Finding Consensus Strings With Small Length
Difference Between Input and Solution Strings

Markus L. Schmid

Trier University, Fachbereich IV — Abteilung Informatikwissenschaften,
D-54286 Trier, Germany, MSchmid@uni-trier.de

Abstract. The parameterised complexity of the CLOSEST SUBSTRING
PROBLEM and the CONSENSUS PATTERNS PROBLEM with respect to the
parameter (¢ —m) is investigated, where £ is the maximum length of the
input strings and m is the length of the solution string. We present an
exact exponential time algorithm for both problems, which is based on an
alphabet reduction. Furthermore, it is shown that for most combinations
of (¢ —m) and one of the classical parameters (m, ¢, number of input
strings k, distance d), we obtain fixed-parameter tractability, but even for
constant (¢ —m) and constant alphabet size, both problems are NP-hard.

Keywords: Parameterised complexity, hard string problems

1 Introduction

Consensus string problems consist in finding a (preferably long) string that is suf-
ficiently similar to a given set of strings (or to substrings of these given strings).
They are among the most classical hard string problems and have many appli-
cations, mostly in computationally biology and coding theory (see [1]). In order
to give a mathematically sound definition, we need a measure for the similarity
of strings — or rather a distance function — and a classical approach is to use
the Hamming distance dy. In this regard, the central problem considered in this
paper is to find, for given strings s1, so, ..., Sk, a string s of length m that has a
Hamming distance of at least d from some length-m substrings s}, s5, ..., s}, of
the input strings.

CLOSEST SUBSTRING (CLOSESUBSTR)

Instance: Strings s1, S, ..., Sk over some alphabet X with |s;] < £, 1 < i < k,
for some ¢ € N, and numbers m,d € N.

Question: Is there a string s with |s| = m such that, for every i, 1 <i <k, s;
has a substring s} with du(s, s}) < d?

If we require E?Zl du(s, s;) < d instead of dy(s,s;) < d, 1 < i < k, then the
problem is called CONSENSUS PATTERNS (CONSPAT).

Both CLOSESUBSTR and CONSPAT are NP-hard and they have been intensely
studied in the multivariate setting (see [2,3,[5,8] and, for a survey, [1]). The
most commonly considered parameters are k, m, d and |X|. The existing results
show that CLOSESUBSTR and CONSPAT are fixed-parameter intractable, even for

2 Markus L. Schmid

highly parameterised cases. For example, CLOSESUBSTR is W([1]-hard if parame-
terised by (k, m, d) [3] or (k,d, |X|) [8]. For CONSPAT, the situation looks slightly
better: CONSPAT parameterised by (k, m,d) or (k,|X|) is still W[1]-hard [3], but
it becomes fixed-parameter tractable if parameterised by (d, |X|) [§]. By simple
enumeration, CLOSESUBSTR and CONSPAT are in FPT with respect to (m,|X]).

In contrast to that, an NP-hard consensus string problem that exhibits a
better parameterised complexity (see [6]), is the CLOSEST STRING PROBLEM
(CLOSESTR), which is similar to CLOSESUBSTR (the “computationally harder
sister problem of CLOSESTR”, according to [1]), with the strong additional re-
striction that |si;| = [s2| = ... = |skg| = m. Analogously, we can also define
CLOSESTR as CLOSESUBSTR with the restriction (¢ —m) = 0. The NP-hardness
of CLOSESTR implies that bounding (¢ — m) by a constant does not yield poly-
nomial time solvability of CLOSESUBSTR; thus, the question arises whether some
of the positive fixed-parameter tractability results for CLOSESTR carry over to
CLOSESUBSTR and CONSPAT if (¢ — m) is considered a parameter. This paper
is devoted to an investigation of this parameter (¢ —m), which can also be seen
as an attempt towards Challenge 4 formulated in |1], which consists in finding
new parameters of CLOSESUBSTR that yield fixed-parameter tractability.

Our Contributiorﬂ We first present an exact exponential time algorithm for
CLOSESUBSTR and CONSPAT, based on an alphabet reduction, that runs in time
O*((k(£— m + 1))™]

For CLOSESUBSTR, parameter (¢ —m) alone cannot lead to fixed-parameter
tractability, since even for (¢ — m) = 0 and |X| = 2 (i.e., CLOSESTR with
binary alphabet) the problem remains NP-hard (see [5]). However, it is compar-
atively easy to show that in fact the tractable cases of CLOSESTR carry over
to CLOSESUBSTR if we additionally take (¢ — m) as parameter (the parameter
((¢ — m),d) requires a bit more work, for which we adapt an fpt-algorithm for
CLOSESTR parameterised by d presented in [6]).

For CoNSPAT, the situation is more complicated. Firstly, setting (¢ —m) =
0 makes the problem easily polynomial time solvable. In order to answer the
question about its fixed-parameter tractability with respect to ((¢ — m), |X]|) in
the negative, we conduct a new reduction for which the alphabet reduction of
the exact exponential algorithm mentioned above shall play an important role.
For parameters ((¢{ —m), k) and ((¢ —m), d) fixed-parameter tractability follows
from simple enumeration algorithms, but the case of parameter ((£ —m), m) is
open. Obviously, the combined parameter (({—m),m) is equivalent to parameter
£, which, to the knowledge of the author, has been neglected in the multivariate
analysis of CONSPAT. In this regard, we can at least note that parameter ¢ leads
to fixed-parameter tractability if any of k, d or | X is also treated as a parameter.

Due to space constraints, not all results are formally proven.

Basic Definitions The set of strings over an alphabet X' is denoted by X*, by
|v] we denote the length of a string v, alph(v) is the smallest I with v € I'*,

L A compact presentation of all results is provided by Tables [1| and
2 By O* we denote the O-notation that suppresses polynomial factors.

Consensus Strings With Small Length Difference 3

a string u is called a substring of v, if v = v'uv”; if v/ = ¢ or v = ¢, then u
is a prefiz or suffiz, respectively, where ¢ is the empty string. For a position 7,
1 < j <|v|, we refer to the symbol at position j of v by the expression v[j] and
v[j..5"] = v[ilvli + 1] ... 0[], 5 < ' < |v|. The Hamming distance for strings u
and v with |u| = |v| is defined by dy(u,v) = [{j | 1 < j < |u|,u[j] # v[j]}]-

We assume the reader to be familiar with the basic concepts of (classical)
complexity theory. Next, we shall briefly summarise the fundamentals of param-
eterised complexity (see also [4]). Decision problems are considered as languages
over some alphabet I'. A parameterisation (of I') is a polynomial time com-
putable mapping « : I'* — N and a parameterised problem is a pair (Q, k), where
Q is a problem (over I') and k is a parameterisation of I'. We usually define x
implicitly by describing which part of the input is the parameter. A parame-
terised problem (Q,) is fized-parameter tractable if there is an fpt-algorithm for
it, i.e., an algorithm that solves @ on input z in time O(f(k(z)) x p(|z|)) for
recursive f and polynomial p. The class of fixed-parameter tractable problems
is denoted by FPT. Note that if a parameterised problem becomes NP-hard if
the parameter is set to a constant, then it is not in FPT unless P = NP.

For the problems CLOSESUBSTR and CONSPAT, we consider the parameters
k, m, d, |X|, £ and (£ —m), which shall always be denoted in this way. The pa-
rameterised versions of the problems are denoted by simply listing the considered
parameters in parentheses; if a parameter is bounded by a constant, we explicitly
state the constant, e. g., CLOSESUBSTR(d, (¢ —m)) is the problem CLOSESUBSTR
parameterised by d and (¢ —m)), and CONSPAT(({ —m) = ¢, |X| =), ¢, € N,
denotes the variant of CONSPAT, where the parameters (¢ — m) and |X| are
bounded by ¢ and ¢, respectively.

We conclude this section by introducing some more convenient terminology.
Let s1,892,...,8; and m,d be an instance of CLOSESUBSTR or CONSPAT, and
let s be a fixed candidate for a solution string. We say that s is aligned with
s; at position j, 1 < j < |s;] —m + 1, in order to denote that s is compared
to the substring s;[j..j + m — 1]. Once we have fixed such an alignment, every
single position j of s is aligned with (or corresponds to) a position of every input
string, which can either be a match or a mismatch. In the case of CONSPAT, it is
also convenient to interpret position j to be aligned with the column zix5 ... xk,
where x; is the aligned symbol of s;. Every position j has then between 0 and k
mismatches with respect to its corresponding column.

2 Alphabet Reduction and Exact Exponential Algorithm

The problems CLOSESUBSTR and CONSPAT can both be solved by enumerating
all length-m strings over the input alphabet X and check for each such string
whether or not is a solution string, which can be done in time O(km(¢ —m +
1)). This yields an algorithm with running time O*(|X|™) or, since |X| < k¢,
O*((k€)™). In this section, we improve this naive algorithm by an alphabet
reduction, such that a running time of O*((k(¢ —m + 1))™) is achieved.

4 Markus L. Schmid

In order to illustrate the basic idea of this alphabet reduction, let s1,..., s €
2 m,d € N be a CLOSESUBSTR or CONSPAT instance. For every i, 1 <i <k,
we define v; = |s;| — m. Since a solution string s can be aligned with s; only
at positions 1,2,...,7; + 1, any position j of s can only be aligned with one of
the positions 7,5+ 1,...,v; + 7 of s;. Thus, regardless of the actual alignment,
the mismatches caused by position j only depend on the substrings s;[j..5 + 74].
This suggests that renaming the strings s;, such that, for every j, 1 < j < m,
the structure of the substrings s;[j..7 + vi], 1 < i < k, is preserved, yields an
equivalent instance. We sketch such a renaming procedure.

For every j, 1 < j < m, let I; = Ule alph(s;[j..J + v — 1]) and A; =
{si[j +] |1 <i < k}. Let X’ be some alphabet with |X'| = max{|I; U 4;] |
1 < j < m}. For all values j = 1,2,...,m, we injectively rename (i.e., different
symbols are replaced by different symbols) the substrings s;[j..7 + 7], 1 <@ < k,
with symbols from X’. However, since these substrings overlap, in every step j,
J > 2, the substrings s;[j..j +v; — 1] are already renamed and therefore, except
for the first step, we only have to rename the length-1 substrings s;[j +;], which
can be done as follows. For all ¢, 1 <4 <k, if s;[j + ;] € I';, then we rename
si[j +] as has been done before in the substrings s;[j..j + 7 — 1]. All the
remaining new symbols A; \ I'; are injectively renamed by some symbols from
2\ UL, alph(siljj + 7 — 1)).

For the strings sy = abcac, s3 = dbef, s3 = ghabcf and m = 3, we have
1 =2 72 =1, 73 = 3 and max{||J>_, alph(s;[j..j + i])| | 1 < j < 3} = 6. For
Y ={A,B,...,F}, the renaming described above proceeds as follows:

si=abcac ABCac ABCAc ABCAC =t
ss=dbef = DBef = DBDf = DBDE =15
s3s=ghabcef EFABcf EFABCYf EFABCE =t3

This reduces the alphabet by 2 symbols and it can be easily verified that, for
every j, 1 < j < 3, the substrings t1[j..5 + 1], t2[j..J + 12| and t3[j..5 + 73] are
isomorphic to the substrings s1[j..j + 1], s2[j.-7 + 72| and s3[j..j + 73]. From
this property, we can also conclude that the instances s1, so, s3 and %1, o, t3 are
equivalent; thus, we obtain the following result.

Lemma 1. Let P € {CLOSESUBSTR, CONSPAT} and let s1,s9,...,5;, € X*,
m,d € N be an instance of P. Then there exists an equivalent P instance
ti,tay ..yt € X7, myd, with |t;] = |si|, 1 < i < k, and |X'| is of size

max{| Ule alph(s;[7..7 + (Iss] = m)])| | 1 < j < m}. The strings t1,ta, ..., tg
can be computed in time O(|X| + kf).

An instance of CLOSESUBSTR or CONSPAT can now be solved by first reduc-
ing the alphabet to X’ by the renaming procedure and then solve the instance
by checking for every length m-string over X’ whether it is a solution string.
Since | X'| is bounded by k(¢ — m + 1), we obtain the following result:

Theorem 1. The problems CLOSESUBSTR and CONSPAT can each be solved in
time O(|X| + kf + (E(L —m+1))"km({l —m+1)) = O*((k(£ — m + 1))™).

Consensus Strings With Small Length Difference 5

This alphabet reduction can also be interpreted as a kernelisation with re-
spect to the parameters k, ({—m), m. However, with respect to these parameters,
fixed-parameter tractability can be shown more directly. Therefore, LemmalI] has
no application in proving fixed-parameter tractability results, but it shall be an
important tool later on in Section [4] for proving a hardness result.

3 Closest Substring

The parameterised complexity of CLOSESUBSTR is well understood with respect
to parameters k, m, d, |X| and ¢ (see left side of Table E|

[k[m[d][2][¢] Result [Reference]

[k[m[d][][(¢ — m)] Results | Ref.

— : : ; IjW Elfl-:ard Ig} == 2 0 NP-hard|Prop. [1
- Pl ||~ P FPT |Thm.[2
p|p|p| — |~ |W[1]-hard 3|

— -Ip|-| - P FPT |Thm.[2
-p|-|p|-| FPT Trivial —— — BPT T B
p|-|p| 2 |-|W][1]-hard 18] P p 1.

Table 1. Old and new results about CLOSESUBSTR.

In the following, we shall take a closer look at the parameter (£ — m). If
we restrict the parameter (¢ —m) in the strongest possible way, i.e., requiring
(¢ —m) = 0, then the input strings and the solution string have the same
length; thus, CLOSESUBSTR collapses to the problem CLOSESTR. Unfortunately,
CLOSESTR is NP-hard even if | ¥| = 2 (see [5]), which shows the fixed-parameter
intractability of CLOSESUBSTR with respect to (£ —m) and | X|:

Proposition 1. CLOSESUBSTR(({ —m) =0, |X| = 2) is NP-hard.

However, as we shall see next, adding one of k, m or d to the parameter
(£ —m) yields fixed-parameter tractability. For the parameters (k, (¢ —m)) and
(m, (¢ — m)) this can be easily concluded from known results.

Theorem 2. CLOSESUBSTR(k, (¢ —m)), CLOSESUBSTR(m, ({ —m)) € FPT.

Proof. Every input string s; has at most (¢ — m + 1) substrings of length m,
so the number of possible alignments of a candidate solution string is at most
(¢ —m + 1)*. After an alignment is chosen, the problem is equivalent to solving
CLOSESTR, which is fixed-parameter tractable if parameterised by k (see [6]).
This proves the first statement.

If both m and (£ — m) are parameters, then also ¢ is a parameter. From
CLOSESUBSTR(Y) € FPT (see [2]), the second statement follows. O

3 In all tables, p means that the label of this column is treated as a parameter and
an integer entry means that the result holds even if this parameter is set to the
given constant; problems that are hard for W[1] are not in FPT (under complexity
theoretical assumptions, see [4]).

6 Markus L. Schmid

The only case left is the one where (¢ —m) and d are parameters. In compari-
son to the cases discussed above, an fpt-algorithm for this variant of the problem
is more difficult to find. It turns out that an fpt-algorithm for CLOSESTR(d) pre-
sented in [6] can be adapted to the problem CLOSESUBSTR(d, (£ —m)).

Theorem 3. CLOSESUBSTR(d, (¢ —m)) € FPT.

Proof. Let s1,89,...,5; € X* and m,d € N be a CLOSESUBSTR instance. If a
solution string s exists, then it must be possible to construct s by changing at
most d symbols in some length-m substring of some s;. This yields a search tree
approach: we start with a length-m substring of s; and then we branch into m|X|
new nodes by considering all possibilities of changing a symbol of s into another
one. We repeat this procedure d times and for every such constructed string, we
check in polynomial time whether it is a solution string. We shall now improve
this procedure such that the branching factor is bounded by (¢ —m + 1)(d + 1),
which results in a search tree of size ((¢ —m + 1)(d + 1))<.

In a first step, we branch from the root into the at most (¢ —m+1) substrings
of s1. After that we branch in every node according to the following rule. Let s’
be the string at the current node. We first check whether s’ is a solution string
in time O(k({ — m + 1)m). If s’ is a solution string, then we can stop. If, on
the other hand, s’ is not a solution string, then there exists an input string s;
such that all its length-m substrings have too large a distance from s'. Let s/
be the length-m substring of s; that is aligned to s (i.e., the assumed solution
string). In order to transform s’ into s, we have to change s'[§] into s}[j] for a
position j, 1 < j < m, with §'[j] # si[j] and s,[j] = s[j] (since otherwise this
modification cannot lead to s). Since dy(s, s;) < d, there are at most d positions
J with si[j] # s[j]; thus, if we choose any d + 1 positions among all positions j
with s'[j] # s;[j], we will necessarily also select one that satisfies the properties
described above (note that there are at least d + 1 positions with s'[j] # s;[4],
since dy(s’, s;) > d). Consequently, for some A C {j | 1 < j < m,s'[j] # si[j]},
|A] = d+1, and every j € A, we construct a new string from s’ by changing s'[7]
to s;[j]. This procedure is correct under the assumption from above that s} is
aligned with s in a solution. Since we have no knowledge of the correct solution
alignment, we have to construct d + 1 new strings for each of the ({ —m + 1)
substrings of s;, which results in a branching factor of (¢ —m + 1)(d + 1).

The total running time of this procedure is O(({ —m + 1)(({ —m + 1)(d +
)4kl —m+1)m) = O((£ — m +1)(d+ 1)) k(l —m + 1)m). 0

We conclude this section by some remarks about Theorem [3| The fundamen-
tal idea of the algorithm, i.e., changing only d + 1 symbols in every branching,
is the same as for the fpt-algorithm for CLOSESTR of [6]. However, to demon-
strate that if (¢ —m) is also parameter, then this idea works for the more general
problem CLOSESUBSTR, to0, it is necessary to present it in a comprehensive way.

In every node, the construction of the successor nodes depends on some s;,
which we are free to choose. Furthermore, the successor nodes can be partitioned
into (¢ —m + 1) groups of (d + 1) successors that all correspond to the same
choice of the length-m substring of s;. Thus, in the d+ 1 branches of each group,

Consensus Strings With Small Length Difference 7

whenever successors are constructed again with respect to s;, we can always
choose the same substring, which results in a branching factor of only d + 1.
Moreover, if we can choose between several s;’s, then we could always select
one for which the substring has already been chosen in some predecessor. This
heuristic can considerably decrease the size of the search tree.

4 Consensus Patterns

Apart from CONSPAT(d, |X|) € FPT (see [8]), CONSPAT shows a comparatively
unfavourable fixed-parameter behaviour as CLOSESUBSTR (left side of Table 2).

lk‘m‘d‘((—m)HEHZ‘Results‘ Ref. ‘
lk‘m‘dHEH Results ‘ Ref. ‘ —“|PI-| P — P ?:I;?Fl OPGTEPI"O;)- 4]
p|-[-] 2 [W[1]-hard] [3] o - (PP m.
5[= |- |p| FPT | Thm.pp
p|p|p| — |W[1]-hard| 3]
_ _ FPT Trivial —|—|P - — |P FPT Thm. |5
L o e Igl == 6 |5 |-|NP-hard| Thm.[f
PP ol A & - |-| FPT Thm. |6
) & D - |-| FPT Thm. |6

Table 2. Old and new results about CONSPAT.

We note that the parameter ¢ is missing from the left side of Table [2| and,
to the knowledge of the author, it seems as though this parameter has been
neglected in the multivariate analysis of the problem CONSPAT. Unfortunately,
we are not able to answer the most important respective question, i.e., whether
or not CONSPAT(¢) € FPT. Since ¢ is a trivial upper bound for the parameters
m and (£ —m), we state this open question in the following form:

Open Problem 4 Is CONSPAT(¢,m, (£ —m)) in FPT?

For all other combinations of parameters including ¢, fixed-parameter tractabil-
ity can be easily shown:

Theorem 5. CONSPAT(|X|,¢), CoNsPAT(k,£), ConsPAT(d,¢) € FPT.

Proof. The problem CONSPAT(|X|, m) is in FPT (see left side of Table[2)). Since
m < ¢ and |X| < lk, this directly implies the first two statements.

Obviously, £ bounds (¢ — m). Furthermore, CONSPAT((¢ —m),d) € FPT (see
Theorem |§| below), which proves the third statement. a

4.1 The Parameter (£ — m)

We shall now turn to the parameter (¢ — m). Unlike as for CLOSESUBSTR, the
NP-hardness of CONSPAT is not preserved if (¢ — m) is bounded by 0. More

8 Markus L. Schmid

precisely, if |s1] = |s2] = ... = |sg] = m, then the length-m string s that
minimises Zle du(s, s;) is easily constructed by setting s[j], 1 < j7 < m, to one
of the symbols that occur the most often among the symbols s1[j], s2[j], . - - , sk[J]-
Nevertheless, similar to CLOSESUBSTR, CONSPAT((¢{ —m) = ¢, |X| =) is
NP-hard, too, for small constants ¢, ¢’ € N (see Theore. Before we prove this
main result of the paper, we consider the other combinations of parameters.

Theorem 6. ConsPaT(k, (¢ —m)), ConsPAT(d, (¢ —m)) € FPT.

Proof. We can solve CONSPAT by first choosing length-m substrings s/, sh, ..., s},
of the input strings and then compute in polynomial time a length-m string s that
minimises Zle dn(s, s}) as described above. Since there are at most (£ —m+1)*
possibilities of choosing the substrings, the first statement is implied.

In order to prove the second statement, we observe that if £ < d, then we can
solve CONSPAT(d, (¢ —m)) by the fpt-algorithm for CONSPAT(k, (¢ —m)). If, on
the other hand, k > d, then the possible solution string s must be a substring
of some input string s;, since otherwise Zle dn(s,s}) > k > d. Thus, we only
have to check the (¢ —m + 1)k length-m substrings of the input strings. O

If CoNSPAT is parameterised by (¢ — m) and m, then we arrive again at
the problem already mentioned in Open Problem [l Consequently, there are
only two cases left open: the parameter (¢ — m) and the combined parameter
((¢£ —m),|X]). We answer the question whether for these cases we have fixed-
parameter tractability in the negative, by showing that CONSPAT remains NP-
hard, even if (¢ —m) and |X| are small constants.

Theorem 7. CONSPAT((¢ —m) = 6,|X| = 5) is NP-hard.

The existing reductions proving hardness results for CONSPAT (see [3]) con-
struct (’;) strings representing the same graph G = (V, E) by listing its edges.
A solution string then selects an edge from each string such that the selected
edges form a k-clique. Thus, it must be possible to align the solution string with
|E| different substrings. This means that £ — m necessarily depends on |E| and
therefore this general idea of reduction is unsuitable for our case.

We choose a different approach, but we also use a graph problem, for which
we first need the following definitions. Let G = (V, E) be a graph with V' =
{v1,v9,...,05}. A vertex s is the neighbour of a vertex t if {¢,s} € E and
Nglt] = {s | {t,s} € E} U{t} is called the closed neighbourhood of ¢t (or simply
neighbourhood, for short). If, for some k € N, every vertex of G has exactly k
neighbours, then G is k-regular. A perfect code for G is a subset C C V with
|Ng[t] N C| =1, t € V. Next, we define the problem to decide whether or not a
given 3-regular graph has a perfect code, which is NP-hard (see [7]):

3-REGULAR PERFECT CODE (3RPERCODE)
Instance: A 3-regular graph G.
Question: Does G contain a perfect code?

We now define a reduction from 3RPERCODE to CONSPAT. To this end, let

Consensus Strings With Small Length Difference 9

G = (V,E) be a 3-regular graph with V' = {vy,vs,...,v,} and, for every i,
1 <i <mn, N; is the neighbourhood of v;. In order to define the neighbourhoods
in a more convenient way, we use mappings @, : {1,2...,n} — {1,2...,n},
1 < r < 4, that map an i € {1,2...,n} to the index of the r'!' vertex (with
respect to some arbitrary order) of neighbourhood N;, i.e., for every i, 1 < i < n,
Ni = {061 (1) Vpa () Vs (i) Vs (i) -

We now transform G into strings over X' = V U {x}. The size of |X| ob-
viously depends on |V| and therefore is not constant; we shall later show how
our construction can be modified in such a way that an alphabet of size 5 is
sufficient. For every i, 1 <i < n, N; is transformed into s; = % tiitio.. . tin %6
with ;i = v, (i) X Vg (i) * Vs (i) * Vpu(i) * and, for every j, 1 < j < n, i # j,
tij = a1 x g *azxayg %, where, for every r, 1 <r <4, a, = v, 3 if v, ;) € Nj
and a,. = x otherwise. Furthermore, for every r, 1 < r < 4, we construct a string
Gr =% Vg (1) * Vg, (2) X" - Vg (n) %' - Moreover, m = 8n+ 6 and d = 4n* + 11n.
Note that ¢ = 8n + 12; thus, (¢ — m) = 6. The CONSPAT instance consists now
of the strings s1, so,...,s, and n + 1 copies of each of the strings ¢,, 1 <r < 4.

Let us explain this reduction in an intuitive way and illustrate it with an
example. For every i, 1 <14 < n, N; is completely represented in the string s; by
tii = Vg, (i) X Vgy (i) * Vpy (i) * Vpy (i) *- Furthermore, every t; ; with i # j contains
exactly the vertices from N; N Nj, but they are listed according to Ny, i. e., every
t;,; corresponds to the list vy, (5 * Vg, (i) * Vpy (i) ¥V, (i) * in which all elements
not in N; have been erased (i.e., replaced by «). In the solution strings, there
will be n special positions, each of which is aligned with position 1,3,5 or 7
of ¢; j; thus, selecting one of the 4 possible vertices of ¢; ; (or x if no vertex is
present). If v, (;y is selected from ¢; ;, then also the r*h vertex in every tij, 1 # 7,
must be selected. Due to the order in which the vertices are listed, this is either
the exact same vertex v, (;) in case that v, ;) € N; or x otherwise.

The 3-regularity of G allows us to bound [¢; ;|; thus, bounding (¢ — m) as
well. Moreover, it implies that in every s; there are exactly 16 occurrences of
vertices, which we exploit in the definition of the distance bound d. We illustrate
these definitions with an example: let N1 = (v1,v4, U5, vs), Ny = (vs, vg, Vg, V1),
N5 = (v1,vs,v10,v4), Ng = (v1,vs,v11,v15). Then s; =0 t1 1t19.. .1, x5 with

11,1 = V1 %V kU5 *Vg*, 114 =V1*xVUg*kVUskkx, t15 =01 VUgkVUs5k*x*,
11,8 = U1 %k kxk Vg *, 11,0 = *k Vg x Kk k*, 11,10 = X * X% U5 xx %,

11,11 = ****xx X Vg %, 11,15 = Xk Kk Kk Kk Vg * .

In addition to these strings s;, we use n + 1 copies of the length-m strings ¢,

q1 = *6 V1 *7 Vo1(2) *7 . Voi(n) *7 s
Qo = *6 V4 *7 Vs (2) *7 e Voo (n) *7 s
q3 = *6 Vs * Vo3 (2) *7 ce Vps(n) *7 s
q4 = *6 (U3 *7 Vo4 (2) *7 . Vou(n) *7 N

which contain the neighbourhoods in form of columns separated by symbols
and serve the purpose of enforcing a certain structure of the solution string.

10 Markus L. Schmid

Before moving on, we first introduce more convenient notations in order to
facilitate the following technical statements. Since the strings ¢, have a length of
m, the alignment of a candidate solution string s only concerns the strings s;. For
every j, 1 < j < 'm, the weight of position j (of s) is the number of mismatches
between s[j] and the corresponding symbols in the input strings. Hence, s is a
solution string if its total weight, i.e., the sum of the weights of all positions, is
at most d. For every i, 1 <14 < n, we define the position é; = 8(: — 1) + 7, i.e.,
the 0; are the positions of the strings ¢, that contain a symbol from V and the
positions of the strings s;, where a substring ¢;; starts.

We have to show that G has a perfect code if and only if there is a solution
string for the CONSPAT instance. The next lemma proves the only if direction,
which is the easier one.

Lemma 2. If G has a perfect code, then there exists a solution string.

How a solution string translates into a perfect code is more difficult to show.
To this end, we first observe that the string s with the lowest possible weight
necessarily adheres to a certain structure, which, in conjunction with the fact
that it has a weight of at most d, allows then to extract a perfect code for G.

Lemma 3. If there exists a solution string, then G has a perfect code.

Proof. Without loss of generality, we assume that s and the way it is aligned
results in a total weight of d’ < d that is minimal among all possible total weights.
By a sequence of separate claims, we show that s has a certain structure.

Claim: s[6;] € Ny, for every i, 1 <i < n.

Proof of Claim: We assume to the contrary that, for some i, 1 <i < n, s[§;] ¢ N;.
The symbol s[d;] corresponds to a symbol from N; in every ¢, and to a symbol
from N; U {*} in every s; (the latter is due to the fact that position d; of s must
be aligned with a position of ¢;;). Thus, position §; of s contributes at least
4n + 4 to the total weight, if s[0;] = x and at least 5n +4, if s[d;] € V' \ N;. If we
change s[d;] to vy, (;y € Ny, then it matches the corresponding symbol in all n+1
copies of ¢;. Hence, it contributes at most (4n+4) — (n+1) +n = 4n + 3 to the
total weight, if s[0;] = x and at most (bn+4) — (n+1) = 4n+3, if s[d;] € V\ N;.
This is a contradiction to the minimality of d’. O

Claim: s[j] = *, for every j, 1 < j < m, with j ¢ {§1,02,...,0,}.

Proof of Claim: If, for some j, 1 < j < m, with j ¢ {01,02,...,0,}, s[j] # *,
then position j contributes at least 4n+4 to the total weight, since it constitutes
a mismatch with the corresponding symbol in all strings ¢,. If we change s[j]
to *, then position j contributes a weight of at most n, since it matches with
respect to all strings ¢, and can only have mismatches with respect to the n
strings s;. This is a contradiction to the minimality of d'.]

Claim: For every i, 1 < i < n, s is aligned with s; at position 1,3,5 or 7.

Proof of Claim: The only possible positions where s can be aligned with some
s; are 1,2,...,7. If s is aligned with some s; at position 2,4 or 6, then, for every

Consensus Strings With Small Length Difference 11

j, 1 < j < n, position §; corresponds to the ond gth or 60 position of t;.;, which
is *. Since s[d;] € N;, 1 < j < n, all n occurrences of symbols from V in s cause
mismatches. Moreover, all 16 occurrences of symbols from V in s; correspond
to occurrences of x in s. This yields n + 16 mismatches between s and s;. If s is
aligned at a position 1,3,5 or 7, then it is still possible that all the n symbols
at positions 6;, 1 < j < n, cause mismatches, but since 4 of these positions
correspond to occurrences of symbols from V in s;, there are only at most 12
additional mismatches between occurrences of symbols from V in s; and * in s.
This is a contradiction to the minimality of d’. O

Consequently, s = *0 vy, *7 Vpy %7 < Up, *7 with vp, € N;, 1 <9 < n, and s is
aligned with position 1,3,5 or 7 of s;, 1 < ¢ < n. Next, we show that d’ = d.
Claim: d’' = d.

Proof of Claim: Every position §; of s matches with the corresponding symbol
of exactly one of the 4 strings ¢,., 1 < r < 4, and therefore causes 3 mismatches.
All other positions j ¢ {61,d2,...,d,} are matches with respect to the strings
qr- Thus, the weight caused by the mismatches between s and the strings ¢, is
exactly 3(n+ 1)n. This implies that a weight of at most d —3(n+1)n = n? +8n
is caused by mismatches between s and all strings s;. However, the minimum
number of mismatches between s and any fixed string s; is (n —4) 4+ 12 = n+ 8,
i.e., at most 4 of the n positions §; of s match the corresponding symbol in s;
and the other (n — 4) positions ; cause mismatches with x, and the remaining
12 occurrences of symbols from V' in s; are mismatches with * in s). Hence, the
minimum weight due to the strings s; is n(n +8) = n% + 8n, too; thus, d’ = d. O

Since v,, € N;, 1 < ¢ < n, every symbol v, can be interpreted as a vertex
selected from N;. In order to conclude that these vertices {vp,,vp,,...,Up, }
form a perfect code, we have to show that if a vertex is select from N;, then
it must also be selected from all neighbourhoods in which it is contained, i.e.,
vp, € Nj implies v,, = v,;, which is established by the following claim.

Claim: If s is aligned with s; at position v € {1,3,5,7}, then, for every j,
1<j <n,with v; € N;, vy, = v, (;), Where r = “7+1

Proof of Claim: We first assume that s is aligned with s; at position v = 1. This
means that, for every j, 1 < j < n, the position d; of s, which carries the symbol
vp,, is aligned with position d; of s;. By the structure of s;, we know that exactly
the 4 positions d; of s; with v;; € N; carry the symbol v, (;), whereas all other
n — 4 positions §;» with v~ ¢ N; carry the symbol *. In particular, this implies
that there are at least n — 4 mismatches due to the positions J;, 1 < j < n, of s.
Furthermore, all other 12 occurrences of symbols from V in s; (i. e., the ones not
corresponding to a position ;) constitute mismatches with + in s. Since the total
number of mismatches between s and s; is at most (n — 4) + 12, the 4 positions

;o of s; with vy € N; must be matches and therefore s[d;/] = Vp,) = Vg, (i)
The cases u € {3,5,7} can be handled analogously; the only difference is that
positions d; of s are aligned with positions d; + (v — 1) of s;. O

By the claims from above, C' = {vp,, Up,, ..., Vp, } CV with v,, € N;, 1 < i <n.

12 Markus L. Schmid

If, for some j, 1 < j <n, |[N; NC| > 1, then there exists an i, 1 <i < n, i # j,
such that v,, € N; and v,; € N; with v, # v,,; a contradiction to the previous
claim. Consequently, C' is a perfect code, which concludes the proof. a

In order to complete the proof of Theorem [7] it remains to show how the al-
phabet size can be bounded by 5. To this end, we first slightly modify the reduc-
tion by adding substrings +® between substrings ¢; ; and ¢; j 41 of s; and between
substrings vy, (j) % and vy, (j11)* Of G, Le., 85 = K0t 140t 040 Lty 5 %0,
1 <i<mn,and g = *0v, ()% v, 2% %0 ovg yx7, 1 < 1 < 4 Fur-
thermore, we set m = 8n+ 6 +6(n — 1) = 14n and d = 4n? + 11n. We note that
£=8n+1246(n — 1) = 14n + 6 and therefore (£ —m) = 6. This reduction is
still correct (in fact, the proofs apply in the same way).

Due to the newly introduced substrings «® of the modified reduction, for every
4.1 <j <m, Ui, alph(s;[j..j + (|si] =m)]) = Niy U{x}, for some ¢/, 1 <4’ < n.
Hence, for every j, 1 < j <m, |U;—, alph(s;[j..J + (|s;| = m)]) U{g.[j] | 1 <r <
4}| = 5; thus, by Lemma [1} there is an equivalent instance over an alphabet of
size 5 (with (¢ —m) = 6), which can be computed in polynomial time.

While Theorem [7| proves the fixed-parameter intractability of CONSPAT((¢ —
m), |X|) (assuming P # NP), it leaves a gap with respect to smaller constant
bounds for (¢ —m) and |X|. In order to improve the reduction with respect to
(£—m), the problem HITTING SET comes to mind, which is still NP-hard if every
set has 2 elements. However, for this problem it is not clear how to cater for the
size bound of the desired hitting set. We conjecture that an analogous reduction,
with slightly lower (¢ — m), from NEGATION FREE 1-IN-3 3SAT is possible, but
the proof would be more involved, since we do not have the regularity property.
The parameter | X| is probably more interesting, since for applications in compu-
tational biology the alphabet size is typically 4. In this regard, the parameterised
complexity of CONSPAT((¢ — m),|X| = 4) is still open.

References

1. L. Bulteau, F. Hiiffner, C. Komusiewicz, and R. Niedermeier. Multivariate algorith-
mics for np-hard string problems. FATCS Bulletin, 114:31-73, 2014.

2. P. A. Evans, A. D. Smith, and H. T. Wareham. On the complexity of finding common
approximate substrings. Theoretical Computer Science, 306:407-430, 2003.

3. M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability
of motif search problems. Combinatorica, 26:141-167, 2006.

4. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag New
York, Inc., 2006.

5. M. Frances and A. Litman. On covering problems of codes. Theory of Computing
Systems, 30:113—-119, 1997.

6. J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for
closest string and related problems. Algorithmica, 37:25-42, 2003.

7. J. Kratochvil and M. Krivdnek. On the computational complexity of codes in graphs.
In Proc. 13th Symposium on Mathematical Foundations of Computer Science, MFCS
1988, volume 324 of LNCS, pages 396-404, 1988.

8. D. Marx. Closest substring problems with small distances. SIAM Journal on Com-
puting, 38:1382-1410, 2008.

	Finding Consensus Strings With Small Length Difference Between Input and Solution Strings
	Introduction
	Alphabet Reduction and Exact Exponential Algorithm
	Closest Substring
	Consensus Patterns
	The Parameter (- m)

