
A Note on the Complexity of Matching Patterns with Variables

Markus L. Schmid

Fachbereich 4 – Abteilung Informatik, Universität Trier, D-54296 Trier, Germany

Abstract

A word matches a pattern with variables (i. e., a string that contains terminal symbols and variable symbols)
if and only if it can be obtained from the pattern by substituting the variables by terminal words. To decide
for a given word whether or not it matches a pattern with variables is an NP-complete problem, which has
been independently discovered and investigated in different areas of theoretical computer science and which
has applications in various contexts. In this work, we show that the problem of matching patterns with
variables remains NP-complete even if every variable has at most two occurrences. In addition to this, we
show that if patterns can be represented as special kinds of planar graphs, then they can be matched in
polynomial time.

Keywords: Pattern matching with variables, Parameterised pattern matching, NP-complete problems,
Membership problem for pattern languages

1. Matching Patterns with Variables

In the context of this paper, a pattern (with
variables) is a string containing variables from
{x1, x2, x3, . . .} and terminal symbols from a finite
alphabet Σ, e. g., α := x1 ax1 bx2 x2 is a pattern,
where a, b ∈ Σ. A word w over Σ matches a pat-
tern α if and only if w can be derived from α by
uniformly substituting the variables in α by termi-
nal words. The problem of matching patterns with
variables is then to decide for a given pattern and
a given word, whether or not the word matches the
pattern. For example, the pattern α from above is
matched by the word u := bacaabacabbaba, since
substituting x1 and x2 in α by baca and ba, re-
spectively, yields u. On the other hand, α is not
matched by the word v := cbcabbcbbccbc, since v
cannot be obtained by substituting the variables of
α by some words.

Matching patterns with variables is an NP-
complete problem, which, to the knowledge of the
author, has first been introduced and investigated
in 1979 by Angluin [1, 2] and, independently, by
Ehrenfeucht and Rozenberg [3]. In Angluin’s work,

Email address: M.Schmid@lboro.ac.uk (Markus L.
Schmid)

it arises in form of the membership problem for so-
called nonerasing pattern languages, i. e., the set of
all words that can be derived from a specific pattern
by substituting the variables by non-empty words
only. Ehrenfeucht and Rozenberg investigate the
more general problem of deciding on the existence
of a (possibly erasing) morphism between two given
words, which is equivalent to matching patterns
without terminal symbols, where variables can also
be substituted by the empty word. In both [2] and
[3] the NP-completeness of these slightly different
versions of the pattern matching problem described
above is shown by a reduction from 3SAT.

Since their introduction, Angluin’s pattern lan-
guages have been intensely studied in the context
of inductive inference (see, e. g., Angluin [2], Shino-
hara [4], Reidenbach [7, 8] and, for a survey, Ng and
Shinohara [9]). Furthermore, several language theo-
retical aspects of pattern languages – such as their
expressive power and the decidability of their in-
clusion and equivalence problems – have been stud-
ied (see, e. g., Angluin [2], Jiang et al. [10], Ohle-
busch and Ukkonen[11], Freydenberger and Reiden-
bach [12], Bremer and Freydenberger [13]). How-
ever, a detailed investigation of the complexity of
their membership problem has been somewhat ne-
glected. Some of the early work that is worth

Preprint submitted to Elsevier July 12, 2017

mentioning in this regard is by Ibarra et al. [14],
who provide a more thorough worst case complex-
ity analysis, and by Shinohara [15], who shows that
matching patterns with variables can be done in
polynomial time provided that every variable oc-
curs only once in the pattern or the pattern is non-
cross1. Recently, Reidenbach and Schmid [16, 17]
presented more complicated parameters of patterns
that, if bounded by a constant, allow the matching
of patterns to be performed in polynomial time (see
also Schmid [18]).

In the pattern matching community, independent
from Angluin’s work, the problem of matching pat-
terns with variables has been rediscovered by a se-
ries of papers (see Baker [19], Amir et al.[20], Amir
and Nor [21], Clifford et al. [22]). In [22], the NP-
completeness of the problem is shown in a simi-
lar way as done by Angluin [2] and Ehrenfeucht
and Rozenberg [3], i. e., by a reduction from 3SAT.
Furthermore, in [22] it is shown that matching pat-
terns with variables remains NP-complete even if
injectivity is required, i. e., different variables must
be substituted by different words. In [21], moti-
vations for matching patterns with variables can
be found from such diverse areas as software en-
gineering, image searching, DNA analysis, poetry
and music analysis, or author validation.

Another motivation for investigating patterns
with variables are so-called regular expressions with
backreferences or REGEX, for short (see, e. g.,
Câmpeanu et al. [23]), since the problem of match-
ing patterns with variables is a special case of the
matchtest for these REGEX, which is of consider-
able practical importance.

In order to improve the practicability of patterns
with variables it might be helpful to identify prefer-
ably large classes of patterns that can be matched
in polynomial time. For example, every class of
patterns with bounded scope coincidence degree2

is such a class (see [17]). On the other hand, in
order to narrow down the search space where we
have to look for such classes, it is useful to know
preferably small classes of patterns for which the

1A pattern is non-cross if and only if between
any two occurrences of the same variable x no other
variable different from x occurs, e. g., the pattern
ax1 bax1 x2 ax2 x2 x3 x3 bx4 is non-cross, whereas
x1 bx1 x2 bax3 x3 x4 x4 bcx2 is not.

2The scope coincidence degree of a pattern is the maxi-
mum number of intervals that cover a common position in
the pattern, where each interval is given by the leftmost and
rightmost occurrence of a variable in the pattern.

matching problem remains NP-complete. For ex-
ample, from the NP-completeness proof of Ehren-
feucht and Rozenberg [3] it follows that matching
patterns with variables is NP-complete even if the
terminal alphabet has a cardinality of at most 2.

In this paper we present one result of each of
the two above described types. More precisely, we
show that the problem of matching patterns with
variables remains NP-complete even if every vari-
able has at most two occurrences. Furthermore, we
identify classes of patterns that can be represented
as a special kind of planar graphs and show that
these can be matched in polynomial time.

2. Definitions

Let N := {1, 2, 3, . . .}. For an arbitrary alphabet
A, a word (over A) is a finite sequence of symbols
from A, and ε is the empty word. The notation A+

denotes the set of all nonempty words over A, and
A∗ := A+∪{ε}. For the concatenation of two words
w1, w2 we write w1w2. We say that a word v ∈ A∗
is a factor of a word w ∈ A∗ if there are u1, u2 ∈ A∗
such that w = u1 v u2. The notation |K| stands for
the size of a set K or the length of a word K.

Let X := {x1, x2, x3, . . .} and every x ∈ X is a
variable. Let Σ be a finite alphabet of terminals.
Every α ∈ (X ∪Σ)+ is a pattern and every w ∈ Σ∗

is a (terminal) word. For any pattern α, we refer
to the set of variables in α as var(α) and, for any
variable x ∈ var(α), |α|x denotes the number of
occurrences of x in α.

Let α be a pattern. A substitution (for α) is a
mapping h : var(α)→ Σ∗. For every x ∈ var(α), we
say that x is substituted by h(x) and h(α) denotes
the word obtained by substituting every occurrence
of a variable x in α by h(x) and leaving the termi-
nals unchanged. Let w ∈ Σ∗. A substitution for α
is a match for α and w (or simply match, if α and
w are clear from the context) if h(α) = w is satis-
fied. For example, h(x1) := aba and h(x2) := ba is
a match for x1 ax2 bx2 x1 and abaababbaaba. We
say that a word w matches a pattern α if and only
if there exists a match for α and w. Next, we de-
fine the problem of deciding whether a given word
over some alphabet Σ matches a given pattern from
some set P ⊆ (X ∪ Σ)+ of patterns:

VPATMATCHΣ(P)

Instance: A pattern α ∈ P and a word
w ∈ Σ∗.
Question: Does w match α?

2

The above problem can also be defined without
the dependency on the underlying terminal alpha-
bet Σ, which is implicitly given by the pattern
and the input word. We refer to this problem by
VPATMATCH(P).

As already mentioned before,
VPATMATCHΣ((X ∪ Σ)+) is NP-complete
even for the special case where |Σ| = 2. If |Σ| = 1,
on the other hand, then the problem can be easily
solved in polynomial time. In Section 3, we show
that VPATMATCHΣ(P) is NP-complete, if P
is the set of all patterns that have at most two
occurrences per variable and |Σ| = 2. In Section 4,
large classes P of patterns are identified that
satisfy that VPATMATCHΣ(P) is solvable in
polynomial time regardless of the cardinality of Σ.

Next, we recall some basic concepts of proposi-
tional logic. Every vi, i ∈ N, is a Boolean variable,
for any Boolean variable v, the expression v denotes
the negation of v and any Boolean variable or its
negation is a literal. A clause is a set of literals and
a set of clauses is a Boolean formula in conjunctive
normal form (in CNF, for short). If every clause
has a cardinality of 3, then the Boolean formula is
in 3CNF. A truth assignment for a Boolean formula
C in CNF is a function that maps the variables of
C to either true or false. If, for every clause c in
C, at least one literal in c is assigned true, then the
assignment is satisfying. If, for every clause c in
C, exactly one literal in c is assigned true, then the
assignment is one-satisfying.

The problems to determine for a given Boolean
formula in 3CNF whether it has a satisfy-
ing (one-satisfying) truth assignment is denoted
by 3SAT (1-IN-3 3SAT, respectively). More-
over, by NF 1-IN-3 3SAT we denote the problem
1-IN-3 3SAT with the additional condition that
there is no negated variable in the input formula.
We assume the reader to be familiar with the con-
cept of a polynomial reduction from one problem to
another.

3. Matching Patterns with at Most Two Oc-
currences per Variable

Before we are able to state the main result of
this section, i. e., matching patterns with variables
is NP-complete even for the restricted case where
every variable has at most two occurrences, we
first have to take a closer look at the problems
1-IN-3 3SAT and NF 1-IN-3 3SAT. Schaefer [26]
shows that the former problem is NP-complete and

Garey and Johnson [27] mention that this also holds
for NF 1-IN-3 3SAT, but a formal proof for this
claim is omitted. However, a polynomial reduction
from 1-IN-3 3SAT to NF 1-IN-3 3SAT is straight-
forward: we replace every negated variable v in the
Boolean formula by a new variable v′ and add the
clauses {v, v′, x} and {x, x, y}, where x and y are
new variables with x 6= y. Hence, NF 1-IN-3 3SAT
is NP-complete, since it is obviously in NP.

In the following, let P2 be the set of all patterns
α with |α|x ≤ 2, x ∈ var(α). We are now ready to
prove the main result of this section:

Lemma 1. Let |Σ| = 2. There exists
a polynomial reduction from NF 1-IN-3 3SAT to
VPATMATCHΣ(P2).

Proof. First, we note that the existing reductions
from 3SAT to the problem of matching patterns
with variables given by Angluin [2], Ehrenfeucht
and Rozenberg [3] and Clifford et al. [22] rely on
translating every Boolean variable into a variable
of the pattern. So the main difficulty that we are
facing in the following reduction is that every vari-
able in the pattern cannot occur more than twice
and, thus, occurrences of the same Boolean vari-
ables must be represented by different variables in
the pattern, which then need to be synchronised.

We now define a transformation from instances
of NF 1-IN-3 3SAT into patterns in P2 and words
over Σ. Let C := {c1, c2, . . . , cn} be an instance of
the problem NF 1-IN-3 3SAT that contains exactly
the variables {v1, v2, . . . , vm} and, for the sake of
convenience, we assume the ci to be tuples, which
contain the variables in ascending order with re-
spect to their indices, i. e., a clause {v5, v1, v3} is
represented as (v1, v3, v5). Throughout the follow-
ing definitions, for illustrating our constructions, we
shall use the example formula

{(v2, v3, v4), (v1, v2, v3), (v1, v3, v4)} .

First, we transform C into C ′ := {c′1, c′2, . . . , c′n} by
relabelling the variables in C in such a way that the
jth occurrence of variable vi is replaced by vi,j . For
our example above, this leads to

{(v2,1, v3,1, v4,1), (v1,1, v2,2, v3,2), (v1,2, v3,3, v4,2)} .

For every i, 1 ≤ i ≤ m, let oi be the number of
occurrences of variable vi in C.

For the sake of convenience, in this proof we as-
sume that {xi,j | i, j ∈ N} ⊆ X and, without loss of

3

generality, we define Σ := {a, b}. Next, we trans-
form every c′i, 1 ≤ i ≤ n, into a pattern βi in the
following way. Let c′i = (vi1,j1 , vi2,j2 , vi3,j3). Then
we define βi := xi1,j1 xi2,j2 xi3,j3 . Furthermore, let
β := β1 bβ2 b · · · bβn and let u := a1 b a2 b · · · b an,
where, for every i, 1 ≤ i ≤ n, ai = a. With respect
to our example, this means

β = x2,1 x3,1 x4,1 bx1,1 x2,2 x3,2 bx1,2 x3,3 x4,2 ,

u = a b a b a .

Obviously, if there exists a match for u and β, then
it substitutes every variable in β by either a or ε.
The general idea of the reduction is that the substi-
tution of a variable by a means that the correspond-
ing Boolean variable is assigned true, whereas the
substitution by ε means that it is assigned false.
Since two variables xi,j , xi,j′ , j 6= j′, correspond
to the same Boolean variable vi in C, we have to
make sure that they cannot be substituted by dif-
ferent strings. This is the purpose of the remaining
part of the construction. For every i, 1 ≤ i ≤ m,
we define

γi := zi bxi,1 xi,2 · · · xi,oi b z′i ,
wi := baoibb ,

where, for every i, 1 ≤ i ≤ m, the zi, z
′
i are distinct

variables different from the variables xi,j , 1 ≤ i ≤
m,1 ≤ j ≤ oi. Finally, we define the pattern α and
the word w by

α := β ab3a γ1 ab
4a γ2 ab

5a · · · abm+2a γm ,

w := u ab3aw1 ab
4aw2 ab

5a · · · abm+2awm .

Referring to our example from above, this means
that

α = x2,1 x3,1 x4,1 bx1,1 x2,2 x3,2 bx1,2 x3,3 x4,2

ab3a z1 bx1,1 x1,2 b z
′
1 ab

4a z2 bx2,1 x2,2 b z
′
2

ab5a z3 bx3,1 x3,2 x3,3 b z
′
3 ab

6a z4 bx4,1 x4,2 b z
′
4 ,

w = ababa ab3a ba2bb ab4a ba2bb ab5a ba3bb

ab6a ba2bb ,

This concludes the definition of the transformation
and the following claim establishes that it is a re-
duction.

Claim. The word w matches α if and only if there
exists a one-satisfying truth assignment for C.

Proof (Claim). We begin with the only if direction
and assume that there exists a match h for α and

w. For every i, 1 ≤ i ≤ m, there exists exactly
one occurrence of the factor abi+2a in α and in w,
which directly implies that h(β) = u and, for every
i, 1 ≤ i ≤ m, h(γi) = wi. From h(β) = u, we can
conclude that, for every i, 1 ≤ i ≤ m, h(βi) = a

holds, which directly implies that, for every j, 1 ≤
j ≤ oi, h(xi,j) ∈ {a, ε}.

Now we assume that, for some i, 1 ≤ i ≤ m,
the word h(xi,1 xi,2 · · ·xi,oi) is not of form aoi or
ε. This implies that there is a factor bakb in h(γi),
where 0 < k < oi. This is a contradiction, since
h(γi) = wi and there is no such factor in wi =
baoibb. Consequently, for every i, 1 ≤ i ≤ m, either
h(xi,j) = a for every j, 1 ≤ j ≤ oi, or h(xi,j) = ε
for every j, 1 ≤ j ≤ oi.

We can now construct a truth assignment for C
in the following way. For every i, 1 ≤ i ≤ m, value
true is assigned to variable vi in C if h(xi,1) = a

and false is assigned if h(xi,1) = ε. Now let ci be
an arbitrary clause of C. If k, 0 ≤ k ≤ 3, of the
variables in ci are assigned true, then this implies
that h(βi) = ak. Since h(βi) = a holds, we can
conclude that exactly one of the variables in ci must
be assigned true, which implies that the assignment
for C is one-satisfying. This concludes the proof of
the only if direction.

Next, we prove the if direction of the claim.
To this end, we assume that there exists a one-
satisfying truth assignment for C. We construct
now a match h for α and w. For every i, 1 ≤ i ≤ m,
if variable vi is assigned true, then, for every j,
1 ≤ j ≤ oi, we define h(xi,j) := a and if, on the
other hand, variable vi is assigned false, then, for
every j, 1 ≤ j ≤ oi, we define h(xi,j) := ε. Since in
every clause exactly one variable is assigned value
true, we can conclude that h(β) = u. It only re-
mains to define, for every i, 1 ≤ i ≤ m, h(zi) and
h(z′i) in such a way that h(γi) = wi is satisfied.
This is achieved by the following definitions. For
every i, 1 ≤ i ≤ m, if h(xi,j) = a, 1 ≤ j ≤ oi,
then we define h(zi) := ε and h(z′i) := b, and if
h(xi,j) = ε, 1 ≤ j ≤ oi, then we define h(zi) := baoi

and h(z′i) := ε. These definitions imply that if
h(xi,j) = a, 1 ≤ j ≤ oi, then

h(γi) = h(zi) b a
oi bh(z′i) = b aoi b b = wi

and if h(xi,j) = ε, 1 ≤ j ≤ oi, then

h(γi) = h(zi) b bh(z′i) = b aoi b b = wi .

Consequently, for every i, 1 ≤ i ≤ m, h(γi) = wi is
satisfied, which implies that h(α) = w.

4

q.e.d. (Claim)

We note that, for every i, 1 ≤ i ≤ m, and j,
1 ≤ j ≤ oi, variable xi,j occurs exactly once in β
and once in γi. All the other variables, i. e., vari-
ables zi, z

′
i, 1 ≤ i ≤ m, have only one occurrence

in α. Thus, α ∈ P2. The factors β and u can be
constructed in time linear in the size of C and, for
every i, 1 ≤ i ≤ m, the construction of γi and wi
can be carried out in time that is linear in oi. Since∑m
i=1 oi = O(|C|), α and w can be constructed

in time linear in the size of C. Consequently,
the defined transformation is in fact a polynomial
reduction from the problems NF 1-IN-3 3SAT to
VPATMATCHΣ(P2), which concludes the proof of
the lemma.

Since, for every Σ, VPATMATCHΣ(P2) is in
NP, the NP-completeness of NF 1-IN-3 3SAT and
Lemma 1 directly imply the following Theorem.

Theorem 2. Let |Σ| ≥ 2. VPATMATCHΣ(P2) is
NP-complete.

It should be pointed out that proving the NP-
completeness of VPATMATCH(P2), i. e., the prob-
lem of matching patterns with at most two occur-
rences per variable where the terminal alphabet is
not fixed, is easier than proving Theorem 2, since
in the polynomial reduction of Lemma 1 we can
then use an unbounded number of individual ter-
minal symbols as separators between the γi and
wi factors. However, the reduction of the proof of
Lemma 1 is worth the effort, since it allows us to
conclude the NP-completeness of a much more re-
stricted version of the problem of matching patterns
with variables; thus, we obtain a stronger result.

Regarding the complexity of matching patterns
with variables, we have now identified a borderline
with respect to the number of occurrences per vari-
able and the cardinality of the terminal alphabet:
the problem is solvable in polynomial time if |Σ| = 1
or if every variable occurs at most once, but if both,
the cardinality of Σ and the maximum number of
occurrences per variable is at least 2, then it is al-
ready NP-complete.

4. Matching Planar Patterns

We now summarise a specific encoding of pat-
terns by graphs, which has been introduced in [17]:

Definition 3. Let α := y1 y2 . . . yn, yi ∈ (Σ ∪X),
1 ≤ i ≤ n, be a pattern. The α-graph is the graph
Gα := (V,E), where V := {1, 2, . . . , |α|} and E :=
S ∪M , where S := {{i, i+ 1} | 1 ≤ i ≤ |α|− 1} and
M := {{p, q} | 1 ≤ p < q ≤ |α|, yp ∈ var(α), yp =
yq and yk 6= yp, p < k < q}.

Intuitively speaking, an α-graph is obtained by
treating the positions of α as a path and connecting
each vertex that corresponds to a variable with the
next vertex that corresponds to the same variable.
For example, for x1 x2 x1 x1 x2 x2 x1 the α-graph is
given by Gα := (V,E), where V := {1, 2, . . . , 7} and
E := S ∪M , where S := {{1, 2}, {2, 3}, . . . , {6, 7}}
and M := {{1, 3}, {2, 5}, {3, 4}, {4, 7}, {5, 6}}.

In [17], it has been shown that if patterns have
α-graphs with bounded treewidth (for the concept
of the treewidth see, e. g., Bodlaender [28]), then
they can be matched efficiently:

Lemma 4 (Reidenbach and Schmid [17]). Let P be
a set of patterns and, for every α ∈ P , let Gα be the
α-graph. If {Gα | α ∈ P} has bounded treewidth,
then the problem VPATMATCHΣ(P) can be solved
in polynomial time.

Next, we recall the concept of outerplanar graphs
(see Harary [29]). A graph is called outerplanar
if and only if it can be drawn on the plane in
such a way that no two edges cross each other
and all vertices lie on the exterior face. The
concept of outerplanarity has been generalised by
Baker [30] to k-outerplanarity in the following way.
The 1-outerplanar graphs are exactly the outerpla-
nar graphs and, for every k ≥ 2, a graph is k-
outerplanar if and only if it can be drawn on the
plane and, furthermore, if we remove all vertices on
the exterior face and all their adjacent edges, then
all remaining components are (k − 1)-outerplanar.

In the following, for every pattern α, we say
that α is k-outerplanar if and only if the α-graph
is k-outerplanar. For an arbitrary k ∈ N, it can
be decided in polynomial time whether or not a
given pattern is k-outerplanar. This follows from
results by Hopcroft and Tarjan [31] and Bien-
stock and Monma [32].

Proposition 5. For a given pattern α and a given
k ∈ N, it can be decided in polynomial time whether
α is k-outerplanar.

Proof. For an arbitrary pattern α, the α-graph can
be constructed in polynomial time. Then, by apply-
ing the algorithm given in Hopcroft and Tarjan [31],

5

we can check in polynomial time whether or not the
α-graph is planar. Bienstock and Monma [32] show
that for planar graphs, we can compute in poly-
nomial time the smallest k such that the graph is
k-outerplanar.

In Bodlaender [33] it is shown that the treewidth
of k-outerplanar graphs is bounded by a function of
k:

Theorem 6 (Bodlaender [33]). If G is a k-
outerplanar graph, then tw(G) ≤ 3k − 1.

For every k ∈ N, let Pk-op be the set of k-
outerplanar patterns. By the above results, we can
conclude the following:

Corollary 7. For every constant k ∈ N, the prob-
lem VPATMATCHΣ(Pk-op) is decidable in polyno-
mial time.

Acknowledgements

The author wishes to thank Daniel Reiden-
bach for valuable remarks and suggestions, which
strengthened the results and improved the readabil-
ity of this paper.

References

[1] D. Angluin, Finding patterns common to a set of
strings, in: Proc. 11th Annual ACM Symposium on
Theory of Computing, 1979, pp. 130–141.

[2] D. Angluin, Finding patterns common to a set of
strings, Journal of Computer and System Sciences 21
(1980) 46–62.

[3] A. Ehrenfeucht, G. Rozenberg, Finding a homomor-
phism between two words is NP-complete, Information
Processing Letters 9 (1979) 86–88.

[4] T. Shinohara, Polynomial time inference of extended
regular pattern languages, in: Proc. RIMS Symposium
on Software Science and Engineering, Vol. 147 of Lec-
ture Notes in Computer Science, 1982, pp. 115–127.

[5] S. Lange, R. Wiehagen, Polynomial-time inference of
arbitrary pattern languages, New Generation Comput-
ing 8 (1991) 361–370.

[6] P. Rossmanith, T. Zeugmann, Stochastic finite learning
of the pattern languages, Machine Learning 44 (2001)
67–91.

[7] D. Reidenbach, A non-learnable class of E-pattern lan-
guages, Theoretical Computer Science 350 (2006) 91–
102.

[8] D. Reidenbach, Discontinuities in pattern inference,
Theoretical Computer Science 397 (2008) 166–193.

[9] Y. Ng, T. Shinohara, Developments from enquiries into
the learnability of the pattern languages from positive
data, Theoretical Computer Science 397 (2008) 150–
165.

[10] T. Jiang, A. Salomaa, K. Salomaa, S. Yu, Decision
problems for patterns, Journal of Computer and Sys-
tem Sciences 50 (1995) 53–63.

[11] E. Ohlebusch, E. Ukkonen, On the equivalence problem
for E-pattern languages, Theoretical Computer Science
186 (1997) 231–248.

[12] D. Freydenberger, D. Reidenbach, Bad news on decision
problems for patterns, Information and Computation
208 (2010) 83–96.

[13] J. Bremer, D. D. Freydenberger, Inclusion problems for
patterns with a bounded number of variables, in: Proc.
14th International Conference on Developments in Lan-
guage Theory, DLT 2010, Vol. 6224 of Lecture Notes in
Computer Science, 2010, pp. 100–111.

[14] O. Ibarra, T.-C. Pong, S. Sohn, A note on parsing pat-
tern languages, Pattern Recognition Letters 16 (1995)
179–182.

[15] T. Shinohara, Polynomial time inference of pattern lan-
guages and its application, in: Proc. 7th IBM Sympo-
sium on Mathematical Foundations of Computer Sci-
ence, 1982, pp. 191–209.

[16] D. Reidenbach, M. L. Schmid, A polynomial time match
test for large classes of extended regular expressions, in:
Proc. 15th International Conference on Implementation
and Application of Automata, CIAA 2010, Vol. 6482 of
Lecture Notes in Computer Science, 2011, pp. 241–250.

[17] D. Reidenbach, M. L. Schmid, Patterns with bounded
treewidth, in: Proc. 6th International Conference on
Language and Automata Theory and Applications,
LATA 2012, Vol. 7183 of Lecture Notes in Computer
Science, 2012, pp. 468–479.

[18] M. L. Schmid, On the membership problem for pattern
languages and related topics, Ph.D. thesis, Department
of Computer Science, Loughborough University (2012).

[19] B. S. Baker, Parameterized pattern matching: Algo-
rithms and applications, Journal of Computer and Sys-
tem Sciences 52 (1996) 28–42.

[20] A. Amir, Y. Aumann, R. Cole, M. Lewenstein, E. Po-
rat, Function matching: Algorithms, applications, and
a lower bound, in: Proc. 30th International Colloquium
on Automata, Languages and Programming, ICALP
2003, 2003, pp. 929–942.

[21] A. Amir, I. Nor, Generalized function matching, Jour-
nal of Discrete Algorithms 5 (2007) 514–523.

[22] R. Clifford, A. W. Harrow, A. Popa, B. Sach, Gener-
alised matching, in: Proc. 16th International Sympo-
sium on String Processing and Information Retrieval,
SPIRE 2009, Vol. 5721 of Lecture Notes in Computer
Science, 2009, pp. 295–301.

[23] C. Câmpeanu, K. Salomaa, S. Yu, A formal study of
practical regular expressions, International Journal of
Foundations of Computer Science 14 (2003) 1007–1018.

[24] A. Aho, Algorithms for finding patterns in strings, in:
J. van Leeuwen (Ed.), Handbook of Theoretical Com-
puter Science, Vol. A: Algorithms and Complexity, MIT
Press, 1990, pp. 255–300.

[25] J. E. F. Friedl, Mastering Regular Expressions, 3rd Edi-
tion, O’Reilly, Sebastopol, CA, 2006.

[26] T. J. Schaefer, The complexity of satisfiability prob-
lems, in: Proc. 10th Annual ACM Symposium on The-
ory of Computing, STOC 1978, ACM, 1978, pp. 216–
226.

[27] M. R. Garey, D. S. Johnson, Computers And In-
tractability, W. H. Freeman and Company, 1979.

[28] H. L. Bodlaender, Treewidth: Characterizations, appli-

6

cations, and computations, in: Graph-Theoretic Con-
cepts in Computer Science, Vol. 4271 of Lecture Notes
in Computer Science, 2006, pp. 1–14.

[29] F. Harary, Graph Theory, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1969.

[30] B. S. Baker, Approximation algorithms for np-complete
problems on planar graphs, Journal of the ACM 41
(1994) 153–180.

[31] J. Hopcroft, R. Tarjan, Efficient planarity testing, Jour-
nal of the ACM 21 (1974) 549–568.

[32] D. Bienstock, C. L. Monma, On the complexity of
embedding planar graphs to minimize certain distance
measures, Algorithmica 5 (1990) 93–109.

[33] H. Bodlaender, Classes of graphs with bounded tree-
width, Tech. Rep. RUU-CS-86-22, Department of In-
formation and Computing Sciences, Utrecht University
(1986).

7

