v · bn2ka · uk, v 6= ε, then α[p] must be a variable,
since otherwise bn2ka · uk is also a suffix of h(α[p + 1,−]) which implies that
α[p,−] is not the shortest suffix of α such that bn2ka ·uk is a suffix of h(α[p,−]).
Moreover, for similar reasons, we can conclude that h(α[p]) = v · v′, where v′

is a non-empty prefix of bn2k . If h(α[p]) contains the whole factor an2k−1 , then,
since α[p] is a repeated variable in α, there are two non-overlapping occurrences
of factor an2k−1 in h(α), which is a contradiction, since there are no two non-
overlapping occurrences of factor an2k−1 in w′. So we can conclude that either
h(α[p,−]) = bn2ka · uk or h(α[p,−]) = am · bn2ka · uk and α[p] is a variable with
h(α[p]) = am · bl, 1 ≤ m < n2k−1, l 6= 0.

There must exist at least one variable x ∈ var(α) with |h(x)| > n2k−1,
since otherwise |h(α)| ≤ |α| × n2k−1 < n2k < |w′|, which is a contradiction.
Now let z ∈ var(α) be such a variable, i. e., |h(z)| > n2k−1. We recollect that
h(α[1, p− 1]) := u0 · ban1bn2a · u1 · · · · · uk−1 · ban2k−1−m. If z ∈ var(α[1, p− 1]),
then there are two cases to consider. If, for some i, 1 ≤ i ≤ k − 1, h(z)
contains a factor abn2ia or a factor ban2i−1b, then we obtain a contradiction,
since in w′ there is exactly one occurrence of such a factor, but there are at
least two occurrences of variable z in α. If, on the other hand, h(z) contains
no such factor, then h(z) is a factor of the suffix bn2k−2a · uk−1 · ban2k−1−m of
h(α[1, p − 1]). Since |h(z)| > n2k−1, this implies that h(z) must have a suffix
aq, where q > n2k−1 − (n2k−2 + |uk−1|+ 2). We observe that

n2k−1 − (n2k−2 + |uk−1|+ 2) > n2k−1 − (3× n2k−2) >

|α| × n2k−2 − (3× n2k−2) = (|α| − 3)× n2k−2 .

We can therefore conclude that, since (|α|−3)×n2k−2 > (|α|−3)×|α|×n2k−3 >
n2k−3, q > n2k−3. This directly implies that in h(α[1, p − 1]) there does not
exist another occurrence of factor aq and, thus, there is exactly one occurrence
of variable z in α[1, p− 1], which implies that there must be another occurrence
of variable z in α[p,−]. This particularly means that there is an occurrence of

7



h(z) in h(α[p,−]) = am · bn2ka · uk. We recall that h(z) contains aq as a suffix,
which implies that in h(α[p,−]), h(z) cannot end in bn2ka ·uk, since this means
that the whole suffix aq is contained in bn2ka · uk. So h(z) must entirely be
contained in am, which is a contradiction, since |h(z)| > n2k−1 and m < n2k−1.

This proves that the word w′ is not in LNE,Σ(α), which, by Pumping Lemma
2, implies LNE,Σ(α) /∈ REG. 2

For alphabets of size at least 3 we can strengthen Theorem 7, i. e., if ev-
ery variable in a pattern α occurs at least twice, then the E- and NE-pattern
language of α is not context-free.

Theorem 8. Let Σ be a terminal alphabet with |Σ| ≥ 3, let α ∈ (Σ∪X)+, and
let Z ∈ {E,NE}. If, for every x ∈ var(α), |α|x ≥ 2, then LZ,Σ(α) /∈ CF.

Proof. Let {a, b, c} ⊆ Σ. We prove the theorem solely for the case that there
exists a unique factorisation of α that reads as follows:

α = uβ f α′,

with u ∈ Σ∗, β ∈ X+, f ∈ Σ and α′ ∈ (Σ ∪X)∗. If this factorisation does not
exist, then, for some u′ ∈ Σ∗ and α′′ ∈ X∗, α = u′ α′′. For such a structure of
α, our reasoning can be adapted easily (and the statement of the theorem also
follows from Lemma 11 in [9]). Furthermore, we assume that f = c; if f = a or
f = b, then it is again straightforward to adapt the proof below.

We wish to prove the theorem by applying the contraposition of the gen-
eralisation of Ogden’s Lemma stated in Lemma 3. Hence, we shall consider
a word z ∈ LZ,Σ(α) and label some of its letters as distinguished or excluded
such that the conditions of Lemma 3 are satisfied. We then consider all possible
factoristions z = v1v2v3v4v5 that fit with the requirements of that lemma, and
we shall demonstrate for each of them that z′ := v1v

0
2v3v

0
4v5 /∈ LZ,Σ(α). This

then directly implies LZ,Σ(α) /∈ CF.
In order to produce an appropriate word z, let τ : (Σ ∪ X)∗ → Σ∗ be any

substitution satisfying the following conditions:

1. For every y /∈ var(β), τ(y) := a. Note that, in order to avoid a more
involved proof, f must not be contained in τ(y). Hence, if f 6= c, then the
definition of τ for the variables y /∈ var(β) must be modified accordingly.

2. For every y ∈ var(β), τ(y) := ab1ya ab2ya ab3ya · · · abgya, 1y, 2y, . . . , gy ∈
N, where

(a) g := |β|+ 2 or, if |β| ∈ {1, 2}, g := 5 (note that this separate consid-
eration of |β| ∈ {1, 2} is merely for the sake of a uniform reasoning
below),

(b) for all y, y′ ∈ var(β) and for all i, i′ ∈ {1, 2, . . . , g}, iy = i′y′ iff y = y′

and i = i′,
(c) for every y ∈ var(β) and for every i ∈ {1, 2, . . . , g}, iy > | res(α)|,

where res(α) is the word that results from α by deleting all variables
from it.
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Note that if f 6= c, then we simply choose any two distinct letters that
differ from f in order to define τ for the variables that occur in β. These
two letters must exist since we assume |Σ| ≥ 3. Furthermore, from now
onwards, we call any word abiya, i ∈ {1, 2, . . . , g}, a segment of τ(y),
y ∈ var(α).

3. Let x be the leftmost variable in β that satisfies, for every y ∈ var(β),
|α|x ≤ |α|y. Let m1 be the number of terminal symbols in α between
the leftmost occurrence and the second occurrence of x in α (this second
occurrence must exist since we assume, for every y ∈ var(α), |α|y ≥ 2),
and let m2 be number of segments between the leftmost and the second
occurrence of ab2xa in τ(α). Let then 3x (i. e., the number of occurrences
of the letter b in the third segment of τ(x)) be any number that satisfies

3x > nm1+2m2+1x+gx+1,

where n is the constant provided by Lemma 3.

4. Let 2x (i. e., the number of occurrences of the letter b in the second segment
of τ(x)) be any number that satisfies

2x > n| res(α)|+2g
∑
y∈var(β) |α|y+1x+3x+gx+1,

where n again is the constant provided by Lemma 3.

Informally, we can summarise the properties of τ as follows: Every variable in
β is mapped to a word that consists of |β| + 2 unique segments ab+a, and all
variables that have no occurrence in β are mapped to the letter c. There are
specific constraints regarding the minimum length of the second and the third
segment of τ(x), where x is the leftmost variable in β that, among all variables
in β, has the smallest number of occurrences in α. More precisely, the length
of these segments depends on the constant n from Lemma 3, and the second
segment is substantially longer than the third one.

Before we can apply Lemma 3 in the way summarised above, we need to
label a number of positions in z := τ(α):

5. The following positions are excluded :

(a) all positions that result from the substitution of terminal symbols in
α,

(b) all occurrences of the letter a in z that are the first or the last letter
of any segment of any τ(y), y ∈ var(α),

(c) all occurrences of the letter b in the first occurrence of the factors
ab1xa and abgxa in z, and

(d) all occurrences of the letter b in the second occurrence of the factor
ab3xa in z.

6. The following positions are distinguished :

(a) all occurrences of the letter b in the first occurrence of the factor
ab2xa and in the first occurrence of the factor ab3xa in z.

7. All other positions in z stay unlabeled.

9



Since z ∈ LZ,Σ(α) is obviously true, we merely need to test whether the above
conditions on the number of excluded and distinguished positions in z satisfy
the conditions of Lemma 3 before we apply this lemma: The number d of
distinguished positions in z equals 2x + 3x, whereas the number e of excluded
positions equals

| res(α)|+ 2g
∑

y∈var(β)

|α|y + 1x + 3x + gx.

Hence,

d > n| res(α)|+2g
∑
y∈var(β) |α|y+1x+3x+gx+1 + 3x

> n| res(α)|+2g
∑
y∈var(β) |α|y+1x+3x+gx+1

= ne+1,

which implies that Lemma 3 is applicable.
We now consider any factorisation z = v1v2v3v4v5 that satisfies conditions

1 and 2 of Lemma 3. We define z′ := v1v
0
2v3v

0
4v5, and we demonstrate that

z′ /∈ LZ,Σ(α): Since all positions in z that result from a substitution of a terminal
symbol in α are excluded (see Point 5a) and since v2v4 must not contain any
excluded positions, z′ contains at most two segments that are shorter than their
counterparts in z. Furthermore, as v2v4 must include at least one distinguished
position, there must be at least one such segment, namely the first occurrence of
ab2xa or the first occurrence of ab3xa in z (due to Point 6). The second original
segment in z that is affected by pumping (if any) is not the second occurrence
of ab3xa, as its positions are excluded (see Point 5d). Furthermore, if the first
occurrence of ab2xa in z is shortened by pumping, then the second segment that
is shortened (if any) is not the second occurrence of this segment – otherwise,
there would be at least

3x + 1 > nm1+2m2+1x+gx+1 + 1

distinguished positions in v2v3v4, whereas the number of excluded positions in
v2v3v4 would be m1 + 2m2 + 1x + gx (see Points 3 and 5), which conflicts
with condition 2 of Lemma 3, stating that, for the number r of distinguished
positions and the number s of excluded positions in v2v3v4, r ≤ ns+1 needs to
be satisfied. Incorporating the basic properties of τ stated in Points 2a to 2c,
we can summarise these observations as follows:

Claim. The number of occurrences of the factor wx in the word z′ is strictly
smaller than |α|x, where

wx := ab2′xaab3′xaab4′xa . . . abg
′
x−1a,

with 2′x < 2x or 3′x < 3x, and i′x < ix for at most two of the exponents i′x,
2 ≤ i ≤ g − 1.

We now assume to the contrary that there exists a substitution τ ′ satisfying
τ ′(α) = z′, and we shall demonstrate that this assumption contradicts the
Claim.
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Let ŵτ(β) be the factor of z′ that results from the application of the pumping
operation to τ(β). Since a 6= f 6= b, since τ(β) ∈ {a, b}∗ (see Point 2) and since
τ(y) = a for all y ∈ var(α) \ var(β) (see Point 1), τ ′(β) = ŵτ(β) needs to be
satisfied. Therefore there exists a shortest factor γ of β such that

� the word wx is a factor of τ ′(γ) and

� there exists an x′ ∈ var(γ) such that τ ′(x′) contains a segment of τ(x′).

Note that such a factor γ must exist. Furthermore, x = x′ is possible, but not
necessary. More precisely, γ can (but does not need to) contain x and at most
two variables other than x satisfying the property of x′ – one to the right, and
one to the left of x. For the sake of a less involved presentation, we assume that
x ∈ var(γ), x 6= x′ and γ = xγ′x′, γ′ ∈ X∗, and we note that our reasoning can
be easily adapted to the other cases.

We now make use of the number of segments every variable is mapped to
by τ , as specified in Point 2 (note that this part of our proof is related to the
the reasoning on the inclusion problem for terminal-free E-pattern languages
provided by Filè [5] and Jiang et al. [11]): Since every variable is mapped by
τ to | var(β)| + 2 unique segments, since at most two of these segments have
been shortened by pumping, and since τ ′(β) = ŵτ(β), we can select, for every
y ∈ β, one full segment sy of τ(y) that is contained in τ ′(xy) for an xy ∈ var(β).
Furthermore, we can postulate, that sx′ is contained in τ ′(x′). Note that this
is not possible for any variables other than x and x′, since otherwise γ would
not be the shortest factor of β satisfying the conditions of the definition. We
now delete from τ ′(γ) all segments but the said sy for all y ∈ γ, and we call the
resulting word w′′. Since all sy are unique, we can define a morphism from w′′

to γ, and this implies that we can define a morphism φ : X∗ → X∗ mapping γ
to γ that, due to our choice of segments sy, has the following properties:

� |φ(x′)| ≥ 2 and x′ ∈ var(φ(x′)),

� for every y ∈ var(γ) \ {x, x′}, y /∈ var(φ(y)) and

� φ(x) = x or φ(x) = ε.

Since φ is defined using unique segments that occur in both τ(α) and τ ′(α),
this implies that, for every occurrence of x′ in α, x′ must occur in the factor
γ′x′. We cannot necessarily conclude, solely from the definition of φ, that every
occurrence of x′ must even occur in the factor γ = xγ′x′, as φ(x) = x is possible.
However, since

� τ ′(γ′x′) must contain at least the complete rightmost segment of τ(x)
(otherwise γ′ and x′ would not have been included in γ),

� τ ′(γ′x′) must contain all segments of the leftmost variable in τ ′(γ′) (again
due to the definition of γ), and
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� the rightmost segment of τ(x), which is immediately to the right of the
factor wx in τ(γ), cannot be affected by the pumping operation as its
positions are excluded (see Point 5c), which means that it is longer than
any factor over Σ in α,

we can indeed conclude that every occurrence of x′ is in a factor γ = xγ′x′. Since
x has been chosen as a variable in β with a minimum number of occurrences
in α (see Point 3), we also know that the same holds for every occurrence of x.
This implies |α|x = |α|x′ and, hence, |γ|x = 1.

Thus, the number of occurrences of τ ′(γ) in z′ = τ ′(α) equals the number of
occurrences of x in α. Due to the definition of γ, we therefore have exactly |α|x
occurrences of the factor wx in z′. This is a contradiction to the Claim.

Hence, there is no substitution τ ′ satisfying τ ′(α) = z′. According to
Lemma 3, this means that LZ,Σ(α) /∈ CF. 2

At this point, we recall that patterns, provided that they contain repeated
variables, describe languages that are generalisations of the copy language,
which strongly suggests that these languages are context-sensitive, but not
context-free or regular. However, as stated in Section 1, for small alphabets
this is not necessarily the case and the above results provide a strong indication
of where to find this phenomenon of regular and context-free copy languages.
More precisely, by Theorems 7 and 8, the existence of variables with only one
occurrence is crucial. Furthermore, since, in the terminal-free case, regular
and context-free E-pattern languages are characterised in a compact and simple
manner, we should also focus on patterns containing terminal symbols.

Consequently, we concentrate on the question of how the occurrences of ter-
minal symbols in conjunction with non-repeated variables can cause E-pattern
languages to become regular. To this end, we shall now consider some simply
structured examples of such patterns for which we can formally prove whether
or not they describe a regular language with respect to terminal alphabets
Σ2 := {a, b} and Σ≥3, where {a, b, c} ⊆ Σ≥3. Most parts of the following
propositions require individual proofs, some of which, in contrast to the sim-
plicity of the example patterns, are surprisingly involved. If, for some pattern
α and Z ∈ {E,NE}, LZ,Σ2

(α) /∈ REG, then LZ,Σ≥3
(α) /∈ REG. This follows di-

rectly from the fact that regular languages are closed under intersection. Hence,
in the following examples, we consider LZ,Σ≥3

(α) only if LZ,Σ2(α) is regular.
Firstly, we consider the pattern x1 · d · x2x2 · d′ · x3, which, for all choices of

d, d′ ∈ {a, b}, describes a regular E-pattern language with respect to Σ2, but a
non-regular E-pattern language with respect to Σ≥3.

Proposition 9.

LE,Σ2
(x1 a x2 x2 a x3) ∈ REG ,

LE,Σ≥3
(x1 a x2 x2 a x3) /∈ REG ,

LE,Σ2(x1 a x2 x2 b x3) ∈ REG ,

LE,Σ≥3
(x1 a x2 x2 b x3) /∈ REG .
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Proof. Let α1 := x1ax2x2ax3 and let α2 := x1ax2x2bx3. It follows from Lem-
mas 16 and 14, respectively, that LE,Σ2(α1) and LE,Σ2(α2) are regular languages.
Hence, it only remains to prove that LE,Σ≥3

(α1) /∈ REG and LE,Σ≥3
(α2) /∈ REG.

We assume that LE,Σ≥3
(α1) ∈ REG and we shall show that this assumption

leads to a contradiction. Let w := a · cnb · cnb · a ∈ LE,Σ≥3
(α1), where n is

the constant of Pumping Lemma 2 with respect to LE,Σ≥3
(α1). By Pumping

Lemma 2, there exists a word w′ := a·cnb·cn′b·a, n < n′, with w′ ∈ LE,Σ≥3
(α1),

which is obviously not the case.
Similarly, we can show that the assumption LE,Σ≥3

(α2) ∈ REG leads to a
contradiction. Let v := a · cnb · cnb · b ∈ LE,Σ≥3

(α2), where n is odd and n
is greater than the constant of Pumping Lemma 2 with respect to LE,Σ≥3

(α2).

By Pumping Lemma 2, there exists a word v′ := a · cnb · cn′b · b, n < n′, with
v′ ∈ LE,Σ≥3

(α2), which is not the case, since for every factor a · u · b in v′, u is
not a square. 2

Next, we insert another occurrence of a terminal symbol in between the
two occurrences of x2, i. e., we consider β := x1 · d · x2 · d′ · x2 · d′′ · x3, where
d, d′, d′′ ∈ {a, b}. Here, we find that LZ,Σ(β) ∈ REG if and only if Z = E,
Σ = Σ2 and d = d′′, d 6= d′ 6= d′′.

Proposition 10. For every Z ∈ {E,NE},

LZ,Σ2
(x1 a x2 a x2 a x3) /∈ REG ,

LZ,Σ2
(x1 a x2 a x2 b x3) /∈ REG ,

LE,Σ2
(x1 a x2 b x2 a x3) ∈ REG ,

LNE,Σ2
(x1 a x2 b x2 a x3) /∈ REG ,

LZ,Σ≥3
(x1 a x2 b x2 a x3) /∈ REG .

Proof. Let α1 := x1ax2ax2ax3, α2 := x1ax2ax2bx3 and α3 := x1ax2bx2ax3.
It follows from Proposition 13 that LZ,Σ2

(α1) /∈ REG, LZ,Σ2
(α2) /∈ REG

and LZ,Σ≥3
(α3) /∈ REG. It remains to prove that LE,Σ2(α3) ∈ REG and

LNE,Σ2(α3) /∈ REG. We shall first prove LE,Σ2(α3) ∈ REG. To this end,
we claim that LE,Σ2

(α3) = L(r), where r := Σ∗2 · a · (bb)∗b · a · Σ∗2. It can be
easily verified that L(r) ⊆ LE,Σ2

(α3). In order to prove the converse, we let h
be an arbitrary substitution for α3. If h(x2) ∈ L(b∗), then h(α3) ∈ L(r). Thus,
we assume that h(x2) = bn · û · bn′ , where n, n′ ∈ N0, û ∈ Σ∗2 and û starts and
ends with an occurrence of a (note that this includes the case û = a). We note
that h(α3) = u ·a ·bn · û ·bn+n′+1 · û ·bn′ ·a ·v, where u := h(x1) and v := h(x3).
In order to prove that h(α3) ∈ L(r) it is sufficient to identify a factor of the
form abka in h(α3), where k is odd. If n is odd, then a · bn · û[1] is such a factor
and if n′ is odd, then û[−] · bn′ · a is such a factor. If both n and n′ are even,
then û[−] · bn+n′+1 · û[1] is a factor of the form abka, k odd, since n + n′ + 1
is odd. Hence, h(α3) ∈ L(r) and LE,Σ2(α3) ⊆ L(r) is implied, which concludes
the proof.

Next, in order to prove LNE,Σ2
(α3) /∈ REG, we assume to the contrary that

LNE,Σ2
(α3) ∈ REG and we define w := b · a · abna · b · abna · a · b ∈ LNE,Σ2

(α3),
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where n is greater than the constant of Pumping Lemma 2 with respect to
LNE,Σ2(α3) and n is even. By applying Pumping Lemma 2, we can obtain

the word w′ := b · a · abna · b · abn′a · a · b, where n < n′ and n′ is even. It
can be verified that for every factor of the form a · u · b · v · a, u, v ∈ Σ+

2 , in

a · abna · b · abn′a · a, u 6= v, which implies that w′ /∈ LNE,Σ2
(α3). Consequently,

with Pumping Lemma 2, we can conclude that LNE,Σ2
(α3) /∈ REG. 2

The next type of pattern that we investigate is similar to the first one, but it
contains two factors of the form xx instead of only one, i. e., β′ := x1 · d · x2x2 ·
d′ · x3x3 · d′′ · x4, where d, d′, d′′ ∈ {a, b}. Surprisingly, LE,Σ2

(β′) is not regular
if d = d′ = d′′, but regular in all other cases. However, if we consider the NE
case or alphabet Σ≥3, then β′ describes a non-regular language with respect to
all choices of d, d′, d′′ ∈ {a, b}.

Proposition 11. For every Z ∈ {E,NE},

LZ,Σ2
(x1 a x2 x2 a x3 x3 a x4) /∈ REG ,

LE,Σ2
(x1 a x2 x2 b x3 x3 a x4) ∈ REG ,

LNE,Σ2
(x1 a x2 x2 b x3 x3 a x4) /∈ REG ,

LE,Σ≥3
(x1 a x2 x2 b x3 x3 a x4) /∈ REG ,

LE,Σ2(x1 a x2 x2 a x3 x3 b x4) ∈ REG ,

LNE,Σ2(x1 a x2 x2 a x3 x3 b x4) /∈ REG ,

LE,Σ≥3
(x1 a x2 x2 a x3 x3 b x4) /∈ REG .

Proof. We define α1 := x1ax2x2ax3x3ax4, α2 := x1ax2x2bx3x3ax4 and α3 :=
x1ax2x2ax3x3bx4. We shall now prove the lemma by proving each of the 7
statements as individual claims.

Claim. LZ,Σ2
(α1) /∈ REG, Z ∈ {E,NE}.

Proof (Claim). We first prove that LNE,Σ2(α1) /∈ REG. To this end, we assume
to the contrary that LNE,Σ2

(α1) is a regular language and let k ∈ N be the
constant from Pumping Lemma 2 with respect to LNE,Σ2

(α1). Furthermore,
let h be the substitution defined by h(x1) = h(x4) = b, h(x2) := bnab and
h(x3) := bmab, where, k < n, 6n < m < 12n and both n and m are odd. We
note that h(α1) = b ·a ·bnab ·bnab ·a ·bmab ·bmab ·a ·b. By applying Pumping
Lemma 2 first to the second occurrence of factor bn and then to the second
occurrence of factor bm, we can obtain the word

w := b · a · bnab · bn
′
ab · a · bmab · bm

′
ab · a · b ,

such that 2n < n′ < 4n and 12n < m′. Since we assume that LNE,Σ2(α1) ∈
REG, we can conclude from Pumping Lemma 2 that w ∈ LNE,Σ2

(α1). Let
p1, p2, . . . , p7 be exactly the positions in w where there is an occurrence of a. We
shall now show that, for all r, s, t, 1 ≤ r < s < t ≤ 7, the factor w[pr + 1, ps− 1]
is not a non-empty square or the factor w[ps + 1, pt − 1] is not a non-empty
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square. This directly implies that there does not exist a substitution g with
g(α1) = w and, thus, w /∈ LNE,Σ2(α1), which is a contradiction.

We can note that, for all r, s, with 1 ≤ r < s ≤ 7, if s−r is even, then w[pr+
1, ps − 1] has an odd number of a’s and, thus, it is not a square. Furthermore,
since n and m are odd numbers, w[p1 + 1, p2 − 1] and w[p4 + 1, p5 − 1] cannot
be squares and since w[p3 + 1, p4 − 1] = w[p6 + 1, p7 − 1] = b, these cannot
be squares either. The factor w[p1 + 1, p4 − 1] = bnab · bn′ab is not a square
since n 6= n′ and, since m 6= m′, the same holds for w[p4 + 1, p7 − 1]. The
factor w[p1 + 1, p6 − 1] = bnab · bn′ab · a · bmab · bm′ cannot be a square, since
2n < n′ < 4n, 6n < m < 12n and 12n < m′ implies that n+n′+2 < m+m′+1,
and, with similar argumentations, we can conclude that factors w[p2 +1, p7−1],
w[p2 +1, p5−1] and w[p3 +1, p6−1] are no squares either. We conclude that the
only factors that can possibly be squares are w[p2+1, p3−1] and w[p5+1, p6−1].
However, for all r, s, t, 1 ≤ r < s < t ≤ 7, it is impossible that (r, s) = (2, 3) and
(s, t) = (5, 6). Hence, we obtain a contradiction as described above and, thus,
we can conclude that LNE,Σ2

(α1) /∈ REG. Moreover, in exactly the same way,
we can also prove that LE,Σ2(α1) /∈ REG. This is due to the fact that in the
word w there are no two occurrences of symbol a without occurrences of symbol
b between them, i. e., we do not need to consider empty squares. So by exactly
the same argumentation, we can show that w is not in LE,Σ2

(α1) /∈ REG, which,
since h(α1) clearly is in LE,Σ2

(α1), leads to a contradiction in the same way.
2(Claim)

Claim. LE,Σ2(α2) ∈ REG.

Proof (Claim). We claim that LE,Σ2(α2) = L(r), where r := Σ∗2 ·a·(bb)∗ ·b·a·Σ∗2.
First, we can note that L(r) ⊆ LE,Σ2(α2) trivially holds. Now let h be an
arbitrary substitution. In order to prove that h(α2) ∈ L(r), it is sufficient to
show that in h(α2) there occurs a factor of the form a · b2n−1 · a, n ∈ N.

We first consider the case that h(x2) = bn · u · bn′ , n, n′ ∈ N0, where u starts
and ends with the symbol a. We note that if n is odd, then in h(α2) there
occurs the factor a · bn · a. If, on the other hand, n is even and n′ is odd, then
n+ n′ is odd and in h(α2) there occurs the factor a · bn+n′ · a. Furthermore, if
n′ and n are even, then we cannot directly conclude that there exists a factor
a ·b2n−1 ·a, n ∈ N, and we have to take a closer look at h(x3). If h(x3) ∈ L(b∗),
then we have the factor a · bn′ · b · h(x3) · h(x3) · a that necessarily is of form an
a ·b2n−1 ·a, n ∈ N. If, on the other hand, h(x3) = bm ·v ·bm′ , m,m′ ∈ N0, where
v starts and ends with an a, then we have to consider several cases depending
on whether m and m′ is odd or even. If m is even, then the factor a ·bn′ ·b ·bm ·a
occurs in h(α2), where n′ + m + 1 is odd. If, on the other hand, m is odd and
m′ is even, then the factor a · bm′+m · a occurs in h(α2), where m′ +m is odd.
Finally, if m′ and m are odd, then the factor a · bm′ · a occurs in α2. So we can
conclude that if h(x2) = bn · u · bn′ , then there necessarily occurs a factor of the
form a · b2n−1 · a, n ∈ N in h(α2).

It remains to consider the case where h(x2) ∈ L(b∗). We first note that if
also h(x3) ∈ L(b∗), then the factor a · h(x2) · h(x2) · b · h(x3) · h(x3) · a occurs
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in h(α2), which is of the form a · b2n−1 · a, n ∈ N. So we need to consider the
case that h(x3) = bm · v · bm′ , m,m′ ∈ N0, where v starts and ends with a. If
m is even, then the factor a · h(x2) · h(x2) · b · bm · a occurs in h(α2), that is of
the form a · b2n−1 · a, n ∈ N. If m′ is odd, then the factor a · bm′ · a occurs and,
finally, if m is odd and m′ is even, then factor a · bm · bm′ · a occurs in h(α2).
Consequently, h(α2) necessarily contains a factor of the form a ·b2n−1 ·a, n ∈ N.
Thus, h(α2) ∈ L(r), which shows that L(r) ⊆ LE,Σ2(α2) holds. 2(Claim)

Claim. LNE,Σ2
(α2) /∈ REG.

Proof (Claim). We assume that LNE,Σ2(α2) is a regular language and we define
w := b · a · abna · abna · b · b · b · a · b ∈ LNE,Σ2

(α2), where n is greater than the
constant of Pumping Lemma 2 with respect to LNE,Σ2

(α2) and n is even. By

pumping, we can produce a word w′ := b · a · abna · abn′a · b · b · b · a · b, where
n < n′ and n′ is even. Now we can note that in w′, for every factor of the form
a · u · b · v · a, u, v ∈ Σ′+, in a · abna · abn′a · b · b · b · a, u is not a square or v
is not a square. This implies that w′ /∈ LNE,Σ2(α2), which is a contradiction to
Pumping Lemma 2. 2(Claim)

Claim. LE,Σ≥3
(α2) /∈ REG.

Proof (Claim). We assume that LE,Σ≥3
(α2) ∈ REG and we define w := a · cnb ·

cnb·b·a ∈ LE,Σ≥3
(α2), where n is greater than the constant of Pumping Lemma

2 with respect to LE,Σ≥3
(α2) and n is odd. By pumping, we can produce a word

w′ := a ·cnb ·cn′b ·b ·a, where n < n′. Since in w′ there is no factor of the form
a · vv · b, v ∈ Σ∗≥3, we can conclude that w′ /∈ LE,Σ≥3

(α2), which contradicts
Pumping Lemma 2. 2(Claim)

Claim. LE,Σ2
(α3) ∈ REG.

Proof (Claim). We claim that LE,Σ2
(α3) = L(r), where r := Σ∗2 ·a·(bb)∗ ·a·b·Σ∗2.

First, we can note that L(r) ⊆ LE,Σ2
(α3) trivially holds. Let h be an arbitrary

substitution. We shall show that h(α3) ∈ L(r), which implies that LE,Σ2(α3) ⊆
L(r). If h(x2) starts with the symbol a, h(x2) ends with the symbol a or h(x3)
starts with the symbol a, then the factor a · a · b occurs in h(α3), which implies
that h(α3) ∈ L(r). Hence, we only need to consider the following case: if h(x2)
is non-empty, then it starts and ends with the symbol b and if h(x3) is non-
empty, then it starts with the symbol b. Next, we can note that if h(x2) is
empty or h(x2) = bn, n ∈ N, then, since h(x3) is either empty or it starts with
b, the factor a · a · b occurs in h(α3) or the factor a · b2n · a · b occurs in h(α3),
respectively, which implies that h(α3) ∈ L(r). Therefore, we need to take a
closer look at the case that h(x2) = bn · u · bn′ , n, n′ ∈ N, where u starts and
ends with the symbol a. If u contains the factor a · a, then the factor a · a · b
is contained in h(α3), thus, h(α3) ∈ L(r). If, on the other hand, u does not
contain the factor a · a, i. e., every a in u is followed by a b, then we need to use
a different argumentation. We note that in h(α3) the factors a · bn · a · b and
a ·bn′ ·bn ·a ·b occur. Furthermore, since h(x3) is either empty or it starts with
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b, we can also conclude that the factor a ·bn′ ·a ·b occurs in h(α3). We can now
observe that if n is even or n′ is even, then h(α3) ∈ L(r). Furthermore, if n is
odd and n′ is odd, then n + n′ is even and, thus, h(α3) ∈ L(r). Consequently,
for all possible cases, h(α3) ∈ L(r), which implies that LE,Σ2

(α3) ⊆ L(r).
2(Claim)

Claim. LNE,Σ2
(α3) /∈ REG.

Proof (Claim). We assume that LNE,Σ2(α3) is a regular language and we define
w := b · a · bna · bna · a · b · b · b · a ∈ LNE,Σ2

(α3), where n is greater than the
constant of Pumping Lemma 2 with respect to LNE,Σ2

(α3) and n is odd. By

pumping, we can produce a word w′ := b · a · bna · bn′a · a · b · b · b · a, where
n < n′ and n′ is odd. Now we can note that in w′ there is no factor of the form
a · vv · a, v ∈ Σ+

2 . Thus, w′ /∈ LNE,Σ2
(α3), which contradicts Pumping Lemma

2. 2(Claim)

Claim. LE,Σ≥3
(α3) /∈ REG.

Proof (Claim). This claim can be proved analogously to the claim LE,Σ≥3
(α2) /∈

REG. 2(Claim)

This concludes the proof of the proposition. 2

We call two patterns α, β ∈ (Σ2∪X)∗ almost identical if and only if |α| = |β|
and, for every i, 1 ≤ i ≤ |α|, α[i] 6= β[i] implies α[i], β[i] ∈ Σ2. The above
examples show that even for almost identical patterns α and β, we can have the
situation that α describes a regular and β a non-regular language. Even if α
and β are almost identical and further satisfy |α|a = |β|a and |α|b = |β|b, then
it is still possible that α describes a regular and β a non-regular language (cf.
Proposition 10 above). This implies that the regular E-pattern languages over
an alphabet with size 2 require a characterisation that caters for the exact order
of terminal symbols in the patterns.

The examples considered in Propositions 9 and 11 mainly consist of factors
of the form d · xx · d′, d, d′ ∈ Σ2, where x does not have any other occurrence
in the pattern. Hence, it might be worthwhile to investigate the question of
whether or not patterns can also describe regular languages if we allow them
to contain factors of the form d · xk · d′, where k ≥ 3 and there is no other
occurrence of x in the pattern. In the next result, we state that if a pattern
α contains a factor d · xk · d′ with d = d′, k ≥ 3 and |α|x = k, then, for every
Z ∈ {E,NE}, its Z-pattern language with respect to any alphabet of size at least
2 is not regular and, furthermore, for alphabets of size at least 3, we can show
that this also holds for d 6= d′.

Theorem 12. Let Σ and Σ′ be terminal alphabets with {a, b} ⊆ Σ and {a, b, c} ⊆
Σ′. Let α := α1 · a · zl · a · α2, let β := β1 · a · zl · c · β2, where z ∈ X,
α1, α2 ∈ ((Σ∪X) \ {z})∗, β1, β2 ∈ ((Σ′ ∪X) \ {z})∗ and l ≥ 3. Then, for every
Z ∈ {E,NE}, LZ,Σ(α) /∈ REG and LZ,Σ′(β) /∈ REG.
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Proof. We first prove that LNE,Σ(α) /∈ REG. Let k be the constant of Pump-
ing Lemma 1 with respect to LNE,Σ(α) and let h be the substitution defined by

h(z) := bk
′ · a · b, where k′ ≥ k, k′ mod l = 1, and h(x) := b, x ∈ var(α) \ {z}.

We can note that w := h(α) = u ·a · (bk′ ·a ·b)l ·a ·v, where u and v equal h(α1)
and h(α2), respectively. Obviously, |w| ≥ k and w ∈ LNE,Σ(α). We shall now
show that for every factorisation w = v1 ·v2 ·v3 with |v1v2| ≤ k and v2 6= ε, there
exists a t ∈ N0 such that v1 · vt2 · v3 /∈ LNE,Σ(α), which, by Pumping Lemma 1,
proves that LNE,Σ(α) is not regular. We first note that |v1v2| ≤ k and v2 6= ε
implies that

� v2 = u′, where u′ is a factor of u with 1 ≤ |u′| ≤ k or

� v2 = u′ · a · bi, where u′ is a suffix of u and 0 ≤ i ≤ k − (|u′|+ 1) or

� v2 = bi, where 1 ≤ i ≤ k − (|u|+ 1).

We first consider the case that v2 = bi, 1 ≤ i ≤ k − (|u|+ 1), and, furthermore,
we assume that i is a multiple of l, which implies that k′ − i is not a multiple
of l, since k′ is not a multiple of l. Next, we consider the word v1 · v0

2 · v3 =
u·a·bk′−i ·a·b·(bk′ ·a·b)l−1 ·a·v. We want to show that v1 ·v0

2 ·v3 /∈ LNE,Σ(α). To
this end, we first note that if there exists a substitution g with g(α) = v1 ·v0

2 ·v3,
then, since u and v are obtained by substituting all variables of α1 and α2 by a
word of length 1, u must be a prefix of g(α1) and v must be a suffix of g(α2).
This implies that, in order to conclude v1 · v0

2 · v3 /∈ LNE,Σ(α), it is sufficient to

show that every factor of the form a · w · a, w ∈ Σ∗, of a · bk′−i · a · b · (bk′ · a ·
b)l−1 · a is not of the form a · (w′)l · a, w′ ∈ Σ∗. We first note that the factor
a ·bk′−i ·a ·b · (bk′ ·a ·b)l−1 ·a is obviously not of this form. For all other factors
a ·w · a of a · bk′−i · a · b · (bk′ · a · b)l−1 · a, where |w|a ≥ 1, we have |w|a ≤ l− 1,
thus, they cannot be of the form a · (w′)l · a, w′ ∈ Σ∗, either. Consequently, it
remains to take a closer look at the factors a · w · a, where |w|a = 0. We can
observe that for these factors the length of w is either k′ + 1, k′ − i or 1, and,
since l ≥ 3, neither k′ + 1, k′ − i nor 1 is a multiple of l. This implies that
these factors are also not of the form a · (w′)l · a, w′ ∈ Σ∗, which proves that
v1 · v0

2 · v3 /∈ LNE,Σ(α).
Next, we consider the case that v2 = bi, where i is not a multiple of l. Now

if k′ − i is not a multiple of l, then we can show in exactly the same way as
before that v1 · v0

2 · v3 /∈ LNE,Σ(α). If, on the other hand, k′ − i is a multiple of
l, then, since k′ mod l = 1, we can conclude that i mod l = 1 and, thus, k′+ i
mod l = 2. We now consider the word v1·v2

2 ·v3 = u·a·bk′+i·a·b·(bk′ ·a·b)l−1·a·v.
As demonstrated above, k′+ i is not a multiple of l and, thus, we can apply the
same argumentation as before in order to show that v1 · v2

2 · v3 /∈ LNE,Σ(α).
In order to conclude the proof, we have to consider the case that v2 = u′,

where u′ is a factor of u with 1 ≤ |u′| ≤ k and the case that v2 = u′ · a · bi,
where u′ is a suffix of u and 0 ≤ i ≤ k − (|u′| + 1). We first assume that
v2 = u′ with u = q1 · u′ · q2, 1 ≤ |u′| ≤ k, and consider the word v1 · v0

2 · v3 :=
q1 · q2 ·a · (bk

′ ·a ·b)l ·a ·v. If there exists a substitution g with g(α) = v1 ·v0
2 ·v3,

then, since |q1 · q2| < |u|, we can conclude that q1 · q2 · a is a prefix of g(α1),
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which implies that, in order to conclude v1 · v0
2 · v3 /∈ LNE,Σ(α), it is sufficient

to show that every factor a · w · a, w ∈ Σ∗ of (bk
′ · a · b)l · a is not of the form

a · (w′)l · a, v ∈ Σ∗. This can be easily seen, since |(bk′ · a · b)l · a|a ≤ l+ 1 and,
for every factor of the form a · w · a, where |w|a = 0, we can observe that |w|
equals either k′ + 1 or 1, and, since l ≥ 3, neither of these is a multiple of l. If
v2 = u′ · a · bi, where u′ is a suffix of u and 0 ≤ i ≤ k − (|u′|+ 1), then we can
argue analogously. This proves that for every factorisation w = v1 · v2 · v3 with
|v1v2| ≤ k and v2 6= ε, there exists a t ∈ N0 such that v1 · vt2 · v3 /∈ LNE,Σ(α),
which, by Pumping Lemma 1, implies that LNE,Σ(α) is not regular.

It can be shown analogously that LE,Σ(α) /∈ REG. The only difference of
the prove is that the substitution h erases all variables of α1 and α2 instead
of substituting them by b. This is necessary to be able to assume that for any
other substitution g, h(α1) must be a prefix of g(α1) and h(α2) must be a suffix
of g(α2).

It remains to show that LNE,Σ′(β) /∈ REG and LE,Σ′(β) /∈ REG. We shall
first show that LNE,Σ′(β) /∈ REG. Let k be the constant of Pumping Lemma 2
with respect to LNE,Σ′(β) and let h be the substitution defined by h(z) := bk ·a
and h(x) := b, x ∈ var(β)\{z}. We can note that w := h(β) = u·a·(bk ·a)l ·c·v,
where u and v equal h(β1) and h(β2), respectively. Obviously, |w| ≥ k and
w ∈ LNE,Σ′(β). By applying Pumping Lemma 2, we can obtain a word w′ :=

u ·a ·bk′ ·a · (bk ·a)l−1 ·c ·v with k < k′. We shall now show that w′ /∈ LNE,Σ′(β).
To this end, we first note that if there exists a substitution g with g(β) = w′,
then, since u and v are obtained by substituting all variables of β1 and β2 by a
word of length 1, u must be a prefix of g(β1) and v must be a suffix of g(β2).
This implies that, in order to conclude w′ /∈ LNE,Σ′(β), it is sufficient to show

that every factor of the form a ·w · c, w ∈ Σ′+, in a · bk′ · a · (bk · a)l−1 · c is not
of the form a · (w′)l · c, w′ ∈ Σ′+. It is easy to see that a · bk′ · a · (bk · a)l−1 · c is
not of this form and for all other factors of the form a ·w · c, w ∈ Σ′+, we have
|w|a ≤ l − 1, which implies that w cannot be of the form (w′)l, w′ ∈ Σ′+. This
implies that w′ /∈ LNE,Σ′(β) and, thus, LNE,Σ′(β) /∈ REG.

It can be shown analogously that LE,Σ′(β) /∈ REG. The only difference of
the prove is that the substitution h erases all variables of β1 and β2 instead of
substituting them by b. 2

In the examples of Propositions 9, 10 and 11 as well as in the above theorem,
we did not consider the situation that two occurrences of the same variable are
separated by a terminal symbol. In the next result, we state that, in certain
cases, this situation implies non-regularity of pattern languages.

Proposition 13. Let Σ and Σ′ be terminal alphabets with |Σ| ≥ 2 and |Σ′| ≥ 3
and let Z ∈ {E,NE}. Furthermore, let α1 ∈ (Σ ∪ X)∗ and α2 ∈ (Σ′ ∪ X)∗ be
patterns.

1. If there exists a γ ∈ (Σ∪X)∗ with | var(γ)| ≥ 1 such that, for some d ∈ Σ,

� α1 = γ · d · δ and var(γ) ⊆ var(δ),

� α1 = γ · d · δ and var(δ) ⊆ var(γ) or
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� α1 = β · d · γ · d · δ and var(γ) ⊆ (var(β) ∪ var(δ)),

then LZ,Σ(α1) /∈ REG.
2. If in α2 there exists a non-empty variable block, all the variables of which

also occur outside this block, then LZ,Σ′(α2) /∈ REG.

Proof. We first prove point 1 of the proposition. To this end, we assume
that LNE,Σ(α) is a regular language. Furthermore, we assume that for α one
of the three cases described in point 1 is satisfied with d = b. Let w be the
word obtained from α by substituting all variables in var(γ) by an, where n
is the constant of Pumping Lemma 2 with respect to LNE,Σ(α), and all other
variables by a. By applying Pumping Lemma 2, we can obtain a word w′ from
w by pumping the part that results from γ without pumping the other parts of
the word. Since every variable of γ occurs in the other parts as well, and since
we only substituted the variables that do not occur in γ by a, we can conclude
that w′ is not in LNE,Σ(α), which proves that LNE,Σ(α) /∈ REG. Furthermore,
the above proof can be applied in exactly the same way in order to show that
LE,Σ(α1) /∈ REG.

Point 2 of the proposition can be proved analogously. If in α2 there exists
a variable block, all the variables of which also occur outside this block, then
we can substitute all variables in this block by an, where n is the constant of
Pumping Lemma 2 with respect to LNE,Σ′(α) and, since |Σ′| ≥ 3, we can assume
that the variable block is not delimited by a to either side. Furthermore, we
substitute all variables that do not occur in the variable block by a. Now we can
show in exactly the same way as before that the thus obtained word is not in
LNE,Σ′(α), which proves LNE,Σ′(α) /∈ REG and LE,Σ′(α) /∈ REG can be shown
in exactly the same way. 2

We conclude this section by referring to the examples presented in Proposi-
tions 9, 10 and 11, which, as described above, suggest that complete character-
isations of the regular E-pattern languages over small alphabets might be ex-
tremely complex. In the next section, we wish to find out about the fundamental
mechanisms of the above example patterns that are responsible for the regular-
ity of their pattern languages. Intuitively speaking, some of the above example
patterns describe regular languages, because they contain a factor that is less
complex than it seems to be, e. g., for the pattern β := x1 ·a·x2x2 ·a·x3x3 ·b·x4 it
can be shown that the factor a·x2x2 ·a·x3x3 ·b could be replaced by a·x(bb)∗ ·a·b
(where x(bb)∗ is a special variable that can only be substituted by a unary string
over b of even length) without changing its E-pattern language with respect to
Σ2. This directly implies that LE,Σ2

(β) = L(Σ∗2 · a(bb)∗ab · Σ∗2), which shows
that LE,Σ2

(β) ∈ REG. In the next section, we generalise this observation.

4. Regularity of E-Pattern Languages: A Sufficient Condition Taking
Terminal Symbols into Account

In this section we investigate the phenomenon that a whole factor in a pat-
tern can be substituted by a less complex one, without changing the corre-
sponding pattern language. This technique can be used in order to show that
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a complicated pattern is equivalent to one that can be easily seen to describe a
regular language.

For the sake of a better presentation of our results, we slightly redefine
the concept of patterns. A pattern with regular expressions is a pattern that
may contain regular expressions. Such a regular expressions is then inter-
preted as a variable with only one occurrence that can only be substituted
by words described by the corresponding regular expression. For example
LE,Σ2

(x1b
∗x1a

∗) = {h(x1x2x1x3) | h is a substitution with h(x2) ∈ L(b∗), h(x3) ∈
L(a∗)}. Obviously, patterns with regular expressions exceed the expressive
power of classical patterns. However, we shall use this concept exclusively in the
case where a classical pattern is equivalent to a pattern with regular expressions.
For example, the pattern x1 · a · x2x3x3x2 · a · x4 is equivalent to the pattern
x1 · a(bb)∗a · x2 (see Lemma 16).

Next, we present a lemma that states that in special cases whole factors of a
pattern can be removed without changing the corresponding pattern language.

Lemma 14. Let α := β·y·β′·a·γ·b·δ′·z·δ, where β, δ ∈ (Σ2∪X)∗, β′, γ, δ′ ∈ X∗,
y, z ∈ X and |α|y = |α|z = 1. Then LE,Σ2

(α) ⊆ LE,Σ2
(β · y · ab · z · δ). If,

furthermore, var(β′·γ·δ′)∩var(β·δ) = ∅, then also LE,Σ2
(β·y·ab·z·δ) ⊆ LE,Σ2

(α).

Proof. Let h be an arbitrary substitution. We obtain a substitution g from h in
the following way. For every x ∈ var(β ·δ)\{y, z}, we define g(x) := h(x). If the
last symbol in h(γ) is a, then we define g(y) := h(y ·β′) ·a ·h(γ)[1, |h(γ)|−1] and
g(z) := h(δ′ · z). If the first symbol in h(γ) is b, then we define g(y) := h(y · β′)
and g(z) := h(γ)[2, |h(γ)|] · b · h(δ′ · z). If the last symbol in h(γ) is b and the
first symbol in h(γ) is a, then h(γ) = u ·a ·b ·v, u, v ∈ Σ∗2. In this case, we define
g(y) := h(y ·β′) ·a ·u and g(z) := v ·b ·h(δ′ ·z). We observe that in all these cases
we have g(β · y · a · b · z · δ) = h(α) and, thus, LE,Σ2

(α) ⊆ LE,Σ2
(β · y · a · b · z · δ).

Next, we assume further that var(β′ · γ · δ′) ∩ var(β · δ) = ∅. Let g be a
substitution. Obviously, g(β · y · a · b · z · δ) = h(α), where h(x) := g(x) if
x ∈ (var(β · δ)∪ {y, z}) and h(x) := ε otherwise. This implies LE,Σ2

(β · y · a · b ·
z · δ) ⊆ LE,Σ2

(α). 2

The fact that LE,Σ2
(x1 · a · x2x2 · b · x3) ∈ REG, which has already been

stated in Proposition 9, is a simple application of Lemma 14, which implies
LE,Σ2

(x1 ·a ·x2x2 ·b ·x3) = LE,Σ2
(x1 ·ab ·x3). It is straightforward to construct

more complex applications of Lemma 14 and it is also possible to apply it in an
iterative way. For example, by applying Lemma 14 twice, we can show that

LE,Σ2
(x1x2x3 · a · x2x4 · b · x3x4x5x6 · b · x6x7 · a · x7x8 · b · x9 · a · x10) =

LE,Σ2
(x1 · ab · x5x6 · b · x6x7 · a · x7x8 · b · x9 · a · x10) =

LE,Σ2
(x1 · ab · x5 · ba · x8 · b · x9 · a · x10) ∈ REG .

In the previous lemma, it is required that the factor γ is delimited by different
terminal symbols and, in the following, we shall see that an extension of the
statement of Lemma 14 for the case that γ is delimited by the same terminal
symbols, is much more difficult to prove.
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Roughly speaking, Lemma 14 holds due to the following reasons. Let α :=
y ·β′ ·a · γ ·b · δ′ · z be a pattern that satisfies the conditions of Lemma 14, then,
for any substitution h (with respect to Σ2), h(α) necessarily contains the factor
ab. Conversely, since y and z are variables with only one occurrence and there
are no terminals in β′ · γ · δ′, α can be mapped to every word that contains the
factor ab. On the other hand, for α′ := y · β′ · a · γ · a · δ′ · z, h(α′) does not
necessarily contain the factor aa and it is not obvious if the factor β′ ·a ·γ ·a · δ′
collapses to some simpler structure, as it is the case for α. In fact, Theorem 12
states that if β′ = δ′ = ε and γ = x3, then LE,Σ2

(α′) /∈ REG.
However, by imposing a further restriction with respect to the factor γ, we

can extend Lemma 14 to the case where γ is delimited by the same terminal
symbol. In order to prove this result, the next lemma is crucial, which states that
for any terminal-free pattern that is delimited by two occurrences of symbols a
and that has an even number of occurrences for every variable, if we apply any
substitution to this pattern, we will necessarily obtain a word that contains a
unary factor over b of even length that is delimited by two occurrences of a.

Lemma 15. Let α ∈ X∗ such that, for every x ∈ var(α), |α|x is even. Then
every w ∈ LE,Σ2

(a · α · a) contains a factor ab2na, n ∈ N0.

Proof. First, we introduce the following definition that is convenient for this
proof. A factor of the form abna, n ∈ N0, is called a b-segment. If n is even,
then abna is an even b-segment and if n is odd, then abna is an odd b-segment.
In a word w ∈ {a, b}∗, b-segments that share exactly one occurrence of symbol
a are considered to be distinct b-segments, e. g., in aab2ab4abab7a, there are 5
b-segments, 3 of which are even b-segments.

Before we can prove the statement of the lemma, we first prove the following
claim:

Claim. Let w1 ∈ (a · Σ∗2), w3 ∈ (Σ∗2 · a), w2, v ∈ Σ∗2 and v does not contain any
even b-segment. If w1 · w2 · w3 has an odd number of even b-segments, then
w1 · v · w2 · v · w3 has an odd number of even b-segments as well.

Proof (Claim). We assume that for w1, w2, w3 and v the conditions of the lemma
are satisfied and, for the sake of convenience, we define w := w1 · w2 · w3 and
w′ := w1 ·v ·w2 ·v ·w3. Intuitively, the statement of the lemma can be rephrased
as follows. No matter where the two occurrences of v are inserted into w, the
total number of even b-segments increases or decreases only by an even number.
Since v does not contain any even b-segment, only the (possibly empty) prefix
or suffix over b of v can turn odd b-segments of w in even ones or vice versa.
We shall first consider the case that |w2|a ≥ 1, i. e., w2 contains at least one
occurrence of symbol a, and we recall that, since w1 ∈ (a ·Σ∗2) and w3 ∈ (Σ∗2 ·a),
w1 has a suffix of the form ab∗ and w3 has a prefix of the form b∗a. Furthermore,
since |w2|a ≥ 1, w2 has a prefix of the form b∗a and a suffix of the form ab∗. In
summary, this implies that we can write w′ as

w′ = w′1 · a · bn · v · bn
′
· w′2 · bm · v · bm

′
· a · w′3 ,
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where n, n′,m,m′ ∈ N0, w′2[1] = w′2[−] = a, w1 = w′1 · a · bn, w2 = bn
′ · w′2 · bm

and w3 = bm
′ · a · w′3, and, furthermore,

w = w′1 · a · bn+n′ · w′2 · bm+m′ · a · w′3 .

Obviously, all the even b-segments in the factors w′1 · a, w′2 and a ·w′3 also occur
in w′. Therefore, it is sufficient to compare the number of even b-segments in
the factors a · bn+n′ · a and a · bm+m′ · a with the number of even b-segments in
the factors a · bn · v · bn′ · a and a · bm · v · bm′ · a.

If v = bk, k ∈ N0, then the b-segment a · bn+n′ · a is changed into the
b-segment a · bn+k+n′ · a and the b-segment a · bm+m′ · a is changed into the
b-segment a · bm+k+m′ · a. If k is even, then in w′ we have the same number of
even b-segments as in w, since n + k + n′ is even if and only if n + n′ is even,
and m + k + m′ is even if and only if m + m′ is even. If, on the other hand,
k is odd, then n + k + n′ is even if and only if n + n′ is odd, and m + k + m′

is even if and only if m + m′ is odd. Thus, if n + n′ and m + m′ are both
even or both odd, then the number of even b-segments in w′ has decreased (or
increased, respectively) by 2 compared to the number of even b-segments in w.
If, on the other hand, n+n′ is even and m+m′ is odd or the other way around,
then in w′ there are as many even b-segments as in w. So we can conclude that
if v = bk, k ∈ N0, then the number of even b-segments in w′ is odd.

We shall now assume that there is at least one occurrence of a in v, i. e.,
v = bk · u · bk′ , k, k′ ∈ N0, where u[1] = u[−] = a. This implies

w′ = w′1 · a · bn+k · u · bk
′+n′ · w′2 · bm+k · u · bk

′+m′ · a · w′3 .

In the following we shall show that, for all possible choices of n, n′,m,m′, k, k′ ∈
N0, the number of even b-segments among the b-segments a·bn+k ·a, a·bk′+n′ ·a,
a ·bm+k ·a and a ·bk′+m′ ·a is even if and only if the number of even b-segments
among the b-segments a · bn+n′ · a and a · bm+m′ · a is even. To this end, it is
sufficient to note that if (n+n′) and (m+m′) are both even or both odd, then,
for all possible choices of n, n′,m,m′, k, k′ ∈ N0, either exactly 0, 2 or all 4 of
the numbers (n+ k), (k′ + n′), (m+ k) and (k′ +m′) are even. If, on the other
hand, one number of (n + n′) and (m + m′) is even and the other one is odd,
then, for all possible choices of n, n′,m,m′, k, k′ ∈ N0, either exactly 1 or 3 of
the numbers (n + k), (k′ + n′), (m + k) and (k′ + m′) are even. This directly
implies that the number of even b-segments in w′ is odd, since, by assumption,
the number of even b-segments in w is odd.

It remains to consider the case that w2 = bl, l ∈ N0. We note that this
implies the following.

w′ = w′1 · a · bn · v · bl · v · bm · a · w′3 ,

where n, l,m,∈ N0, w1 = w′1 · a · bn, w2 = bl and w3 = bm · a · w′3, and,
furthermore,

w = w′1 · a · bn+l+m · a · w′3 .
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If v = bk, k ∈ N0, then w′ = w′1 ·a·bn+k+l+k+m ·a·w′3 and, since (n+k+l+k+m)
is even if and only if (n + l + m) is even, we can directly conclude that w′ has
as many even b-segments as w.

If, on the other hand, v = bk ·u ·bk′ , k, k′ ∈ N0, where u[1] = u[−] = a, then

w′ = w′1 · a · bn+k · u · bk
′+l+k · u · bk

′+m · a · w′3 .

Similarly as before, we can show that, for all possible choices of n, l,m, k, k′ ∈
N0, the number of even b-segments among the b-segments a·bn+k ·a, a·bk′+l+k ·a
and a · bk′+m · a is even if and only if a · bn+l+m · a is an odd b-segment. To
this end, it is sufficient to note that if (n+ l+m) is even, then, for all possible
choices of n, l,m, k, k′ ∈ N0, either exactly 1 or all 3 of the numbers (n + k),
(k′ + l + k) and (k′ + m) are even. If, on the other hand, (n + l + m) is odd,
then, for all possible choices of n, l,m, k, k′ ∈ N0, either exactly 0 or 2 of the
numbers (n+ k), (k′ + l + k) and (k′ +m) are even. This directly implies that
the number of even b-segments in w′ is odd, since, by assumption, the number
of even b-segments in w is odd.

Hence, for all possible choices of w1, w2, w3 and v, w′ has an odd number of
even b-segments, which concludes the proof. 2(Claim)

We are now ready to prove the statement of the lemma, i. e., for every
w ∈ LE,Σ2

(a · α · a), w contains an even b-segment. Let h be a substitution
with h(a · α · a) = w. Obviously, if, for some x ∈ var(α), h(x) contains an even
b-segment, then h(a · α · a) contains an even b-segment. Consequently, we only
have to consider the case that, for every x ∈ var(α), h(x) does not contain an
even b-segment.

We can note that there are words u1, u2, . . . , uk, such that u1 = a · a, uk =
h(a · α · a) and, for every i, 2 ≤ i ≤ k, the word ui can be obtained by inserting
two occurrences of a word v into the word ui−1. More precisely, we start with
u1 = a · a and insert two occurrences of h(x1) into u1 in order to obtain u2,

then we repeat this step in order to construct u3 and after
|β|x1

2 such steps we

stop. Next, we do the same for
|β|x2

2 steps with respect to h(x2) and so on.
Clearly, since, for every x ∈ var(α), |α|x is even, this can be done in such a way
that uk = h(a · α · a) is satisfied. Furthermore, since u1 has an odd number
of even b-segments, we can conclude with the above claim that, for every i,
1 ≤ i ≤ k, the word ui has an odd number of even b-segments, which implies
that uk = h(a · α · a) = w has at least one even b-segments. This concludes the
proof. 2

By applying Lemma 15, we can show that if a pattern α := β·y·β′·a·γ·a·δ′·z·δ
satisfies the conditions of Lemma 14, all variables in γ have an even number of
occurrences and there is at least one variable in γ that occurs only twice, then
the factor y · β′ · a · γ · a · δ′ · z can be substituted by a regular expression.

Lemma 16. Let α := β·y·β′·a·γ·a·δ′·z·δ, where β, δ ∈ (Σ2∪X)∗, β′, γ, δ′ ∈ X∗,
y, z ∈ X, |α|y = |α|z = 1 and, for every x ∈ var(γ), |γ|x is even. Then
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LE,Σ2(α) ⊆ LE,Σ2(β ·y·a(bb)∗a·z ·δ). If, furthermore, var(β′ ·γ ·δ′)∩var(β ·δ) = ∅
and there exists a z′ ∈ var(γ) with |α|z′ = 2, then also LE,Σ2(β ·y·a(bb)∗a·z ·δ) ⊆
LE,Σ2

(α).

Proof. Let h be an arbitrary substitution. We first note that we can prove
h(α) ∈ LE,Σ2

(β · y · a · (bb)∗ · a · z · δ) by showing that h(y · β′ · a · γ · a · δ′ · z)
contains a factor of the form a · bn · a, where n is even. We note that Lemma 15
directly implies that h(a · γ · a) contains such a factor. Thus, LE,Σ2

(α) ⊆
LE,Σ2(β · y · a · (bb)∗ · a · z · δ) follows.

In order to prove the second statement of the lemma, we assume that var(β′ ·
γ · δ′) ∩ var(β · δ) = ∅ and there exists a z′ ∈ (var(γ) \ var(β · β′ · δ′ · δ)) with
|γ|z′ = 2. Now let h be an arbitrary substitution and let h(β ·y ·a·(bb)∗ ·a·z ·δ) =
h(β ·y)·a·b2n ·a·h(z ·δ), n ∈ N0. Obviously, h(β ·y ·a·(bb)∗ ·a·z ·δ) = g(α), where,
for every x ∈ (var(β ·δ)∪{y, z}), g(x) := h(x), for every x ∈ var(β′ ·γ ·δ′)\{z′},
g(x) := ε and g(z′) := bn. This implies LE,Σ2(β ·y ·a · (bb)∗ ·a ·z ·δ) ⊆ LE,Σ2(α),
which concludes the proof. 2

Obviously, Lemmas 14 and 16 can also be applied in any order in the iterative
way pointed out above with respect to Lemma 14. We shall illustrate this now
in a more general way. Let α be an arbitrary pattern such that

α := β · y1 · β′1 · a · γ1 · a · δ′1 · z1 · π · y2 · β′2 · b · γ2 · a · δ′2 · z2 · δ ,

with β, π, δ ∈ (Σ2 ∪ X)∗, β′1, β
′
2, γ1, γ2, δ

′
1, δ
′
2 ∈ X∗ and y1, y2, z1, z2 ∈ X. If

the factors y1 · β′1 · a · γ1 · a · δ′1 · z1 and y2 · β′2 · b · γ2 · a · δ′2 · z2 satisfy the
conditions of Lemma 16 and Lemma 14, respectively, then we can conclude that
α is equivalent to α′ := β · y1 · a(bb)∗a · z1 · π · y2 · ba · z2 · δ. This particularly
means that the rather strong conditions

1. var(β′1 · γ1 · δ′1) ∩ var(β · π · β′2 · γ2 · δ′2 · δ) = ∅,
2. var(β′2 · γ2 · δ′2) ∩ var(β · β′1 · γ1 · δ′1 · π · δ) = ∅

must be satisfied. However, we can state that LE,Σ2(α) = LE,Σ2(α′) still holds if
instead of conditions 1 and 2 from above the weaker condition var(β′1 ·γ1 ·δ′1 ·β′2 ·
γ2 ·δ′2)∩var(β ·π ·δ) = ∅ is satisfied. This claim can be easily proved by applying
the same argumentations as in the proofs of Lemmas 14 and 16, and we can
extend this result to arbitrarily many factors of the form yi ·β′i · c1 ·γi · c2 · δ′i · zi,
c1, c2 ∈ Σ2. Next, by the following definition, we formalise this observation in
terms of a relation on patterns with regular expressions.

Definition 2. A pattern with regular expressions α is Σ2-reducible to a pattern
with regular expressions α′ (denoted by α B α′) if and only if the following
conditions are satisfied.

� α contains factors αi ∈ (Σ2∪X)∗, 1 ≤ i ≤ k, where, for every i, 1 ≤ i ≤ k,
αi := yi·β′i·di·γi·d′i·δ′i·zi, with β′i, γi, δ

′
i ∈ X+, yi, zi ∈ X, |α|yi = |α|zi = 1,

di, d
′
i ∈ Σ2 and, if di = d′i, then, for every x ∈ var(γi), |γi|x is even and

there exists an x′ ∈ var(γi) with |α|x′ = 2. Furthermore, the factors
α1, α2, . . . , αk can overlap by at most one symbol and the variables in the
factors α1, α2, . . . , αk occur exclusively in these factors.
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� α′ is obtained from α by substituting every αi, 1 ≤ i ≤ k, by yi · did′i · zi,
if di 6= d′i and by yi · di(d′′i d′′i )∗d′i · zi, d′′i ∈ Σ2, d′′i 6= di, if di = d′i.

By generalising Lemmas 14 and 16, we can prove that if α is Σ2-reducible
to α′, then α and α′ describe the same E-pattern language with respect to Σ2.

Theorem 17. Let α and α′ be patterns with regular expressions. If α B α′,
then LE,Σ2

(α) = LE,Σ2
(α′).

Proof. We assume that α is Σ2-reducible to α′, which implies that α contains
factors αi ∈ (Σ2 ∪X)∗, 1 ≤ i ≤ k, where, for every i, 1 ≤ i ≤ k, αi := yi ·β′i ·di ·
γi ·d′i ·δ′i ·zi, with β′i, γi, δ

′
i ∈ X+, yi, zi ∈ X, |α|yi = |α|zi = 1, di, d

′
i ∈ Σ2 and, if

di = d′i, then, for every x ∈ var(γi), |γi|x is even and there exists an x′ ∈ var(γi)
with |α|x′ = 2. Furthermore, the factors α1, α2, . . . , αk can overlap by at most
one symbol and the variables in the factors α1, α2, . . . , αk occur exclusively
in these factors. Moreover, α′ is obtained from α by substituting every αi,
1 ≤ i ≤ k, by α′i := yi · di · d′i · zi, if di 6= d′i and by α′i := yi · di · (d′′i d′′i )∗ · d′i · zi,
d′′i 6= di, if di = d′i.

By Lemmas 14 and 16, we can conclude that LE,Σ2
(α) ⊆ LE,Σ2

(π1), where
π1 is obtained from α by substituting α1 by α′1. In the same way, we can also
conclude that LE,Σ2(π1) ⊆ LE,Σ2(π2), where π2 obtained from π1 by substituting
α2 by α′2. By repeating this argumentation, LE,Σ2(α) ⊆ LE,Σ2(α′) follows.

It remains to prove that LE,Σ2
(α′) ⊆ LE,Σ2

(α). To this end, let h be an
arbitrary substitution. We shall show that h(α′) ∈ LE,Σ2

(α) by defining a
substitution g that satisfies h(α′) = g(α). First, let A ⊆ {1, 2, . . . , k} be such
that, for every i, 1 ≤ i ≤ k, di = d′i if and only if i ∈ A. Moreover, for every
i ∈ A, let xi be a variable that satisfies xi ∈ var(γi) with |α|xi = 2. Now, for

every x ∈ var(α) \ (
⋃k
i=1 var(β′i · γi · δ′i)), we define g(x) := h(x). For every

x ∈ (
⋃

var(β′i · γi · δ′i) \ {xi | i ∈ A}), we define g(x) := ε. So it only remains to
define g(xi), for every xi ∈ A. To this end, we first note that, for every i ∈ A,
α′i = yi · di · (d′′i d′′i )∗ · d′i · zi. Now, for every i ∈ A, let ni ∈ N0 be such that
h maps (d′′i d

′′
i )∗ to (d′′i )ni . Finally, for every i ∈ A, we define g(xi) := (d′′i )ni .

It can be easily verified that g(α) = h(α′). Thus, LE,Σ2(α′) ⊆ LE,Σ2(α), which
concludes the proof. 2

We conclude this section by discussing a more complex example that illus-
trates how Definition 2 and Theorem 17 constitute a sufficient condition for the
regularity of the E-pattern language of a pattern with respect to Σ2. Let α be
the following pattern.

x1ax2x
2
3bx4x3x5x6︸ ︷︷ ︸

α1:=y1·β′1·a·γ1·b·δ′1·z1

x2
7 x8x9x5x3ax4x5x4x9x10bx11︸ ︷︷ ︸

α2:=y2·β′2·a·γ2·b·δ′2·z2

ax12bx13ax14x15bx
2
15x

2
16bx17︸ ︷︷ ︸

α3:=y3·β′3·a·γ3·b·δ′3·z3

.

By Definition 2, α B β holds, where β is obtained from α by substituting
the above defined factors α1, α2 and α3 by factors x1 · ab · x6, x8 · ab · x11 and
x14 · b(aa)∗b · x17, respectively, i. e.,

β := x1abx6x7x7x8abx11ax12bx13ax14b(aa)∗bx17 .
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Furthermore, by Theorem 17, we can conclude that LE,Σ2(α) = LE,Σ2(β). How-
ever, we can also apply the same argumentation to different factors of α, as
pointed out below:

x1ax2x
2
3bx4x3x5x6x

2
7x8x9x5x3ax4x5x4x9x10︸ ︷︷ ︸

α1:=y1·β′1·a·γ1·b·δ′1·z1

bx11ax12bx13ax14x15bx
2
15x

2
16bx17︸ ︷︷ ︸

α2:=y2·β′2·a·γ2·b·δ′2·z2

.

Now, again by Definition 2, α B β′ is satisfied, where

β′ := x1ax2bax10bx11ax12bx13ax14b(aa)∗bx17 .

Since every variable of β′ has only one occurrence, it can be easily seen that
LE,Σ2

(β′) ∈ REG and, by Theorem 17, LE,Σ2
(α) ∈ REG follows.

5. Conclusions and Further Research Directions

In this paper, we have investigated the phenomenon of regular and context-
free pattern languages over alphabets of size 2 or 3. In Section 3, we have
pointed out by Theorem 7 that having at least one variable with only one
occurrence is a necessary condition for a pattern to define a regular language.
Regarding context-free languages, Theorem 8 states the same result, but only
with respect to alphabets of size at least 3. In conjunction with the insights
produced by Jain et al. [9], the difficult cases of the phenomenon of regular
E-pattern languages have therefore been narrowed down to patterns with at
least one terminal, with at least one variable with only one occurrence and with
respect to alphabets of size 2 or 3. In the remainder of Section 3, numerous
examples of such patterns have been provided, and we have shown how the
interaction between the single occurrence variables and the terminal symbols
can cause complicated structures in the pattern to collapse to simple structures
in the words of the corresponding pattern language. Then, in Section 4, the
thus gained insights have been generalised to a sufficient condition for a pattern
to describe a regular E-pattern language over a two letter alphabet and it has
been applied in order to demonstrate how rich the class of these patterns seems
to be.

Unfortunately, we are still not able to characterise the class of regular E-
pattern languages over an alphabet of size 2 or any other class of regular
or context-free pattern languages for which characterisations are not already
known.

The largest unsettled questions (which are also stated by Jain et al. [9])
arise with respect to the nonerasing case. In contrast to the E-case, for the
NE-case we do not only lack characterisations of the regular and context-free
pattern languages over small alphabets, but with respect to any fixed alphabet
of size at least 2. In addition to this, the existence of context-free NE-pattern
languages that are not regular is settled only for alphabets of size at most 3 and
is open for larger alphabets.

27



References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46–62, 1980.

[2] C. Bader and A. Moura. A generalization of Ogden’s Lemma. Journal of
the Association for Computing Machinery, 29:404–407, 1982.

[3] J. Bremer and D. D. Freydenberger. Inclusion problems for patterns with
a bounded number of variables. In Proc. 14th International Conference
on Developments in Language Theory, DLT 2010, volume 6224 of Lecture
Notes in Computer Science, pages 100–111, 2010.
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