
July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

International Journal of Foundations of Computer Science
© World Scientific Publishing Company

Inside the Class of REGEX Languages

Markus L. Schmid

Fachbereich 4 – Abteilung Informatik, Universität Trier, D-54296 Trier, Germany
M.Schmid@lboro.ac.uk

Received (Day Month Year)

Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

We study different possibilities of combining the concept of homomorphic replacement

with regular expressions in order to investigate the class of languages given by extended

regular expressions with backreferences (REGEX). It is shown in which regard existing
and natural ways to do this fail to reach the expressive power of REGEX. Furthermore,

the complexity of the membership problem for REGEX with a bounded number of

backreferences is considered.

Keywords: Extended Regular Expressions, REGEX, Pattern Languages, Pattern Expres-

sions, Homomorphic Replacement

1. Introduction

Since their introduction by Kleene in 1956 [12], regular expressions have not only

constantly challenged researchers in formal language theory, they also attracted pi-

oneers of applied computer science as, e. g., Thompson [15], who developed one of

the first implementations of regular expressions, marking the beginning of a long

and successful tradition of their practical application (see Friedl [9] for an overview).

In order to suit practical requirements, regular expressions have undergone various

modifications and extensions which lead to so-called extended regular expressions

with backreferences (REGEX for short), nowadays a standard element of most text

editors and programming languages (cf. Friedl [9]). The introduction of these new

features of extended regular expressions has frequently not been guided by theoret-

ically sound analyses and only recent studies have led to a deeper understanding of

their properties (see, e. g., Câmpeanu et al. [5]).

The main difference between REGEX and classical regular expressions is the

concept of backreferences. Intuitively speaking, a backreference points back to an

earlier subexpression, meaning that it has to be matched to the same word the

earlier subexpression has been matched to. For example, r := (1 (a | b)∗)1 c \1 is

a REGEX, where \1 is a backreference to the referenced subexpression in between

the parentheses (1 and)1. The language described by r, denoted by L(r), is the

set of all words wcw, w ∈ {a, b}∗; a non-regular language. Two aspects of REGEX

1

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

2 Markus L. Schmid

deserve to be discussed in a bit more detail.

For the REGEX ((1 a+)1 | b) c \1, if we choose the option b in the alternation,

then \1 points to a subexpression that has not been “initialised”. Normally, such a

backreference is then interpreted as the empty word.

Another particularity appears whenever a backreference points to a subexpres-

sion under a star, e. g., s := ((1 a∗)1 b \1)∗ c \1. One might expect s to define

the set of all words of form (anban)mcan, n,m ≥ 0, but s really describes the set

{an1ban1 an2ban2 · · · anmbanm c anm | m ≥ 1, ni ≥ 0, 1 ≤ i ≤ m} ∪ {c}. This is due

to the fact that the star operation repeats a subexpression several times without

imposing any dependencies between the single iterations. Consequently, in every

iteration of the second star in s, the referenced subexpression (1 a∗)1 is treated

as an individual instance and its scope is restricted to the current iteration. Only

the factor that (1 a∗)1 matches in the very last iteration is then referenced by

any backreference \1 outside the star. This behaviour is often called late binding of

backreferences.

A suitable language theoretical approach to these backreferences is the concept

of homomorphic replacement. For example, the REGEX r can also be given as a

string xbx, where the symbol x can be homomorphically replaced by words from

{a, b}∗, i. e., both occurrences of x must be replaced by the same word. Numerous

language generating devices can be found that use various kinds of homomorphic

replacement. The most prominent example are probably the well-known L systems

(see Kari et al. [11] for a survey), but also many types of grammars as, e. g., Wi-

jngaarden grammars, macro grammars, Indian parallel grammars or deterministic

iteration grammars, use homomorphic replacement as a central concept (cf. Albert

and Wegner [2] and Bordihn et al. [4] and the references therein). Albert and Weg-

ner [2] and Angluin [3] introduced H-systems and pattern languages, respectively,

which both use homomorphic replacement in a more puristic way, without any

grammar like mechanisms. More recent models like pattern expressions (Câmpeanu

and Yu [6]), synchronized regular expressions (Della Penna et al. [13]) and EH-

expressions (Bordihn et al. [4]) are mainly inspired directly by REGEX. While all

these models have been introduced and analysed in the context of formal language

theory, REGEX have mainly been formed by applications and especially cater for

practical requirements. Hence, there is the need in formal language theory to catch

up on these practical developments concerning REGEX and we can note that recent

work is concerned with exactly that task (see, e. g., [5–8]).

The contribution of this paper is to investigate alternative possibilities to

combine the two most elementary components of REGEX, i. e., regular expres-

sions and homomorphic replacement, with the objective of reaching the expressive

power of REGEX as close as possible, without exceeding it. Particularly challeng-

ing about REGEX is that due to the possible nesting of referenced subexpres-

sion the concepts of regular expressions and homomorphic replacement seem to

be inherently entangled and there is no easy way to treat them separately. We

illustrate this with the example t := (1 a∗)1 (2 (b \1)∗)2 \2 \1. The language

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

Inside the Class of REGEX Languages 3

L(t) := {an(ban)m(ban)man | n,m ≥ 0} cannot that easily be described in terms

of a single string with a homomorphic replacement rule, e. g., by the string xyyx,

where x can be replaced by words from {an | n ≥ 0}, and y by words of form

{(ban)m | n,m ≥ 0}, since then we can obtain words an(ban
′
)m(ban

′
)man with

n 6= n′. In fact, two steps of homomorphic replacement seem necessary, i. e., we first

replace y by words from {(bz)n | n ≥ 0} and after that we replace x and z by words

from {an | n ≥ 0}, with the additional requirement that x and z are substituted by

the same word. More intuitively speaking, the nesting of referenced subexpressions

require iterated homomorphic replacement, but we also need to carry on information

from one step of replacement to the next one.

The concept of homomorphic replacement is covered best by so-called pattern

languages as introduced by Angluin [3]. A pattern is a string containing variables

and terminal symbols and the corresponding pattern language is the set of all words

that can be obtained from the pattern by homomorphically replacing the variables

by terminal words. We combine Angluin’s patterns with regular expressions by first

adding the alternation and star operator to patterns and, furthermore, by letting

their variables be typed by regular languages, i. e., the words variables are replaced

with are from given regular sets. Then we iterate this step by using this new class

of languages again as types for variables and so on. We also take a closer look at

pattern expressions, which were introduced by Câmpeanu and Yu in [6]. In [6] many

examples are provided that show how to translate a REGEX into an equivalent

pattern expression and vice versa. It is also stated that this is possible in general,

but a formal proof for this statement is not provided. In the present work we show

that pattern expressions are in fact much weaker than REGEX and they describe

a proper subset of the class of REGEX languages.

On the other hand, pattern expressions still describe an important and natural

subclass of REGEX languages, that has been independently defined in terms of

other models and, as shown in this work, also coincides with the class of languages

resulting from the modification of patterns described above. We then refine the way

of how pattern expressions define languages in order to accommodate the nesting

of referenced subexpressions and we show that the thus obtained class of languages

coincides with the class of languages given by REGEX that do not contain a refer-

enced subexpression under a star.

Finally, we show that the membership problem for REGEX, which, in the unre-

stricted case, is NP-complete, can be solved in polynomial time provided that the

number of different backreferences is restricted.

2. General Definitions

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A, a word

(over A) is a finite sequence of symbols from A, and ε stands for the empty word. The

notation A+ denotes the set of all nonempty words over A, and A∗ := A+∪{ε}. For

the concatenation of two words w1, w2 we write w1 w2. We say that a word v ∈ A∗

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

4 Markus L. Schmid

is a factor of a word w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1 v u2. The

notation |K| stands for the size of a set K or the length of a word K.

We use regular expression as they are commonly defined (see, e. g., Yu [16]). For

the alternation operations we use the symbol “|” and in an alternation (s | t), we

call the subexpressions s and t options. For any regular expression r, L(r) denotes

the language described by r and REG denotes the set of regular languages. Let Σ be

a finite alphabet of terminal symbols and let X := {x1, x2, x3, . . .} be a countably

infinite set of variables with Σ∩X = ∅. For any word w ∈ (Σ∪X)∗, var(w) denotes

the set of variables that occur in w.

3. Patterns with Regular Operators and Types

In this section, we combine the pattern languages mentioned in Section 1 with

regular languages and regular expressions. Let PAT := {α | α ∈ (Σ ∪ X)+} and

every α ∈ PAT is called a pattern. We always assume that, for every i ∈ N, xi ∈
var(α) implies {x1, x2, . . . , xi−1} ⊆ var(α). For any alphabets A,B, a morphism

is a function h : A∗ → B∗ that satisfies h(vw) = h(v)h(w) for all v, w ∈ A∗. A

morphism h : (Σ ∪X)
∗ → Σ∗ is called a substitution if h(a) = a for every a ∈ Σ.

For an arbitrary class of languages L and a pattern α with | var(α)| = m, an L-type

for α is a tuple T := (Tx1
, Tx2

, . . . , Txm
), where, for every i, 1 ≤ i ≤ m, Txi

∈ L

and Txi is called the type language of (variable) xi. A substitution h satisfies T if

and only if, for every i, 1 ≤ i ≤ m, h(xi) ∈ Txi
.

Definition 1. Let α ∈ PAT, let L be a class of languages and let T be an L-

type for α. The T -typed pattern language of α is defined by LT (α) := {h(α) |
h is a substitution that satisfies T }. For any class of languages L, LL(PAT) :=

{LT (α) | α ∈ PAT, T is an L-type for α} is the class of L-typed pattern languages.

We note that {Σ∗}-typed and {Σ+}-typed pattern languages correspond to the

classes of E-pattern languages and NE-pattern languages, respectively, as defined

by Angluin [3] and Shinohara [14]. It is easy to see that LREG(PAT) is contained

in the class of REGEX languages. The substantial difference between these two

classes is that the backreferences of a REGEX can refer to subexpressions that are

not classical regular expressions, but REGEX. Hence, in order to describe larger

classes of REGEX languages, the next step could be to type the variables of patterns

with languages from LREG(PAT) instead of REG and then using the thus obtained

languages again as type languages and so on. However, this approach leads to a

dead end:

Proposition 2. For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

The statement of the above proposition can be easily concluded from the ob-

servation that if a variable x of a pattern α is typed by a typed pattern language

L, then we can as well substitute every occurrence of x in α by β, where β is the

pattern that describes L.

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

Inside the Class of REGEX Languages 5

Proposition 2 demonstrates that typed pattern languages are invariant with

respect to iteratively typing the variables of the patterns, which suggests that in

order to boost the expressive power of typed pattern languages, the regular aspect

cannot completely be limited to the type languages of the variables. This observation

brings us to the definition of PATro := {α | α is a regular expression over (Σ ∪
X ′), where X ′ is a finite subset of X}, the set of patterns with regular operators. In

order to define the language given by a pattern with regular operators, we extend

the definition of types to patterns with regular operators in the obvious way.

Definition 3. Let α ∈ PATro and let T be a type for α. The T -typed pattern

language of α is defined by LT (α) :=
⋃
β∈L(α) LT (β). For any class of languages L,

we define LL(PATro) := {LT (α) | α ∈ PATro, T is an L-type for α}.

Patterns with regular operators are also used in the definition of pattern expres-

sions (see [6] and Section 4) and have been called regular patterns in [4]. We can

show that REG-typed patterns with regular operators are strictly more powerful

than REG-typed patterns without regular operators

Proposition 4. L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ LREG(PATro).

Proof. The inclusions follow by definition and we only have to show that they are

proper. That L{Σ∗}(PAT) ⊂ LREG(PAT) holds follows from the fact that all finite

languages of cardinality at least two are in LREG(PAT) but not in L{Σ∗}(PAT). In

order to show LREG(PAT) ⊂ LREG(PATro), we define α := (x1 cx1 | ε) ∈ PATro

and T := (a+). Clearly, LT (α) = ({an c an | n ∈ N} ∪ {ε}) ∈ LREG(PATro). We

now assume that there exists a pattern β and a REG-type Tr := (Tx1 , Tx2 , . . . , Txm)

for β such that LTr (β) = LT (α). Without loss of generality, we can assume that,

for every i, 1 ≤ i ≤ m, Txi 6= {ε}. Since ε ∈ LTr (β), for every i, 1 ≤ i ≤ m, ε ∈ Txi

and β ∈ X+. Furthermore, if there exists an i, 1 ≤ i ≤ m, such that Txi
contains a

non-empty word u without an occurrence of c, then, by substituting every variable

in β by ε expect xi, which is substituted by u, we can obtain a non-empty word

without an occurrence of c, which is a contradiction. Thus, for every i, 1 ≤ i ≤ m,

and for every non-empty u ∈ Txi
, there is exactly one occurrence of c in u. This

implies that if there is more than one occurrence of a variable in β, then we can

produce a word with at least two occurrences of c. Thus, β = x1 holds. Now, since

we assume LTr (β) = LT (α), it follows that Tx1
= LT (α), which is a contradiction,

since LT (α) is not a regular language. Thus, LT (α) /∈ LREG(PAT).

The invariance of typed patterns – represented by Proposition 2 – does not hold

anymore with respect to patterns with regular operators. Before we formally prove

this claim, we shall define an infinite hierarchy of classes of languages given by typed

patterns with regular operators.

Definition 5. Let Lro,0 := REG and, for every i ∈ N, we define Lro,i :=

LLro,i−1(PATro). Furthermore, we define Lro,∞ =
⋃∞
i=0 Lro,i.

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

6 Markus L. Schmid

It follows by definition, that the classes Lro,i, i ∈ N0, form a hierarchy and we

strongly conjecture that it is proper. However, here we only separate the first three

levels of that hierarchy.

Theorem 6. Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆

Proof. The inclusions follow by definition and Lro,0 ⊂ Lro,1 obviously holds. In

order to prove Lro,1 ⊂ Lro,2, we define L := {(ancan)md(ancan)m | n,m ∈ N} and

first note that L(L1)(x1 dx1) = L, where L1 := L(L(a+))((x1 cx1)+), which shows

that L ∈ Lro,2. We now assume that L ∈ Lro,1 and show that this assumption leads

to a contradiction. If L ∈ Lro,1, then there exists a pattern with regular operators

α and a regular type T := (Tx1
, Tx2

, . . . , Txm
) for α such that LT (α) = L. If L(α)

is finite, then there must exist at least one variable x such that there exists a word

in Tx containing a factor c an
′
c an

′
c, where n′ is greater than the constant of the

pumping lemma 4.2 on page 85 of [16] with respect to the regular language Tx. By

applying the pumping lemma, we can show that in Tx there exists a word containing

a factor c am c am
′
c, m 6= m′, which is a contradiction. Next, we assume that L(α)

is infinite and, without loss of generality, we further assume that α does not contain

any terminal symbols and, for every i, 1 ≤ i ≤ m, Txi
6= {ε}. Since every word of L

contains exactly one occurrence of d, we can conclude that in α there are variables

y1, y2, . . . , yl, l ∈ N, such that, for every i, 1 ≤ i ≤ l, Tyi contains at least one word

with exactly one occurrence of d. Furthermore, for every β ∈ L(α), there exists a

j, 1 ≤ j ≤ l, such that β = δ yj γ and var(δ γ) ∩ {y1, y2, . . . , yl} = ∅. Since L(α) is

infinite, for some j, 1 ≤ j ≤ l, there exists a word δ yj γ in L(α) such that |δ| > k

or |γ| > k, where k is the pumping lemma constant with respect to the regular

language L(α). This implies that δ (or γ, respectively) can be arbitrarily pumped

and, since every type language contains at least one non-empty word, this implies

that there is a word in LT (α) of form u d v with |u| > |v| (or |u| < |v|, respectively),

which is a contradiction. This shows that in fact L /∈ Lro,1.

In the following section, we shall show that the class Lro,∞ coincides with the

class of languages that are defined by the already mentioned pattern expressions

and we formally prove it to be a proper subset of the class of REGEX languages.

4. Pattern Expressions

We define pattern expressions as introduced by Câmpeanu and Yu [6], but we

use a slightly different notation. A pattern expression is a tuple (x1 → r1, x2 →
r2, . . . , xn → rn), where, for every i, 1 ≤ i ≤ n, ri ∈ PATro and var(ri) ⊆
{x1, x2, . . . , xi−1}. The set of all pattern expressions is denoted by PE. Next, we

recall how pattern expressions describe formal languages as defined by Câmpeanu

and Yu [6].

Definition 7. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) ∈ PE. We define

Lp,x1 := L(r1) and, for every i, 2 ≤ i ≤ n, Lp,xi := LTi(ri), where Ti :=

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

Inside the Class of REGEX Languages 7

(Lp,x1
, Lp,x2

, . . . , Lp,xi−1
) is a type for ri. The language generated by p with re-

spect to iterated substitution is defined by Lit(p) := Lp,xn and Lit(PE) := {Lit(p) |
p ∈ PE}.

We illustrate the above definition with the following example pattern expression:

q := (x1 → a∗, x2 → x1(c | d)x1, x3 → x1cx2). By definition, Lit(q) = {akcamuam |
k,m ∈ N0, u ∈ {c, d}}. We particularly note that Definition 7 implies that occur-

rences of the same variable in different elements of the pattern expression do not

need to be substituted by the same word and we shall later see that this behaviour

essentially limits the expressive power of pattern expressions.

As mentioned before, the class of languages described by pattern expressions

with respect to iterated substitution coincides with the class Lro,∞.

Theorem 8. Lro,∞ = Lit(PE).

Proof. We first prove Lit(PE) ⊆ Lro,∞. Let p := (x1 → r1, x2 → r2, . . . , xn → rn)

be a pattern expression and, for every i, 1 ≤ i ≤ n, let the languages Lp,xi
be

defined as in Definition 7. Next, we assume that for some i, 2 ≤ i ≤ n, and for every

j, 1 ≤ j < i, Lp,xj
∈ Lro,j−1. This implies that T := (Lp,x1

, Lp,x2
, . . . , Lp,xi−1

) is an

Lro,i−2-type for ri. Thus, LT (ri) = Lp,xi ∈ Lro,i−1. Since Lp,x1 ∈ Lro,0 obviously

holds, we can conclude by induction that, for every i, 1 ≤ i ≤ n, Lp,xi
∈ Lro,i−1. In

particular, Lit(p) ∈ Lro,∞; thus, Lit(PE) ⊆ Lro,∞ follows.

It remains to show Lro,∞ ⊆ Lit(PE). To this end, we first note that, for every pat-

tern α with regular operators and for every Lit(PE)-type T := (Tx1
, Tx2

, . . . , Txn
)

for α, LT (α) ∈ Lit(PE) holds. This is due to the fact that α and all the pattern

expressions which describe the type languages Txi
, 1 ≤ i ≤ n, can be merged to a

pattern expression p with Lit(p) = LT (α). Since Lro,0 ⊆ Lit(PE), we can conclude

by induction that Lro,∞ ⊆ Lit(PE).

In the following, we define an alternative way of how pattern expressions can

describe languages, i. e., instead of substituting the variables by words in an iterative

way, we substitute them uniformly.

Definition 9. Let p := (x1 → r1, x2 → r2, . . . , xn → rn) ∈ PE. A word w ∈ Σ∗ is

in the language generated by p with respect to uniform substitution (Luni(p), for

short) if and only if there exists a substitution h such that h(xn) = w and, for every

i, 1 ≤ i ≤ n, there exists an αi ∈ L(ri) with h(xi) = h(αi).

It can be verified that, by Definition 9, Luni(q) = {ancanuan | n ∈ N0, u ∈
{c, d}} holds, where q is the pattern expression defined above. For an arbitrary

pattern expression p := (x1 → r1, x2 → r2, . . . , xn → rn), the language Luni(p) can

also be defined in a more constructive way. We first choose a word u ∈ L(r1) and,

for all i, 1 ≤ i ≤ n, if variable x1 occurs in ri, then we substitute all occurrences

of x1 in ri by u. Then we delete the element x1 → r1 from the pattern expression.

If we repeat this step with respect to variables x2, x3, . . . , xn−1, then we obtain a

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

8 Markus L. Schmid

pattern expression of form (xn → r′n), where r′n is a regular expression over Σ. The

language Luni(p) is the union of the languages given by all these regular expressions.

The language Lit(q) can be defined similarly. We first choose a word u1 ∈ L(r1) and

then we substitute all occurrences of x1 in r2 by u1. After that, we choose a new

word u2 ∈ L(r1) and substitute all occurrences of x1 in r3 by u2 and so on until

there are no more occurrences of variable x1 in q and then we delete the element

x1 → r1. Then this step is repeated with respect to x2, x3, . . . , xn−1.

From the above considerations, we can directly conclude the following.

Proposition 10. Let p := (x1 → r1, x2 → r2, . . . , xm → rm) be a pattern

expression. Then Luni(p) ⊆ Lit(p) and if, for every i, j, 1 ≤ i < j ≤ m,

var(ri) ∩ var(rj) = ∅, then also Lit(p) ⊆ Luni(p).

The more interesting question is whether or not the iterative and the uniform

way of defining pattern expression languages are substantially different in terms of

expressive power. Intuitively, for any pattern expression p, it is not essential for

the language Lit(p) that there exist occurrences of the same variable in different

elements of p and it is possible to transform p into an equivalent pattern expression

p′, the elements of which have disjoint sets of variables and, thus, by Proposition 10,

Lit(p) = Luni(p
′), which implies Lit(PE) ⊆ Luni(PE). Hence, for the language gen-

erated by a pattern expression with respect to iterated substitution, the possibility

of using the same variables in different elements of a pattern expression can be con-

sidered as mere syntactic sugar that keeps pattern expressions concise. The more

difficult question whether or not pattern expressions, equipped with uniform sub-

stitution, can define languages that cannot be described by any pattern expression

with respect to iterated substitution, is answered in the positive by the following

lemma.

Lemma 11. There exists a language L ∈ Luni(PE) with L /∈ Lit(PE).

Proof. We define a pattern expression p := (x1 → a+, x2 → (x1 c)+, x3 →
x2 bx1 dx2) and note that Luni(p) = {(anc)m b an d (anc)m | n,m ∈ N}. In order to

conclude the statement of the lemma, it remains to show that Luni(p) /∈ Lit(PE).

To this end, we first prove the following claim:

Claim. Let q be a pattern expression. There exists a pattern expression q′ := (x1 →
t′1, x2 → t′2, . . . , xm′ → t′m′), such that, for every i, 1 ≤ i ≤ m′ − 1, L(t′i) is infinite

and Lit(q) = Lit(q
′).

Proof (Claim). Let q := (x1 → t1, x2 → t2, . . . , xm → tm) be a pattern expression.

We assume that for some l, 1 ≤ l ≤ m − 1, L(tl) := {β1, β2, . . . , βk} is finite and,

for every i, 1 ≤ i < l, L(ti) is infinite. We transform q into a pattern expression

q′′ := (x1 → t′′1 , x2 → t′′2 , . . . , xl−1 → t′′l−1, xl+1 → t′′l+1, . . . , xm → t′′m) in the

following way. For every i, l+1 ≤ i ≤ m, we define t′′i := (ti,1 | ti,2 | . . . | ti,k), where,

for every j, 1 ≤ j ≤ k, ti,j is obtained from ti by substituting every occurrence of

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

Inside the Class of REGEX Languages 9

xl by βj and, for every i, 1 ≤ i ≤ l − 1, we define t′′i := ti. It is straightforward to

see that Lit(q) = Lit(q
′′) and, by repeating this procedure, q can be transformed

into q′ = (x1 → t′1, x2 → t′2, . . . , xm′ → t′m′), where, for every i, 1 ≤ i ≤ m′ − 1,

L(t′i) is infinite and Lit(q) = Lit(q
′). q.e.d. (Claim)

We now assume contrary to the statement of the lemma, that there exists a

pattern expression p′ := (x1 → r1, x2 → r2, . . . , xm → rm) with Lit(p
′) = Luni(p),

which shall lead to a contradiction. For every i, 1 ≤ i ≤ m, let Lp′,xi be the language

as defined in Definition 7. By the above claim, we can also assume that, for every

i, 1 ≤ i ≤ m − 1, L(ri) is infinite. Next, we note that, for every i, 1 ≤ i ≤ m, if

there is a word in Lp′,xi
with an occurrence of b or d, then, for every w ∈ Lp′,xi

,

|w|b = 1 (|w|d = 1, respectively) holds. This follows directly from the fact that, for

every w′ ∈ Luni(p), |w′|b = |w′|d = 1 is satisfied.

Next, we assume that for some l, 1 ≤ l ≤ m, Lp′,xl
contains a word with

an occurrence of b or d and L(rl) is infinite. If Lp′,xl
contains a word with an

occurrence of b, then, as pointed out above, all the words of Lp′,xl
contain exactly

one occurrence of b, which implies that, for every β ∈ L(rl), β = γ z γ′, where either

z = b or z = xj , 1 ≤ j < l, such that all the words of Lp′,xj
contain exactly one

occurrence of b. Moreover, since L(rl) is infinite, we can assume that |γ| or |γ′|
exceeds the pumping lemma constant for the regular language L(rl). Consequently,

by applying the pumping lemma, we can produce a word γ̂ z γ′ ∈ L(rl) with |γ| < |γ̂|
or a word γ z γ̂ ∈ L(rl) with |γ′| < |γ̂|, respectively. Since, without loss of generality,

we can assume that, for every i, 1 ≤ i ≤ m, Lp,xi
6= {ε}, this directly implies that

there exists a word w ∈ Lit(p
′) that is of form w = u b v, where it is not satisfied

that there exist n,m ∈ N with |u| = (n+1)m and |v| = (n+1)m+n+1, which is a

contradiction. If Lp′,xl
contains a word with an occurrence of d and L(rl) is infinite,

then we can obtain a contradiction in an analogous way. Consequently, if any Lp′,xi
,

1 ≤ i ≤ m, contains a word with an occurrence of b or d, then L(ri) is finite. This

particularly implies that Lp′,xm
is finite, since it contains words with b and d, and,

for every i, 1 ≤ i ≤ m − 1, since L(ri) is infinite, Lp′,xi
does not contain a word

with an occurrence of b or d. Hence, without loss of generality, we can assume that

rm := (β1 | β2 | . . . | βk) with βi := γi b γ
′
i d γ

′′
i ∈ PAT, 1 ≤ i ≤ k. Next, for every i,

1 ≤ i ≤ k, and for every j, 1 ≤ j ≤ m− 1, we define L̂i := L(Lp′,x1
,...,Lp′,xm−1

)(βi).

Obviously, Lit(p
′) = L̂1∪L̂2∪. . .∪L̂k. This implies that there must exist at least one

l, 1 ≤ l ≤ k, such that, for every n ∈ N, there exists a word w ∈ L̂l with |w|c > n

and a word w′ ∈ L̂l with w′ = u b an
′
d v, for some n′, n < n′. Thus, in γl there

must occur a variable xj such that the number of occurrences of c is unbounded in

Lp′,xj . Moreover, we can assume that there is also an occurrence of xj in γ′′l , since

otherwise there would be a word in L̂l with a different number of occurrences of c

to the left of b than to the right of d. Similarly, in γ′l there must occur a variable xj′

such that Lp′,xj′ is an infinite unary language over {a}, which particularly implies

that j 6= j′. We note further that in Lp′,xj
, there exists a word u with a factor c an c,

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

10 Markus L. Schmid

for some n ∈ N. We can now obtain β′l by substituting every occurrence of xj in βl
by u. Next, we obtain β′′l from β′l by substituting every occurrence of xj′ by a word

an
′

with n < n′. Next, for every i, 1 ≤ i ≤ m − 1, we substitute all occurrences of

variable xi in β′′l by some word from Lp′,xi
. The thus constructed word is in L̂l, but

not in Luni(p), since it contains both a factor c an c and b an
′′
d with n < n′ ≤ n′′.

This is a contradiction.

From Lemma 11, we can conclude that pattern expressions equipped with uni-

form substitution are more powerful than their iterative version.

Theorem 12. Lit(PE) ⊂ Luni(PE).

We conclude this section by mentioning that by Bordihn et al. in [4], it has been

shown that H∗(REG,REG), a class of languages given by an iterated version of

H-systems (see Albert and Wegner [2] and Bordihn et al. [4]), also coincides with

Lit(PE), which implies Lro,∞ = Lit(PE) = H∗(REG,REG) ⊂ Luni(PE).

In the following section, we compare Luni(PE) to the class of REGEX languages.

5. REGEX

A REGEX is a regular expression, the subexpressions of which can be numbered

by adding an integer index to the parentheses delimiting the subexpression (i. e.,

(n . . .)n, n ∈ N). This is done in such a way that there are no two different

subexpressions with the same number. The subexpression that is numbered by

n ∈ N, which is called the nth referenced subexpression, can be followed by arbitrarily

many backreferences to that subexpression, denoted by \n. A formal definition of

the language described by a REGEX can be found in [5]. Here, we stick to the more

informal definition which has already been briefly outlined in Section 1 and that

we now recall in a bit more detail. Let r be an arbitrary REGEX. The language

described by r, which is denoted by L(r), is defined in a similar way as for classical

regular expressions. The only aspect that needs to be explained in more detail is the

role of referenced subexpressions and backreferences. A word w is in L(r) if and only

if we can obtain it from r in the following way. We move over r from left to right and

produce a word as it is done for a classical regular expression. When we encounter

the ith referenced subexpression, then we store the factor ui that is matched to it

and from now on we treat every occurrence of \i as ui. When we encounter the ith

referenced subexpression for a second time, which is possible since the ith referenced

subexpression may occur under a star, then we overwrite ui with the possible new

factor that is now matched to the ith referenced subexpression. This entails the late

binding of backreferences, which has been described in Section 1. If a backreference

\i occurs and there is no factor ui stored that has been matched to the ith referenced

subexpression, then \i is interpreted as the empty word.

We also define an alternative way of how a REGEX describes a language, that

shall be useful for our proofs. The language with necessarily initialised subexpres-

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

Inside the Class of REGEX Languages 11

sions of a REGEX r, denoted by Lnis(r), is defined in a similar way as L(r) above,

but if a backreference \i occurs and there is currently no factor ui stored that has

been matched to the ith referenced subexpression, then instead of treating \i as the

empty word, we interpret it as the ith referenced subexpression, we store the factor

ui that is matched to it and from now on every occurrence of \i is treated as ui.

For example, let r := ((1 a∗)1 | ε) b \1 b \1. Then L(r) := {anbanban | n ∈ N0} and

Lnis(r) := L(r) ∪ {banban | n ∈ N0}.
We can note that the late binding of backreferences as well as non-initialised

referenced subexpressions is caused by referenced subexpression under a star or in an

alternation. Next, we define REGEX that are restricted in this regard. A REGEX is

alternation confined if and only if all backreferences occur in the same option of the

same alternation as the corresponding referenced subexpression. A REGEX is star-

free initialised if and only if no referenced subexpression occurs under a star. Let

REGEXac and REGEXsfi be the sets of REGEX that are alternation confined and

star-free initialised, respectively, and let REGEXsfi,ac := REGEXac ∩REGEXsfi.

We can show that the condition of being alternation confined does not impose a

restriction on the expressive power of star-free initialised REGEX.

Lemma 13.

L(REGEXsfi) = L(REGEXsfi,ac) = Lnis(REGEXsfi) = Lnis(REGEXsfi,ac).

Proof. Since REGEXsfi,ac ⊆ REGEXsfi, L(REGEXsfi,ac) ⊆ L(REGEXsfi) and

Lnis(REGEXsfi,ac) ⊆ Lnis(REGEXsfi) trivially holds. Moreover, for every r ∈
REGEXsfi,ac, Lnis(r) = L(r) holds, since in this case it is impossible that, while

matching r to some word, a backreference occurs that points to a referenced subex-

pression that has not been initialised. Thus, L(REGEXsfi,ac) = Lnis(REGEXsfi,ac).

In order to conclude the proof, it is sufficient to show that L(REGEXsfi) ⊆
L(REGEXsfi,ac) and Lnis(REGEXsfi) ⊆ Lnis(REGEXsfi,ac).

We first prove that L(REGEXsfi) ⊆ L(REGEXsfi,ac). To this end, let r be a

star-free initialised REGEX that is not alternation confined, which implies that

r contains an alternation (r1 | r2), where in r1 or r2 there occurs a referenced

subexpression that is referenced outside of r1 or r2, respectively. We now obtain

t1 from r by substituting (r1 | r2) by r1 and by deleting all backreferences that

point to a referenced subexpression in r2. In a similar way, we obtain t2 from

r by substituting (r1 | r2) by r2 and by deleting all backreferences that point

to a referenced subexpression in r1. Next, we transform t1 and t2 in t′1 and t′2
by renaming all referenced subexpressions and their corresponding backreferences

such that in t′1 and t′2 there are no referenced subexpressions that are numbered by

the same number. We note that r′ := (t′1 | t′2) is a star-free initialised REGEX that

satisfies L(r) = L(r′). By repeating the above construction, we can transform r into

a REGEX r′′ that is star-free initialised, alternation confined and which satisfies

L(r′′) = L(r). Thus, L(REGEXsfi) ⊆ L(REGEXsfi,ac) is implied.

Next, we prove Lnis(REGEXsfi) ⊆ Lnis(REGEXsfi,ac). Again, let r be a star-

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

12 Markus L. Schmid

free initialised REGEX that is not alternation confined, which implies that r :=

r1 (r2 | r3) r4, where in r2 or r3 there occurs a referenced subexpression that is

referenced outside of r2 or r3, respectively. Without loss of generality, we assume

that (1 t1)1, (2 t2)2, . . . , (k tk)k are exactly the referenced subexpressions in r3

and we assume them to be ordered with respect to their nesting, i. e., for every

i, j, 1 ≤ i < j ≤ k, ti does not occur in tj . We now obtain s′1 from r1 r2 r4 in the

following way. We first substitute the leftmost occurrence of \1 by (1 t1)1. Next,

if there does not already exist an occurrence of (2 t2)2 (which might be the case

if (2 t2)2 is contained in t1), then we substitute the leftmost occurrence of \2 by

(2 t2)2. This step is then repeated with respect to the referenced subexpressions

(3 t3)3, . . . , (k tk)k. We observe that, for every i, 1 ≤ i ≤ k, there is at most one

occurrence of (i ti)i in s′1 and if there exists a backreference \i, then it occurs to

the right of (i ti)i. This implies that s′1 is a valid REGEX. Next, we transform

r1 r3 r4 into s′2 in the same way, just with respect to the referenced subexpressions

in r2. Finally, s1 and s2 are obtained from s′1 and s′2, respectively, by renaming all

referenced subexpressions and the corresponding backreferences in such a way that

s1 and s2 do not have any referenced subexpressions labeled by the same number.

We define r′ := (s1 | s2) and note that r′ is a valid star-free initialised REGEX

with Lnis(r
′) = Lnis(r). By successively applying the above transformation now on

s and t and so on, r can be transformed into a star-free initialised REGEX r′′ that

is also alternation confined and Lnis(r
′′) = Lnis(r). This proves Lnis(REGEXsfi) ⊆

Lnis(REGEXsfi,ac).

In the following, we take a closer look at the task of transforming a pattern

expression p into a REGEX r, such that Luni(p) = L(r). Although, this is possible

in general, a few difficulties arise, that have already been pointed out by Câmpeanu

and Yu in [6] (with respect to Lit(p)).

The natural way to transform a pattern expression into an equivalent REGEX is

to successively substitute the occurrences of variables by referenced subexpressions

and appropriate backreferences. For example, we could simply transform q := (x1 →
(a | b)∗, x2 → x∗1 cx1 dx1) into rq := (1 (a | b)∗)∗1 c \1 d \1, but then we obtain

an incorrect REGEX. This is due to the fact that the referenced subexpression is

under a star. To avoid this, we can first rewrite q to q′ := (x1 → (a | b)∗, x2 →
(x1 x

∗
1 | ε) cx1 dx1), which leads to rq′ := ((1 (a | b)∗)1 (\1)∗ | ε) c \1 d \1. Now we

encounter a different problem: in L(rq′) the only word that starts with c is cd, which

is not the case for Luni(q
′). However, we note that the language with necessarily

initialised subexpressions of rq′ is exactly what we want, since Lnis(rq′) = Luni(q).

Hence, we can transform any pattern expression p to a REGEX rp that is star-free

initialised and satisfies Luni(p) = Lnis(rp).

Lemma 14. For every pattern expression p, there exists a star-free initialised

REGEX r with Luni(p) = Lnis(r).

Proof. Let p := (x1 → r1, x2 → r2, . . . , xm → rm) be an arbitrary pattern expres-

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

Inside the Class of REGEX Languages 13

sion. First, for every i, 1 ≤ i ≤ m, if ri contains a subexpression (q)∗, where (q)∗ is

not under a star and q contains the leftmost occurrence of a variable, we substitute

(q)∗ by (q (q)∗ | ε) and we repeat this step until we obtain a pattern expression

p′ := (x1 → r′1, x2 → r′2, . . . , xm → r′m), where, for every i, 1 ≤ i ≤ m, the leftmost

occurrence of any variable in r′i does not occur under a star and Luni(p
′) = Luni(p).

Next, we construct a REGEX t with Lnis(t) = Luni(p
′) in the following way.

First, we transform r′m into tm−1 by substituting the leftmost occurrence of xm−1

by (m−1 r
′
m−1)m−1 and all other occurrences of xm−1 by \m − 1. In a next step,

we obtain tm−2 from tm−1 by substituting the leftmost occurrence of xm−2 by

(m−2 r
′
m−2)m−2 and all other occurrences of xm−2 by \m − 2. This procedure is

now repeated until we obtain the valid REGEX t1. Since, for every i, 2 ≤ i ≤ m,

the leftmost occurrence of any variable in r′i does not occur under a star, we can

conclude that t1 is star-free initialised. For the sake of convenience, we shall call t1
simply t. It remains to show that Lnis(t) = Luni(p

′) holds.

To this end, we assume that, for some i, 1 ≤ i ≤ m − 2, and for every j,

1 ≤ j ≤ i, the set of words that can be matched to the jth referenced subexpression

in t corresponds to the language described by the pattern expression (x1 → r′1, x2 →
r′2, . . . , xj → r′j). We note that by the definition of t, this implies that also the

(i+1)th referenced subexpression in t corresponds to the language described by the

pattern expression (x1 → r′1, x2 → r′2, . . . , xi+1 → r′i+1). Since the set of words that

can be matched to the first referenced subexpression in t clearly corresponds to the

language described by the pattern expression (x1 → r′1) it follows by induction that

Lnis(t) = Luni(p
′).

We recall that, by Lemma 13, Lnis(REGEXsfi) = L(REGEXsfi) holds. Thus,

Lemmas 13 and 14 imply that every pattern expression can be transformed into

an equivalent star-free initialised REGEX. For example, the pattern expression

q introduced on page 12 can be transformed into the REGEX tq := ((1 (a |
b)∗)1 (\1)∗ c \1 d \1 | c (2 (a | b)∗)2 d \2), which finally satisfies Luni(q) = L(tq).

Theorem 15. Luni(PE) ⊆ L(REGEXsfi).

In the remainder of this section, we show that every star-free initialised REGEX

r can be transformed into a pattern expression which is equivalent with respect to

uniform substitution. However, as pointed out by the following example, this cannot

be done directly if r is not alternation confined. The natural way of transforming

the REGEX r := ((1 (a | b)∗)1 | (2 c∗)2) (\1)∗ \2 into a pattern expression would

lead to pr := (x1 → (a | b), x2 → c∗, x3 → (x1 | x2) (x1)∗ x2). We can observe, that

every word in L(r) which starts with c does not contain any occurrence of a or b,

whereas this is not the case for Luni(pr). So in order to transform star-free initialised

REGEX into equivalent pattern expressions, we can again apply Lemma 13, which

states that we can transform every star-free initialised REGEX into an equivalent

one that is also alternation confined.

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

14 Markus L. Schmid

Theorem 16. L(REGEXsfi) ⊆ Luni(PE).

Proof. Let t be a star-free initialised REGEX. By Lemma 13, the REGEX t can

be transformed into a star-free initialised and alternation confined REGEX r with

L(t) = L(r). Without loss of generality, we assume that there are k referenced

subexpressions in r and that these are ordered with respect to their nesting, i. e.,

for every i, j, 1 ≤ i < j ≤ k, the jth referenced subexpression does not occur

inside the ith referenced subexpression. Next, we transform r into the tuple (x1 →
r1, z → s1), where r1 is the first referenced subexpression of r and s1 is obtained

from r by substituting (1 r1)1 and all occurrences of \1 by x1. Next, we transform

(x1 → r1, z → s1) into (x1 → r1, x2 → r2, z → s2), where r2 is the second referenced

subexpression of r and s2 is obtained from s1 by substituting (2 r2)2 and all

occurrences of \2 by x2. This step is repeated until we obtain a pattern expression

p := (x1 → r1, x2 → r2, . . . , xk → rk, z → sk).

The tuples qi := (x1 → r1, x2 → r2, . . . , xi → ri, z → si), 1 ≤ i ≤ k − 1,

constructed in this procedure are no pattern expressions, since the element si is not

a pattern with regular operators, but a REGEX. However, it is straightforward to

interpret these qi in a similar way as pattern expressions, i. e., Luni(qi) is the union

of all L(s′), where s′ is a REGEX (without variables), that can be obtained from qi
by first substituting all occurrences of variable x1 in qi by a word u ∈ L(r1) and so

on. In particular, for every i, 1 ≤ i ≤ k− 2, Luni(qi) = Luni(qi+1) and, furthermore,

L(r) = Luni(q1) and Luni(qk−1) = Luni(p). We note, however, that this only holds

since r is alternation confined. Consequently, L(REGEXsfi) ⊆ Luni(PE) is implied

which concludes the proof.

Theorems 15 and 16 show that pattern expression languages with respect to

uniform substitution coincide with star-free initialised REGEX languages.

Corollary 17. L(REGEXsfi) = Luni(PE).

In Sections 3 and 4 and in the present section, we have investigated several proper

subclasses of the class of REGEX languages and their mutual relations, which can be

summarised as follows: L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ . . . ⊆
Lro,∞ = H∗(REG,REG) = Lit(PE) ⊂ Luni(PE) = L(REGEXsfi) ⊆ L(REGEX).

6. REGEX with a Bounded Number of Backreferences

It is a well known fact that the membership problem for REGEX languages is NP-

complete (cf. Aho [1] and Angluin [3]). Furthermore, Aho states that for a REGEX

with k referenced subexpressions, it can be solved in time that is exponential only

in k: for all possible tuples (u1, u2, . . . , uk) of factors of the input word w, we try

to match r to w in such a way that, for every i, 1 ≤ i ≤ k, the ith referenced

subexpression is matched to ui. This procedure can be carried out in time O(|w|2k),

but, unfortunately, it is incorrect, since it ignores the possibility that the referenced

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

Inside the Class of REGEX Languages 15

subexpressions under a star (and their backreferences) can be matched to a different

factor in every individual iteration of the star. On the other hand, if we first iterate

every expression under a star that contains a referenced subexpression an arbitrary

number of times, then, due to the late binding of backreferences, we introduce

arbitrarily many new referenced subexpressions and backreferences, so there is an

arbitrary number of factors to keep track of.

In the following, we answer the question of whether the membership problem for

REGEX can be solved in time that is exponential only in the number of referenced

subexpressions in the positive, which yields the polynomial time solvability of the

membership problem for REGEX with a bounded number of backreferences.

Theorem 18. Let k ∈ N. The membership problem for REGEX with at most k

referenced subexpressions can be solved in polynomial time.

Proof. Let r be a REGEX with k referenced subexpressions. We shall show that r

can be transformed into a nondeterministic multi-head automaton Mr (see Holzer

et al. [10] for a survey) with (3k + 2) heads, O(|r|) states and Mr accepts exactly

L(r). Since this transformation can be carried out in polynomial time and since

the acceptance problem for nondeterministic multi-head automata can be solved

in polynomial time with respect to the number of input heads and the number of

states, the statement of the theorem follows. We shall now construct Mr.

First we note that a nondeterministic two-way multi-head automaton can use

two input heads in order to implement a counter that can store numbers between 0

and the current input length (the details are left to the reader). The automaton Mr

uses 2k of its 3k + 2 input heads in order to implement k individual such counters.

One input head is the main head, another one is the auxiliary head and the remain-

ing k heads are enumerated from 1 to k. Initially, all input heads are located at the

left endmarker. The finite state control contains a special pointer, referred to as the

r-pointer, that is initially located at the left end of r. In the computation of Mr, the

main head is moved over the input from left to right, checking whether or not the

input word satisfies r, just as it is done by a classical nondeterministic finite state

automaton that accepts the language given by a classical regular expression. Simul-

taneously, the r-pointer is moved over r. When the r-pointer enters the referenced

subexpression i, then we move head i to the position of the main head, we start

counting every following step of the main head on counter i and we stop counting

as soon as the r-pointer has left the referenced subexpression i. This means that we

store the length of the factor that has been matched to the referenced subexpression

i in counter i, whereas head i scans now the position where this factor starts. Now

if the r-pointer encounters a backreference \i, it is checked whether or not at the

positions scanned by the main head and head i the same factor occurs with the

length stored by counter i. It is also possible that \i is encountered without having

visited the referenced subexpression i. In this case, counter i stores 0, which means

that \i is treated as the empty word. If the r-pointer encounters the referenced

July 12, 2017 17:40 WSPC/INSTRUCTION FILE Schmid˙IJFCS˙2012

16 Markus L. Schmid

subexpression i for a second time, which is possible since it can occur under a star,

then counter i and head i are simply reset and then the referenced subexpression i is

handled in exactly the same way as before. This ensures that in different iterations

of a star every referenced subexpression is treated individually and only the factor

that is matched to it in the very last iteration is stored for future backreferences.

It can be easily verified that a word is in L(r) if and only if it is possible that Mr

accepts that word. Since the finite state control only needs to keep track of the

position of the r-pointer, O(|r|) states are sufficient.

References

[1] A. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume A: Algorithms and Complexity, pages
255–300. MIT Press, 1990.

[2] J. Albert and L. Wegner. Languages with homomorphic replacements. Theoretical
Computer Science, 16:291–305, 1981.

[3] D. Angluin. Finding patterns common to a set of strings. In Proc. 11th Annual ACM
Symposium on Theory of Computing, pages 130–141, 1979.

[4] H. Bordihn, J. Dassow, and M. Holzer. Extending regular expressions with homo-
morphic replacement. RAIRO Theoretical Informatics and Applications, 44:229–255,
2010.

[5] C. Câmpeanu, K. Salomaa, and S. Yu. A formal study of practical regular expressions.
International Journal of Foundations of Computer Science, 14:1007–1018, 2003.

[6] C. Câmpeanu and S. Yu. Pattern expressions and pattern automata. Information
Processing Letters, 92:267–274, 2004.

[7] B. Carle and P. Narendran. On extended regular expressions. In Proc. LATA 2009,
volume 5457 of LNCS, pages 279–289, 2009.

[8] D. D. Freydenberger. Extended regular expressions: Succinctness and decidability. In
28th International Symposium on Theoretical Aspects of Computer Science, STACS
2011, volume 9 of LIPIcs, pages 507–518, 2011.

[9] J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, third edi-
tion, 2006.

[10] M. Holzer, M. Kutrib, and A. Malcher. Complexity of multi-head finite automata:
Origins and directions. Theoretical Computer Science, 412:83–96, 2011.

[11] L. Kari, G. Rozenberg, and A. Salomaa. L systems. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 1, chapter 5, pages 253–328. Springer,
1997.

[12] S.C. Kleene. Representation of events in nerve nets and finite automata. In C.E.
Shannon and J. McCarthy, editors, Automata Studies, volume 34 of Annals of Math-
ematics Studies, pages 3–41. Princeton University Press, 1956.

[13] G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli. Synchronized regular
expressions. Acta Informatica, 39:31–70, 2003.

[14] T. Shinohara. Polynomial time inference of extended regular pattern languages. In
Proc. RIMS Symposia, Kyoto, volume 147 of LNCS, pages 115–127, 1982.

[15] K. Thompson. Programming techniques: Regular expression search algorithm. Com-
munications of the ACM, 11, 1968.

[16] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 1, chapter 2, pages 41–110. Springer, 1997.

