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Abstract. We investigate the complexity of the solvability problem for
restricted classes of word equations with and without regular constraints.
For general word equations, the solvability problem remains NP-hard,
even if the variables on both sides are ordered, and for word equations
with regular constraints, the solvability problems remains NP-hard for
variable disjoint (i. e., the two sides share no variables) equations with
two variables, only one of which is repeated. On the other hand, word
equations with only one repeated variable (but an arbitrary number of
variables) and at least one non-repeated variable on each side, can be
solved in polynomial-time.
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1 Introduction

A word equation is an equation α = β, such that α and β are words over an alpha-
bet Σ ∪X, where Σ is a finite alphabet of constants and X = {x1, x2, x3, . . .}
is an enumerable set of variables. A solution to a word equation α = β is a
morphism h : (Σ ∪ X)∗ → Σ∗ that satisfies h(α) = h(β) and h(b) = b for
every b ∈ Σ. For example, xaby = byxa is a word equation with variables
x, y, constants a, b and h with h(x) = bab, h(y) = aba is a solution, since
h(xaby) = babababa = h(byxa).

The solvability problem for word equations, i. e., to decide whether or not a
given word equation has a solution, has a long history with the most prominent
landmark being Makanin’s algorithm [11] from 1977, which showed the solvabil-
ity problem to be decidable (see Chapter 12 of [10] for a survey). While the
complexity of Makanin’s original algorithm was very high, it is nowadays known
that the solvability problem is in PSPACE (see [8, 12]) and NP-hard (in fact, it
is even believed to be in NP). Word equations with only a single variable can be
solved in linear time [7] and equations with two variables can be solved in time
O(n5) [2]; it is not known whether there exist polynomial-time algorithms for
solving word equations with at most k variables, for some k ≥ 3.

If we require β ∈ Σ∗, i. e., only one side of the equation is allowed to contain
variables, then we obtain the pattern matching problem with variables (or simply
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matching problem, for short), where the term pattern refers to the part α that can
contain variables. The matching problem is NP-complete and, compared to the
solvability problem for word equations, many more tractability and intractability
results are known (see [4, 5, 13]). More precisely, while restrictions of numerical
parameters (e. g., number of variables, number of occurrences per variable, length
of substitution words, alphabet size, etc.) make the problem either polynomial-
time solvable in a trivial way (e. g., if the number of variables is bounded by a
constant) or result in strongly restricted, but still NP-complete variants (see [4]),
structural restrictions of the pattern (e. g., of the order of the variables) are more
promising and can yield rich classes of patterns for which the matching problem
can be solved in polynomial-time (see [13]). For example, the matching problem
remains NP-complete if |Σ| = 2, every variable has at most two occurrences in α
and every variable can only be replaced by the empty word or a single symbol (or
instead by non-empty words of size at most 3). On the other hand, non-trivial
and efficient polynomial-time algorithms exist (see [3]), if the patterns are regular
(i. e., every variable has at most one occurrence), the patterns are non-cross (i. e.,
between any two occurrences of the same variable x no other variable different
from x occurs) or the patterns have a bounded scope coincidence degree (i. e.,
the maximum number of scopes of variables that overlap is bounded, where the
scope of a variable is the interval in the pattern where it occurs).

Technically, all these results can be seen as tractability and intractability
results for restricted variants of the solvability problem (in fact, as it seems, all
NP-hardness lower bounds for restricted variants of the solvability problem in
the literature are actually NP-hardness lower bounds for the matching problem).
However, these results are disappointing in terms of how much they provide us
with a better understanding of the complexity of word equations, since in the
matching problem the most crucial feature of word equations is missing, which
is the possibility of having variables on both sides.

The aim of this paper is to transfer the knowledge and respective techniques
of the matching problem to variants of the solvability problem for word equations
that are not just variants of the matching problem. In particular, we investigate
whether the structural restrictions mentioned above, which are beneficial for
the matching problem, can be extended, with a comparable positive impact,
to classes of word equations that have variables on both sides. We pay special
attention to regular constraints, i. e., each variable x is accompanied by a regular
language Lx from which h(x) must be selected in a solution h. While Makanin’s
algorithm still works in the presence of regular constraints, it turns out that
for more restricted classes of equations, the addition of regular constraints can
drastically increase the complexity of the solvability problem.

2 Definitions

Let Σ be a finite alphabet of constants and let X = {x1, x2, x3, . . .} be an
enumerable set of variables. For any word w ∈ (Σ ∪ X)∗ and z ∈ Σ ∪ X, we
denote by |w|z the number of occurrences of z in w, by var(w) the set of variables
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occurring in w and, for every i, 1 ≤ i ≤ |w|, w[i] denotes the symbol at position
i in w. A morphism h : (Σ ∪X)∗ → Σ∗ with h(a) = a for every a ∈ Σ is called
a substitution. A word equation is a tuple (α, β) ∈ (Σ ∪ X)+ × (Σ ∪ X)+ (for
the sake of convenience, we also write α = β) and a solution to a word equation
(α, β) is a substitution h with h(α) = h(β), where h(α) is the solution word (of
h). A word equation is solvable if there exists a solution for it and the solvability
problem is to decide for a given word equation whether or not it is solvable.

Let α ∈ (Σ∪X)∗. We say that α is regular1, if, for every x ∈ var(α), |α|x = 1;
e. g., ax1bax2cx3bcax4ax5bb is regular. The word α is non-cross if between any
two occurrences of the same variable x no other variable different from x occurs,
e. g., ax1bax1x2ax2x2x3x3bx4 is non-cross, whereas x1bx1x2bax3x3x4x4bcx2 is
not. A word equation (α, β) is regular or non-cross, if both α and β are regular or
both α and β are non-cross, respectively. An equation (α, β) is variable disjoint
if var(α) ∩ var(β) = ∅.

For a word equation α = β and an x ∈ var(αβ), a regular constraint (for
x) is a regular language Lx and a solution h for α = β satisfies the regular
constraint Lx if h(x) ∈ Lx. The solvability problem for word equations with
regular constraints is to decide on whether an equation α = β with regular
constraints Lx, x ∈ var(αβ), given as NFA, has a solution that satisfies all
regular constraints. The size of the regular constraints is the sum of the number
of states of the NFA. If the regular constraints are all of the form Γ ∗, for some
Γ ⊆ Σ, then we call them word equations with individual alphabets.

A word equation α = β along with an m ∈ N is a bounded word equation.
The problem of solving a bounded word equation is then to decide on whether
there exists a solution h for α = β with |h(x)| ≤ m for every x ∈ var(αβ).

For an α ∈ (Σ ∪ X)∗, L(α) = {h(α) | h is a substitution} is the pattern
language of α.

3 Regular and Non-Cross Word Equations

For the matching problem, the restriction of regularity implies that every variable
has only one occurrence in the equation, which makes the solvability problem
trivial (in fact, it boils down to the membership problem for a very simple regular
language). However, word equations in which both sides are regular can still have
repeated variables, although the maximum number of occurrences per variable is
2 (i. e., regular equations are restricted variants of quadratic equations (see, e. g.,
[14])) and these two occurrences must occur on different sides. Unfortunately, we
are neither able to show NP-hardness nor to find a polynomial-time algorithm
for the solvability problem of regular word equations.

Open Problem 1 Can regular word equations be solved in polynomial-time?

1 The use of the term regular in this context has historical reasons: the matching
problem has been first investigated in terms of so-called pattern languages, i. e., the
set of all words that match a given pattern α ∈ (Σ∪X)∗, which are regular languages
if α is regular.
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As we shall see later, solving a system of two regular equations is NP-hard
(Corollary 6), solving regular equations with regular constraints is even PSPACE-
complete (Theorem 7), and solving bounded regular equations or regular equa-
tions with individual alphabets is NP-hard (Corollaries 17 and 19, respectively),
as well.

On the positive side, it can be easily shown that regular word equations can
be solved in polynomial-time, if we additional require them to be variable disjoint
(which simply means that no variable is repeated in the whole equation). More
precisely, in this case, we only have to check emptiness for the intersection of the
pattern languages described by the two sides of the equations (which are regular
languages).

Next, we show the stronger result that polynomial-time solvability is still
possible if at most one variable is repeated, and each side contains at least one
of the non-repeating variables.

Theorem 2. Word equations with only one repeated variable, and each side
containing at least one non-repeating variable, can be solved in polynomial time.

If we allow an arbitrary number of occurrences of each variable, but require
them to be sorted on both sides on the equation, where the sorting order might
be different on the two sides, then we arrive at the class of non-cross word
equations. As for the class of regular patterns, also for non-cross patterns the
matching problem can be solved efficiently. However, as we shall see next, for
non-cross equations, the solvability problem becomes NP-hard.

Theorem 3. Solving non-cross word equations is NP-hard.

We prove this theorem by a reduction2 from a graph problem, for which we
first need the following definition.

Let G = (V,E) be a graph with V = {t1, t2, . . . , tn}. A vertex s is the
neighbour of a vertex t if {t, s} ∈ E and the set NG [t] = {s | {t, s} ∈ E} ∪ {t}
is called the (closed) neighbourhood of t. If, for some k ∈ N, every vertex of G
has exactly k neighbours, then G is k-regular. A perfect code for G is a subset
C ⊆ V with the property that, for every t ∈ V , |NG [t]∩C| = 1. Next, we define
the problem to decide whether or not a given 3-regular graph has a perfect code,
which is NP-complete (see [9]):

3-Regular Perfect Code (3RPerCode)
Instance: A 3-regular graph G.
Question: Does G contain a perfect code?

We now define a reduction from 3RPerCode. To this end, let G = (V,E) be
a 3-regular graph with V = {t1, t2, . . . , tn} and, for every i, 1 ≤ i ≤ n, Ni

is the neighbourhood of ti. Since the neighbourhoods play a central role, we
shall define them in a more convenient way. For every r, 1 ≤ r ≤ 4, we use

2 We will also use minor modifications later on of this reduction in order to conclude
corollaries of Theorem 3.
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a mapping ℘r : {1, 2 . . . , n} → {1, 2 . . . , n} that maps an i ∈ {1, 2 . . . , n} to
the index of the rth vertex of neighbourhood Ni, i. e., for every i, 1 ≤ i ≤ n,
Ni = {t℘1(i), t℘2(i), t℘3(i), t℘4(i)}. Obviously, the mappings ℘r, 1 ≤ r ≤ 4, imply a
certain order on the vertices in the neighbourhoods, but, since our constructions
are independent of this actual order, any order is fine.

We transform G into a word equation with variables {xi,j | 1 ≤ i, j ≤ n} ∪
{yi, y′i | 1 ≤ i ≤ n} and constants from Σ = {?, �, �,�,#, a}. For every i, j,
1 ≤ i, j ≤ n, the variable xi,j represents ti ∈ Nj . For every i, 1 ≤ i ≤ n, we
define

αi = x℘1(i),i . . . x℘4(i),i, α′i = # a8 # # ,

βi = a, β′i = yi #(xi,℘1(i))
2 . . . (xi,℘4(i))

2 # y′i

and

u = α1 ? . . . ? αn ? � � α′1 � . . . � α′n ,

v = β1 ? . . . ? βn ? � � β′1 � . . . � β′n .

Proposition 4. The words u and v are non-cross and can be constructed from
G in polynomial time.

Lemma 5. The graph G has a perfect code if and only if (u, v) has a solution.

Proof. For the sake of convenience, let u = u1�u2 and v = v1� v2. We start
with the only if direction. For a perfect code C of G, we construct a substitution
h with h(u) = h(v) in the following way. For every i, 1 ≤ i ≤ n, we define
h(xi,℘r(i)) = a, 1 ≤ r ≤ 4, if ti ∈ C, and h(xi,℘r(i)) = ε, otherwise. Thus,
for every i, 1 ≤ i ≤ n, h((xi,℘1(i))

2 . . . (xi,℘4(i))
2) ∈ {a8, ε}, which implies that

h(yi) and h(y′i) can be defined such that h(β′i) = h(α′i). Consequently, h(v2) =
h(u2). Since C is a perfect code, for every i, 1 ≤ i ≤ n, there is an r, 1 ≤
r ≤ 4, such that t℘r(i) ∈ C and t℘r′ (i)

/∈ C, 1 ≤ r′ ≤ 4, r 6= r′. Therefore,
h(x℘1(i),ix℘2(i),ix℘3(i),ix℘4(i),i) = h(x℘r(i),i) = a, which means that h(αi) =
h(βi). Since this particularly implies h(u1) = h(v1), we can conclude h(u) = h(v).

In order to prove the if direction, we assume that there exists a solution h.

Claim: If h(u1) = h(v1) and h(u2) = h(v2), then G has a perfect code.

Proof of Claim: From h(u1) = h(v1), we can directly conclude that, for ev-
ery i, 1 ≤ i ≤ n, h(αi) = βi, which means that exactly one of the variables
x℘1(i),i, x℘2(i),i, x℘3(i),i, x℘4(i),i is mapped to a, while the others are mapped
to ε. From h(v2) = h(u2) it follows that, for every i, 1 ≤ i ≤ n, h(β′i) =
α′i. Next, we observe that, for every i, 1 ≤ i ≤ n, due to the symbols #
in β′i and α′i, h((xi,℘1(i))

2 . . . (xi,℘4(i))
2) ∈ {a8, ε}. Since each of the variables

xi,℘1(i), xi,℘2(i), xi,℘3(i), xi,℘4(i) are mapped to either a or ε, this implies that ei-
ther all of these variables are erased or all of them are mapped to a. Let C be the
set of exactly the vertices ti ∈ V for which h(xi,℘1(i)) = h(xi,℘2(i)) = h(xi,℘3(i)) =
h(xi,℘4(i)) = a. For every neighbourhood Vj = {t℘1(j), t℘2(j), t℘3(j), t℘4(j)}, 1 ≤
j ≤ n, h(x℘1(j),j x℘2(j),j x℘3(j),j x℘4(j),j) is mapped to a, which implies that for
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some r, 1 ≤ r ≤ 4, h(x℘r(j),j) = a; thus, t℘r(j) ∈ C. Furthermore, h(x℘r′ (j),j
) =

ε, 1 ≤ r′ ≤ 4, r 6= r′, which means that t℘r′ (j)
/∈ C, 1 ≤ r′ ≤ 4, r 6= r′. Conse-

quently, C is a perfect code. (Claim) ut

It remains to show that a solution h necessarily satisfies h(u1) = h(v1) and
h(u2) = h(v2). Let w be the solution word of h. We first recall that, since
v1, u2 ∈ Σ∗, h(v1) = v1 and h(u2) = u2, which particularly means that v1� is
a prefix and �u2 is a suffix of w. If |w|� = 1, then w = v1�u2 and therefore
h(u1) = h(v1) and h(u2) = h(v2). If, on the other hand, |w|� ≥ 2, then w =
v1� γ�u2. If γ = ε, then w = v1��u2, which is a contradiction, since w
must contain the factor ?��. From h(u2) = u2 and h(v1) = v1 it follows that
h(u1) = v1� γ = and h(v2) = γ�u2. The factor v2 starts with an occurrence
of � and since γ is a non-empty prefix of h(v2), this means that |γ|� = k ≥ 1.
Moreover, γ is also a suffix of h(u1) and since |u1|� = 0, this implies that there

are variables z1, z2, . . . , z` ∈ var(u1), 1 ≤ ` ≤ k, with
∑`

i=1 |h(zi)|� ≥ k. Since
each of these variables zi, 1 ≤ i ≤ `, is repeated twice in v2 and since |v2|� = 1,
we can conclude that |h(v2)|� ≥ 2k+ 1. In the suffix �u2 of h(v2), there is only
one occurrence of �, which implies that |γ|� ≥ 2k. Since k ≥ 1, this is clearly a
contradiction to |γ|� = k. ut

The equation obtained by the reduction from above has the form u1�u2 =
v1� v2, where in a solution h, h(u1) = h(v1) and h(u2) = h(v2). In order to
achieve this synchronisation between the two left parts and between the two
right parts, we need to repeat variables in v2. However, we can as well represent
u1�u2 = v1� v2 as a system of two equations u1 = v1 and u2 = v2 and, since
the synchronisation of the left parts and the right parts is now enforced by
the fact that we regard them as two separate equations, we can get rid of the
repeated variables in v2, which makes the two equations regular.

Corollary 6. The problem of checking solvability of a system of 2 regular word
equations α1 = β1, α2 = β2 with β1, β2 ∈ Σ∗ is NP-hard.

We conclude this section by stressing the fact that the non-cross equation
from the reduction above is “almost regular”, i. e., one side is regular, while
for the other the maximum number of occurrences per variable is 2. However,
we were not able to get rid of these repeated variables, which suggests that a
hardness reduction for the regular case needs to be substantially different or
regular word equations can be solved in polynomial-time.

4 Word Equations with Regular Constraints

In practical scenarios, it seems rather artificial that we only want to find just any
solution for a word equation and we are fine with whatever sequence of symbols
the variables will be substituted with. It is often more realistic that the variables
have a well-defined domain from which we want the solution to select the words.
This motivates the addition of regular constraints to word equations, as defined
in Section 2, for which we investigate the solvability problem in this section.
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As mentioned in Section 1, regular constraints can be easily incorporated
into algorithms for the general solvability problem. However, while it is open
whether solving general word equations is hard for PSPACE, for word equations
with regular constraints, this can be easily shown, even for regular equations.

Theorem 7. Solving word equations with regular constraints is PSPACE-complete,
even for regular equations.

Proof. We can reduce the PSPACE-hard intersection emptiness problem for NFA,
i. e., deciding for given NFA Mi, 1 ≤ i ≤ n, whether or not

⋂n
i=1 L(Mi) = ∅. To

this end, let M1, . . . ,Mn be NFA over some alphabet Σ with # /∈ Σ. We define
α = x1#x2# . . .#xn−1 and β = x2#x3# . . .#xn, and we define the regular
constraints Lxi

= L(Mi). We note that the equation α = β is regular.
If there exists a word w ∈

⋂n
i=1 L(Mi), then h with h(xi) = w, 1 ≤ i ≤ n,

is a solution for α = β, since h(α) = (w#)n−2w = h(β), and, furthermore,
h satisfies the regular constraints. Let h be a solution for α = β that satis-
fies the regular constraints. This implies that h(x1)#h(x2)# . . .#h(xn−1) =
h(x2)#h(x3)# . . .#h(xn) and, since |h(xi)|# = 0, 1 ≤ i ≤ n, h(x1) = h(x2) =
. . . = h(xn) follows. Thus, h(x1) ∈

⋂n
i=1 L(Mi). ut

Recall that we mentioned in Section 3 that word equations without repeated
variables can be solved in polynomial time. This also holds for word equations
with regular constraints.

Theorem 8. Solving word equations with regular constraints and without re-
peated variables can be done in polynomial time.

Word equations with only one variable can be solved in linear time (see
Jeż [7]). If we add regular constraints to equations with only one variable, then
the solvability problem is still in P.

Theorem 9. Solving word equations with regular constraints and with only one
variable can be done in polynomial time.

Word equations with two variables can be solved in polynomial-time (see [2]).
We shall see next that for word equations with regular constraints this is no
longer the case (assuming P 6= NP). More precisely, solving equations with two
variables and regular constraints is NP-hard, even if only one variable is repeated
and the equations are variable disjoint. Moreover, we can show that the existence
of an algorithm solving word equations with two variables and with regular
constraints in time 2o(n+m) (where n is the length of the equation and m is
the size of the regular constraints) is very unlikely, since it would refute the
well-known exponential-time hypothesis (ETH, for short).

We conduct a linear reduction from 3-Sat to the problem of solving word
equations with regular constraints.3 Let C = {c1, c2, . . . , cm} be a Boolean for-
mula in conjunctive normal form (CNF) with 3 literals per clause over the vari-
ables {v1, v2, . . . , vn}. We first transform C into a CNF C ′ such that C is sat-
isfiable if and only if C ′ has an assignment that satisfies exactly one literal per

3 In order to prove NP-hardness, a simpler production would suffice, but we need a
linear reduction in order to obtain the ETH lower bound.
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clause (in the following, we call such an assignment a 1-in-3 assignment). For
every i, 1 ≤ i ≤ m, we replace ci = {y1, y2, y3} by 5 new clauses

{y1, z1, z2}, {y2, z2, z3}, {z1, z3, z4}, {z2, z5, z6}, {y3, z5} ,

where zi, 1 ≤ i ≤ 6, are new variables.4 We note that C ′ has 5m clauses and
n+ 6m variables. Next, we obtain C ′′ from C ′ by adding, for every i, 1 ≤ i ≤ n,
a new clause {vi, v̂i}, where v̂i is a new variable, and we replace all occurrences
of vi (i. e., the variable vi in negated form) by v̂i.

The following proposition can be easily verified.

Proposition 10. There is a satisfying assignment for C if and only if C ′′ has
a 1-in-3 assignment. Furthermore, C ′′ has no negated variables, C ′′ has 5m+ n
clauses and 2n+ 6m variables.

For the sake of convenience, we set n′ = 2n + 6m, m′ = 5m + n, C ′′ =
{c′1, c′2, . . . , c′m′} and let {v′1, v′2, . . . , v′n′} be the variables of C ′′. Furthermore,
for every i, 1 ≤ i ≤ n′, let ki be the number of occurrences of variable v′i in C ′′.

Next, we transform C ′′ into a word equation with regular constraints as
follows. Let Σ = {v′1, v′2, . . . , v′n′ ,#} and let the equation α = β be defined

by α = (x1 #)n
′−1 x1 and β = x2. For the variables x1 and x2, we define the

following regular constraints over Σ:

Lx1
= {w | |w| = m′, w[i] ∈ c′i, 1 ≤ i ≤ m′} ,

Lx2
= {u1#u2# . . .#un′ | ui ∈ (Σ \ {#})∗, |ui|v′

i
∈ {ki, 0}, 1 ≤ i ≤ n′} .

Proposition 11. There are DFA Mx1
and Mx2

accepting the languages Lx1

and Lx2 , respectively, with 5m+ n+ 2 and 21m+ 5n+ 1 states, respectively.

By definition, only NFA are required to represent the regular constraints, but
our use of DFA here points out that the following hardness result (and the ETH
lower bound) also holds for the case that we require the regular constraints to
be represented by DFA. So the hardness of the problem does not result from the
fact that NFA can be exponentially smaller than DFA.

Lemma 12. The Boolean formula C ′′ has a 1-in-3 assignment if and only if
α = β has a solution that satisfies the regular constraints Lx1

and Lx2
.

Proof. We start with the only if direction. To this end, let π : {v′1, v′2, . . . , v′n} →
{0, 1} be a 1-in-3 assignment for C ′′, where, for every i, 1 ≤ i ≤ m′, yi is the
unique variable with yi ∈ c′i and π(yi) = 1. Let h be a substitution defined by
h(x1) = y1y2 . . . ym′ and h(x2) = (h(x1) #)n−1 h(x1). Obviously, h is a solution
for α = β, h(x1) ∈ Lx1

and, since every v′i has either 0 occurrences in h(x1) (in
case that π(v′i) = 0) or ki occurrences (in case that π(v′i) = 1), also h(x2) ∈ Lx2

.
For the if direction, let h be a solution for α = β that satisfies the regular

constraints. Consequently, h(x1) = y1y2 . . . ym′ , where yi ∈ c′i, 1 ≤ i ≤ m′, and,

4 Note that this is just the reduction used by Schaefer [15] in order to reduce 3-Sat
to 1-in-3 3Sat. We recall it here to observe that this reduction is linear.
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furthermore, for every i, 1 ≤ i ≤ n, |h(x2)|v′
i
∈ {ki, 0}. This directly implies that

π : {v′1, v′2, . . . , v′n} → {0, 1}, defined by h(v′i) = 1 if |h(x2)|v′
i

= ki and h(v′i) = 0
if |h(x2)|v′

i
= 0, is a 1-in-3 assignment for C ′′. ut

The exponential-time hypothesis, mentioned above, roughly states that 3-Sat
cannot be solved in subexponential-time. For more informations on the ETH,
the reader is referred to Chapter 14 of the textbook [1]. For our application of
the ETH, it is sufficient to recall the following result.

Theorem 13 (Impagliazzo et al. [6]). Unless ETH fails, 3-Sat cannot be
solved in time 2o(n+m), where n is the number of variables and m is the number
of clauses.

The reduction from above implies that a subexponential algorithm for solv-
ing word equations with two variables and regular constraints can be easily
turned into a subexponential algorithm for 3-Sat; thus, the existence of such an
algorithm contradicts ETH.

Theorem 14. Solving word equations with two variables and with regular con-
straints is NP-hard, even if only one variable is repeated and the equations are
variable disjoint. Furthermore, unless ETH fails, such word equations cannot be
solved in time 2o(n+m) (where n is the length of the equation and m is the size
of the regular constraints).

4.1 Bounded Word Equations

We first note that bounded word equations can be considered as a special case of
word equations with regular constraints, since the bound m functions as regular
constraints of the form {w ∈ Σ∗ | |w| ≤ m} for every variable. However, there
is an important difference: the length of a binary encoding of m is logarithmic
in the size of an NFA for {w ∈ Σ∗ | |w| ≤ m}; thus, NP-hardness of a class
of bounded word equations does not necessarily carry over to word equations
with regular constraints. As usual, we call the solvability problem for a class of
bounded word equations NP-hard in the strong sense, if the NP-hardness remains
if the bound m is given in unary.

Theorem 15. Solving bounded word equations is NP-hard (in the strong sense),
even for equations α = β satisfying | var(α)| = 1, var(α) ∩ var(β) = ∅ and β is
regular.

Proof. We reduce from the shortest common superstring problem, i. e., deciding
for given k ∈ N and strings v1, v2, . . . , vn ∈ Σ∗ whether there is a string u with
|u| ≤ k that contains each vi as a factor. Let v1, v2, . . . , vn ∈ Σ∗, k ∈ N be an
instance of the shortest common superstring problem. Furthermore, let # be a
new symbol, i. e., # /∈ Σ. We construct a word equation α = β, where

α = x # x # . . . # x ,

β = y1v1y
′
1 # y2v2y

′
2 # . . . # ynvny

′
n .
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Furthermore, we let k be the upper bound on the substitution word lengths.
If there exists a word w ∈ Σ∗ with |w| ≤ k and, for every i, 1 ≤ i ≤ n,

w = uiviu
′
i, then we define a substitution h by h(x) = w, h(yi) = ui and

h(y′i) = u′i, 1 ≤ i ≤ n. Obviously, h satisfies the length bound and, for every i,
1 ≤ i ≤ n, h(x) = h(yiviy

′
i); thus, h(α) = h(β).

Let h be a solution for α = β that satisfies the length bound. We observe
that since h(β) contains every vi as a factor, also h(α) = h(x)#h(x)# . . .#h(x)
contains every vi as a factor and, furthermore, since |vi|# = 0, 1 ≤ i ≤ n, every
vi is also a factor of h(x). Consequently, |h(x)| ≤ k and h(x) contains every vi,
1 ≤ i ≤ n, as a factor.

For the shortest common superstring problem, we can assume that k ≤∑n
i=1 |vi|, since otherwise v1v2 . . . vn would also be a solution. Consequently,

we can assume that k is given in unary, which means that solving bounded word
equations of the form mentioned in the statement of the theorem is NP-hard in
the strong sense. ut

Due to the strong NP-hardness in Theorem 15, we can conclude the following.

Corollary 16. Solving word equations with regular constraints is NP-hard, even
for equations α = β satisfying | var(α)| = 1, var(α)∩ var(β) = ∅ and β is regular.

By using 1 as the bound on the substitution words and by a minor modifi-
cation of the reduction for Theorem 3, we can obtain a hardness reduction for
bounded regular word equations.

Corollary 17. Solving bounded regular word equations is NP-hard.

4.2 Individual Alphabets

The least restrictive regular constraints are probably constraint languages of the
form Γ ∗ for some Γ ⊆ Σ, i. e., word equations with individual alphabets, which
we shall investigate in this section.

We first note that if |Σ| = 1, then general word equations and word equations
with individual alphabets coincide and, furthermore, the solvability problem for
word equations can be solved in polynomial-time, if |Σ| = 1.

Theorem 18. Solving word equations can be done in polynomial time if |Σ| = 1.

However, if Σ = {a, b} and {a} is used as individual alphabet for all vari-
ables, then solving word equations becomes NP-hard again, simply because the
matching problem is already NP-hard for this case (as can be easily concluded
from the reduction of Lemma 5 in [5]).

By using individual alphabets, the reduction for Theorem 3 can be easily
transformed to a hardness reduction for the solvability problem of regular equa-
tions with individual alphabets.

Corollary 19. Solving regular word equations with individual alphabets is NP-
hard.
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5 Conclusions

We conclude this work by summarising our main results and by suggesting some
further research directions.

First of all, the polynomial-time decidability of the matching problem for
non-cross patterns does not carry over to non-cross equations (which also means
that the concept of the scope coincidence degree, briefly mentioned in Section 1,
will not help, since it is a generalisation of the non-cross concept), while for
regular equations, this is still open (see Open Problem 1), which constitutes the
most important question left open in this work.

As soon as we allow regular constraints, it is possible to prove hardness re-
sults for strongly restricted variants of the solvability problem, often including
the regular case. More precisely, for general regular constraints, the solvabil-
ity problem is PSPACE-complete, even for regular equations (Theorem 7), and
NP-hard for variable disjoint equations with only one repeated variable and two
variables in total (Theorem 14). Especially this latter result, for which we can
also obtain an ETH lower bound, points out a drastic difference in terms of com-
plexity between general word equations and equations with regular constraints:
both the tractable cases of equations with only two variables or with only one
repeated variable and at least one non-repeated variable on both sides (The-
orem 2) become NP-hard if we allow regular constraints.5 Moreover, the case
with only one repeated variable remains intractable, even if the constraints are
only bounding the length of the substitution words (Theorem 15). In partic-
ular, even if it turns out that, for some k, k ≥ 3, or even for all constant k,
general word equations with at most k variables can be solved in polynomial-
time, Theorem 14 severely limits their practical application, since it shows that
these polynomial-time algorithms cannot cope with regular constraints (unless
P = NP).

As for regular equations, allowing a system of only two equations (and no
further constraints), allowing bounds on the substitution words or allowing in-
dividual alphabets is enough to make the solvability problem NP-hard.

Our choice of restrictions for word equations is motivated by polynomial-
time solvable cases of the matching problem. In order to obtain tractable classes
of word equations, it might be worthwhile to strengthen the concept of non-
cross and regularity by requiring αβ to be regular or non-cross, instead of only
requiring this for α and β separately. Another possible further restriction would
be to require the order of the variables on the left and on the right side to be
the same (e. g., x1abx2cx3 = x1cx3 is ordered regular, while x1abx2cx3 = x3cx2
is not). In this regard, it is interesting to note that the patterns produced by
the reduction of Theorem 3 are not ordered non-cross (and not ordered regular
for the corresponding corollaries), while Theorem 7, the PSPACE-completeness
of solving word equations with regular constraints, also holds for ordered regular

5 For the latter case, note that in the reduction of Theorem 14, we can add a non-
repeated variable with regular constraint ∅ to the left side.
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equations. Additionally requiring var(α) = var(β) for ordered regular equations
would be a further restriction that might be useful.
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