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Abstract. We consider the (d-dimensional) array counterpart of string
insertion and deletion grammars and use the operations of array insertion
and deletion in the framework of P systems where the applicability of the
rules depends on the membrane region. In this paper, we especially focus
on examples of two-dimensional array insertion and deletion P systems
and show that we can already obtain computational completeness using
such P systems with a membrane structure of tree height of at most two
and only the targets here, in, and out.

1 Introduction

In the string case, the insertion operation was first considered in [13, 14] and after
that related insertion and deletion operations were investigated, e.g., in [15, 16].
Backed by linguistic motivation, checking of insertion contexts was considered
in [17]. These contextual grammars start from a set of strings (axioms), and
new strings are obtained by using rules of the form (s, c), where s and c are
strings to be interpreted as inserting c in the context of s, either only at the
ends of strings (external case, [17]) or in the interior of strings ([20]). The
fundamental difference between contextual grammars and Chomsky grammars
is that in contextual grammars we do not rewrite symbols, but we only adjoin
symbols to the current string, i.e., contextual grammars are pure grammars.
Hence, among the variants of these grammars as, for example, considered in
[3–5, 21, 22, 18], the variant where we can retain only the set of strings produced
by blocked derivations, i. e., derivations which cannot be continued, is of special
importance. This corresponds to the maximal mode of derivation (called t-mode)
in cooperating grammar systems (see [1]) as well as to the way results in P
systems are obtained by halting computations; we refer the reader to [19, 23]
and to the web page [24] for more details on P systems.
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With the length of the contexts and/or of the inserted and deleted strings
being big enough, the insertion-deletion closure of a finite language leads to
computational completeness. There are numerous results establishing the de-
scriptional complexity parameters sufficient to achieve this goal; for an overview
of this area we refer to [28, 27]. In [12] we have shown that we can also obtain
computational completeness with using only insertions and deletions of just one
symbol at the ends of a string using the regulating framework of P systems,
where the applications of the rules depend on the membrane region.

The contextual style of generating strings was extended to d-dimensional
arrays in a natural way (see [11]): a contextual array rule is a pair (s, c) of
two arrays to be interpreted as inserting the new subarray c in the context of
the array s provided that the positions where to put c are not yet occupied
by a non-blank symbol. With retaining only the arrays produced in maximal
derivations, interesting languages of two-dimensional arrays can be generated.
In [8], contextual array rules in P systems are considered. A contextual array
rule (s, c) can be interpreted as array insertion rule; by inverting the meaning of
this operation, we get an array deletion rule (s, c) deleting the subarray c in the
relative context of the subarray s.

In this paper, we exhibit some illustrative examples of P systems with (two-
dimensional) array insertion rules (corresponding to contextual array rules). The
main result of the paper exhibits computational completeness of (two-dimensio-
nal) array insertion and deletion P systems.

2 Definitions and Examples

The set of integers is denoted by Z, the set of non-negative integers by N. An
alphabet V is a finite non-empty set of abstract symbols. Given V , the free
monoid generated by V under the operation of concatenation is denoted by
V ∗; the elements of V ∗ are called strings, and the empty string is denoted by λ;
V ∗\{λ} is denoted by V +. The family of recursively enumerable string languages
is denoted by RE. For more details of formal language theory the reader is
referred to the monographs and handbooks in this area such as [7] and [26].

2.1 A General Model for Sequential Grammars

In order to be able to introduce the concept of membrane systems (P systems)
for various types of objects, we first define a general model ([10]) of a grammar
generating a set of terminal objects by derivations where in each derivation step
exactly one rule is applied (sequential derivation mode) to exactly one object.

A (sequential) grammar G is a construct (O,OT , w, P,=⇒G) where O is a
set of objects, OT ⊆ O is a set of terminal objects, w ∈ O is the axiom (start
object), P is a finite set of rules, and =⇒G⊆ O×O is the derivation relation of G.
We assume that each of the rules p ∈ P induces a relation =⇒p⊆ O × O with
respect to =⇒G fulfilling at least the following conditions: (i) for each object
x ∈ O, (x, y) ∈ =⇒p for only finitely many objects y ∈ O; (ii) there exists a
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finitely described mechanism (as, for example, a Turing machine) which, given
an object x ∈ O, computes all objects y ∈ O such that (x, y) ∈ =⇒p. A rule
p ∈ P is called applicable to an object x ∈ O if and only if there exists at least
one object y ∈ O such that (x, y) ∈ =⇒p; we also write x =⇒p y. The derivation
relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The reflexive and

transitive closure of =⇒G is denoted by
∗

=⇒G.
In the following we shall consider different types of grammars depending on

the components of G, especially on the rules in P ; these may define a special
type X of grammars which then will be called grammars of type X.

Usually, the language generated by G (in the ∗-mode) is the set of all terminal
objects (we also assume v ∈ OT to be decidable for every v ∈ O) derivable from

the axiom, i.e., L∗ (G) =
{
v ∈ OT | w

∗
=⇒G v

}
. The language generated by G

in the t-mode is the set of all terminal objects derivable from the axiom in

a halting computation, i.e., Lt (G) =
{
v ∈ OT |

(
w

∗
=⇒G v

)
∧ @z (v =⇒G z)

}
.

The family of languages generated by grammars of type X in the derivation
mode δ, δ ∈ {∗, t}, is denoted by Lδ (X)..

Let G = (O,OT , w, P,=⇒G) be a grammar of type X. If for every G of type
X we have OT = O, then X is called a pure type, otherwise it is called extended.

2.2 String grammars

In the general notion as defined above, a string grammar GS is represented as(
(N ∪ T )

∗
, T ∗, w, P,=⇒P

)
where N is the alphabet of non-terminal symbols, T

is the alphabet of terminal symbols, N ∩ T = ∅, w ∈ (N ∪ T )
+

is the axiom, P
is a finite set of string rewriting rules, and the derivation relation =⇒GS

is the
classic one for string grammars defined over V ∗×V ∗, with V := N∪T . As classic
types of string grammars we consider string grammars with arbitrary rules of
the form u → v with u, v ∈ V ∗ and context-free rules of the form A → v with
A ∈ N and v ∈ V ∗. The corresponding types of grammars are denoted by ARB
and CF , thus yielding the families of languages L (ARB) and L (CF ), i.e., the
family of recursively enumerable languages RE and the family of context-free
languages, respectively.

In [12], left and right insertions and deletions of strings were considered; the
corresponding types of grammars using rules inserting strings of length at most
k and deleting strings of length at most m are denoted by DmIk.

2.3 Array grammars

We now introduce the basic notions for d-dimensional arrays and array gram-
mars in a similar way as in [9, 11]. Let d ∈ N; then a d-dimensional array A
over an alphabet V is a function A : Zd → V ∪ {#}, where shape (A) ={
v ∈ Zd | A (v) 6= #

}
is finite and # /∈ V is called the background or blank

symbol. We usually write A = {(v,A (v)) | v ∈ shape (A)}. The set of all d-di-
mensional arrays over V is denoted by V ∗d. The empty array in V ∗d with empty
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shape is denoted by Λd. Moreover, we define V +d = V ∗d \ {Λd}. Let v ∈ Zd,
v = (v1, . . . , vd); the norm of v is defined as ‖v‖ = max {|vi| : 1 ≤ i ≤ d}; the
translation τv : Zd → Zd is defined by τv (w) = w+v for all w ∈ Zd. For any ar-
ray A ∈ V ∗d we define τv (A), the corresponding d-dimensional array translated
by v, by (τv (A)) (w) = A (w − v) for all w ∈ Zd. The vector (0, . . . , 0) ∈ Zd is
denoted by Ωd.

Usually[2, 25, 29] arrays are regarded as equivalence classes of arrays with
respect to linear translations, i. e., only the relative positions of the symbols
different from # in the plane are taken into account: the equivalence class [A]
of an array A ∈ V ∗d is defined by

[A] =
{
B ∈ V ∗d | B = τv (A) for some v ∈ Zd

}
.

The set of all equivalence classes of d-dimensional arrays over V with respect to
linear translations is denoted by

[
V ∗d

]
etc.

A d-dimensional array grammar GA is represented as([
(N ∪ T )

∗d
]
,
[
T ∗d

]
, [A0] , P,=⇒GA

)
where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, N∩T = ∅,A0 ∈ (N ∪ T )

∗d
is the start array, P is a finite set of d-dimen-

sional array rules over V , V := N ∪T , and =⇒GA
⊆
[
(N ∪ T )

∗d
]
×
[
(N ∪ T )

∗d
]

is the derivation relation induced by the array rules in P .
A “classical” d-dimensional array rule p over V is a triple (W,A1,A2) where

W ⊆ Zd is a finite set and A1 and A2 are mappings from W to V ∪ {#}. In the
following, we shall also write A1 → A2, because W is implicitly given by the
finite arrays A1,A2. We say that the array C2 ∈ V ∗d is directly derivable from
the array C1 ∈ V +d by (W,A1,A2) if and only if there exists a vector v ∈ Zd such
that C1 (w) = C2 (w) for all w ∈ Zd−τv (W ) as well as C1 (w) = A1 (τ−v (w)) and
C2 (w) = A2 (τ−v (w)) for all w ∈ τv (W ) , i. e., the subarray of C1 corresponding
to A1 is replaced by A2, thus yielding C2; we also write C1 =⇒p C2. Moreover we
say that the array B2 ∈

[
V ∗d

]
is directly derivable from the array B1 ∈

[
V +d

]
by

the d-dimensional array production (W,A1,A2) if and only if there exist C1 ∈ B1
and C2 ∈ B2 such that C1 =⇒p C2; we also write B1 =⇒p B2.

A d-dimensional array rule p = (W,A1,A2) in P is called monoto-
nic if shape (A1) ⊆ shape (A2) and #-context-free if shape (A1) = {Ωd};
if it is #-context-free and, moreover, shape (A2) = W , then p is called
context-free. A d-dimensional array grammar is said to be of type X,
X ∈ {d-ARBA, d-MONA, d-#-CFA, d-CFA} if every array rule in P is
of the corresponding type, the corresponding families of array languages
of equivalence classes of d-dimensional arrays by d-dimensional array gram-
mars are denoted by L∗ (X). These families form a Chomsky-like hierar-
chy, i.e., L∗ (d-CFA) $ L∗ (d-MONA) $ L∗ (d-ARBA) and L∗ (d-CFA) $
L∗ (d-#-CFA) $ L∗ (d-ARBA). Two d-dimensional arrays A and B in

[
V ∗d

]
are called shape-equivalent if and only if shape (A) = shape (B).

Two d-dimensional array languages L1 and L2 from
[
V ∗d

]
are called shape-

equivalent if and only if {shape (A) | A ∈ L1} = {shape (B) | B ∈ L2}.
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2.4 Contextual, Insertion and Deletion Array Rules

A d-dimensional contextual array rule (see [11]) over the alphabet V is a pair
of finite d-dimensional arrays ((W1,A1) , (W2,A2)) where W1 ∩ W2 = ∅ and
shape (A1) ∪ shape (A2) 6= ∅. The effect of this contextual rule is the same
as of the array rewriting rule (W1 ∪W2,A1,A1 ∪ A2), i.e., in the context of
A1 we insert A2. Hence, such an array rule ((W1,A1) , (W2,A2)) can also be
called an array insertion rule, and then we write I ((W1,A1) , (W2,A2)); if
shape (Ai) = Wi, i ∈ {1, 2}, we simply write I (A1,A2). Yet we may also in-
terpret the pair ((W1,A1) , (W2,A2)) as having the effect of the array rewriting
rule A1∪A2 → A1, i.e., in the context of A1 we delete A2; in this case, we write
D ((W1,A1) , (W2,A2)) or D (A1,A2).

Let GA be a d-dimensional array grammar
([
V ∗d

]
,
[
T ∗d

]
, [A0] , P,=⇒GA

)
with P containing array insertion and deletion rules. Then we can consider the
array languages L∗ (GA) and Lt (GA) generated by GA in the modes ∗ and
t, respectively; the corresponding families of array languages are denoted by
Lδ (d-DIA), δ ∈ {∗, t}; if only array insertion (i.e., contextual) rules are used,
we have the case of pure grammars, and we also write Lδ (d-CA). For interesting
relations between the families of array languages L∗ (d-CA) and Lt (d-CA) as
well as L∗ (d-#-CFA) and L∗ (d-CFA) we refer the reader to [11].

As a first example we illustrate that the generative power of contextual array
grammars can exceed that of context-free array grammars (also see [8], [11]):

Example 1. Consider the set RH of hollow rectangles with arbitrary side lengths
p, q ≥ 3 (over the singleton alphabet {a}). By extending arguments used
for similar problems in [6], it is easy to see that there cannot exist a gram-
mar of type d-CFA generating an array language which is shape-equivalent
to RH ; on the other hand, the following grammar of type 2-CA yields such
an array language in the t-mode, i.e., shape (Lt (G1)) = shape (RH): G1 =(
{a, b}∗2 , {a, b}∗2 , P,A0,=⇒G1

)
with A0 =

a
a a

; for a graphic representation

of the rules in P , we use the convention that the symbols from the two arrays
A1,A2 in the contextual array production I (A1,A2) are shown in one array and
those from A1 are marked by a box frame:

p1 =
a
a
a
, p2 = a a a , p3 =

b b
a
a

, p4 =
b

a a b
,

p5 = b b b , p6 =

b

b

b

, p7 =

b b a

b

b

.

Starting from the axiom A0, we can go up using the rule p1 p − 3 times
and go to the right using the rule p2 q − 3 times, where p, q ≥ 3 can be chosen
arbtirarily. Then we turn to the right from the vertical line by once using the rule
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p3 and turn up from the horizontal line by once using the rule p4, respectively; in
both cases symbols b are appended to the growing lines of symbols a, whereafter
the rules p1, p2, p3, and p4 cannot be applied anymore. The rules p5 and p6 then
complete the upper and the right edge of the rectangle. The derivation only halts
if the rule p7 is applied at the end.

The following example shows how we can generate an array language of
coated filled squares with a specified middle point, which will be an essential
part in the proof of our main theorem in Section 4:

Example 2. The contextual array grammar

G2 =
({
S̄, E,Q

}∗2
,
{
S̄, E,Q

}∗2
, P,A0,=⇒G2

)
generates an array language of squares filled by the symbol E, coated by a layer
of symbols Q, with the central position being marked by the symbol S̄ :

A0 =

E E E E
E E E E E
E E S̄ E E
E E E E E
E E E E E

t
=⇒G2

Q Q · · · Q · · · Q Q
Q E · · · E · · · E Q
...

...
...

...
...

Q E · · · S̄ · · · E Q
...

...
...

...
...

Q E · · · E · · · E Q
Q Q · · · Q · · · Q Q

The final arrays are constructed in such a way that, starting from the axiom,
layer by layer, another layer of symbols E is added, by applying the rules p0 to
p7; the final layer of symbols Q is added by using the rules q0 to q8. In sum, P
contains the following contextual rules:

p0 =

E E

E E

E E

, q0 =

Q Q

E E

E E

, p1 =
E E

E E E
, q1 =

Q Q

E E E
,

p2 =
E E E

E E E
, q2 =

Q Q Q

E E Q
, p3 =

E E

E E

E

, q3 =

E Q

E Q

E

,

p4 =
E E

E E
E E

, q4 =

E Q

E Q
Q Q

, p5 =
E E E

E E
, q5 =

E E E

Q Q
,

p6 =
E E E

E E E
, q6 =

Q E E

Q Q Q
, p7 :=

E

E E

E E

, q7 =
Q E

Q E
, and

q8 =
Q Q

Q E
.

A derivation in G2 halts if and only if we end up with applying the rule q8,
thus finishing the coating layer of symbols Q.



Array Insertion and Deletion P Systems 7

3 (Sequential) P Systems

A (sequential) P system of type X with tree height n is a construct Π =
(G,µ,R, i0) where G = (O,OT , A, P,=⇒G) is a sequential grammar of type
X and

– µ is the membrane (tree) structure of the system with the height of the
tree being n (µ usually is represented by a string containing correctly nested
marked parentheses); we assume the membranes to be the nodes of the tree
representing µ and to be uniquely labelled by labels from a set Lab;

– R is a set of rules of the form (h, r, tar) where h ∈ Lab, r ∈ P , and
tar, called the target indicator, is taken from the set {here, in, out} ∪
{inh | h ∈ Lab}; the rules assigned to membrane h form the set Rh =
{(r, tar) | (h, r, tar) ∈ R}, i.e., R can also be represented by the vector
(Rh)h∈Lab;

– i0 is the initial membrane where the axiom A is put at the beginning of a
computation.

As we only have to follow the trace of a single object during a computation
of the P system, a configuration of Π can be described by a pair (w, h) where w
is the current object (e.g., string or array) and h is the label of the membrane
currently containing the object w. For two configurations (w1, h1) and (w2, h2)
of Π we write (w1, h1) =⇒Π (w2, h2) if we can pass from (w1, h1) to (w2, h2) by
applying a rule (h1, r, tar) ∈ R, i.e., w1 =⇒r w2 and w2 is sent from membrane
h1 to membrane h2 according to the target indicator tar. More specifically, if
tar = here, then h2 = h1; if tar = out, then the object w2 is sent to the region
h2 immediately outside membrane h1; if tar = inh2

, then the object is moved
from region h1 to the region h2 immediately inside region h1; if tar = in, then
the object w2 is sent to one of the regions immediately inside region h1.

A sequence of transitions between configurations of Π, starting from the
initial configuration (A, i0), is called a computation of Π. A halting computation
is a computation ending with a configuration (w, h) such that no rule fromRh can
be applied to w anymore; (w, h) is called the result of this halting computation
if w ∈ OT . As the language generated by Π we consider Lt (Π) which consists
of all terminal objects from OT being results of a halting computation in Π.

By Lt (X-LP ) (Lt
(
X-LP 〈n〉

)
) we denote the family of languages generated

by P systems (of tree height at most n) using grammars of type X. If only the
targets here ,in, and out are used, then the P system is called simple, and the cor-
responding families of languages are denoted by Lt (X-LsP ) (Lt

(
X-LsP 〈n〉

)
).

In the string case (see [12]), every language L ⊆ T ∗ in L∗
(
D1I1

)
can be

written in the form T ∗l ST
∗
r where Tl, Tr ⊆ T and S is a finite subset of T ∗. Using

the regulating mechanism of P systems, we get
{
a2

n | n ≥ 0
}
∈ Lt

(
D1I2-LP 〈1〉

)
and even obtain computational completeness:

Theorem 1. (see [12]) Lt
(
D1I1-LsP 〈8〉

)
= RE.
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One-dimensional arrays can also be interpreted as strings; left/right inser-
tion (deletion) of a symbol a corresponds to taking the set containing all rules

I
(
a b

)
/I
(
b a

)
(D
(
a b

)
/D
(
b a

)
) for all b; hence, from Theorem 1, we

immediately infer the following result, which with respect to the tree height of
the simple P systems will be improved considerably in Section 4:

Corollary 1. Lt
(
1-DIA-LsP 〈8〉

)
= L∗ (1-ARBA).

For the array case we now restrict ourselves to the 2-dimensional case. First
we go back to Example 1 and show how we can take advantage of having different
contextual array rules to be applied in different membranes:

Example 3. Consider the contextual array grammar G1 from Example 1 and the
P system Π1 = (G1, [0 [1 ] 1 [2 ] 2 ] 0 , R, 0) with R containing the rules (0, p1, in1),
(1, p2, out), (0, p3, in2), (2, p4, out), (0, p5, in1), (1, p6, out) and (0, p7, in2). By
synchronizing the growth of the left and the lower edge of the rectangle, we
guarantee that the resulting rectangle finally appearing in membrane 2 is a
square. Hence, we have shown that with Lt (Π1) in Lt

(
2-CA-LP 〈1〉

)
we can find

an array language which is shape-equivalent to the set of hollow squares.

4 Computational Completeness of Array Insertion and
Deletion P Systems

We now show our main result that any recursively enumerable 2-dimensional
array language can be generated by an array insertion and deletion P system
which only uses the targets here, in, and out and whose membrane structure
has only tree height 2.

Theorem 2. Lt
(
2-DIA-LsP 〈2〉

)
= L∗ (2-ARBA).

Proof. The main idea of the proof is to construct the simple P system Π of
type 2-DIA with a membrane structure of height two generating a recursively
enumerable 2-dimensional array language LA given by a special grammar GA of
type 2-ARBA in such a way that we first generate the coated squares described
in Example 2 and then simulate the rules of the 2-dimensional array grammar
GA inside this square; finally, the superfluous symbols E and Q have to be erased
to obtain the terminal array.

Now let GA =
([

(N ∪ T )
∗d
]
,
[
T ∗d

]
, [A0] , P,=⇒GA

)
be an array grammar

of type 2-ARBA generating LA. In order to make the simulation in Π easier,
without loss of generality, we may make some assumptions on the forms of the
array rules in P : First of all, we may assume that the array rules are in a kind
of Chomsky normal form (e.g., compare [9]), i.e., only of the following forms:
A → B for A ∈ N and B ∈ N ∪ T ∪ {#} as well as AvD → BvC with
‖v‖ = 1, A,B,C ∈ N ∪ T , and D ∈ N ∪ T ∪ {#} (we should like to emphasize
that usually A,B,C,D in the array rule AvD → BvC would not be allowed
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to be terminal symbols, too); in a more formal way, the rule AvD → BvC
represents the rule (W,A1,A2) with W = {Ωd, v}, A1 = {(Ωd, A) , (v,D)}, and
A2 = {(Ωd, B) , (v, C)}. As these rules in fact are simulated in Π with the symbol
E representing the blank symbol #, a rule Av# → BvC now corresponds to a
rule AvE → BvC. Moreover, a rule A → B for A ∈ N and B ∈ N ∪ T can be
replaced by the set of all rules AvD → BvD for all D ∈ N ∪T ∪{E} and v ∈ Zd
with ‖v‖ = 1, and A → # can be replaced by the set of all rules AvD → EvD
for all D ∈ N ∪ T ∪ {E} and v ∈ Zd with ‖v‖ = 1.

After these replacements described above, in the P system Π we now only
have to deal with rules of the form AvD → BvC with ‖v‖ = 1 as well as
A,B,C,D ∈ N ∪ T ∪ {E}. Yet in order to obtain a P system Π with the
required features, we make another assumption for the rules to be simulated:
any intermediate array obtained during a derivation contains exactly one symbol
marked with a bar; as we only have to deal with sequential systems where at
each moment exactly one rule is going to be applied, this does not restrict the
generative power of the system as long as we can guarantee that the marking can
be moved to any place within the current array. Instead of a rule AvD → BvC
we therefore take the corresponding rule ĀvD → BvC̄; moreover, to move the
bar from one position in the current array to another position, we add all rules
ĀvC → AvC̄ for all A,C ∈ N ∪ T ∪ {E} and v ∈ Zd with ‖v‖ = 1. We collect
all these rules obtained in the way described so far in a set of array rules P ′

and assume them to be uniquely labelled by labels from a set of labels Lab′, i.e.,
P ′ =

{
l : ĀlvDl → BlvC̄l | l ∈ Lab′

}
.

After all these preparatory steps we now are able to construct the simple P
system Π with array insertion and deletion rules:

Π =
(
G,
[
0

[
I1

[
I2

]
I2

]
I1
. . .
[
l1

[
l2

]
l2

]
l1
. . .
[
F1

[
F2

]
F2

]
F1

]
0 , R, I2

)
with I1 and I2 being the membranes for generating the initial squares, F1 and F2

are the membranes to extract the final terminal arrays in halting computations,
and l1 and l2 for all l ∈ Lab′ are the membranes to simulate the corresponding
array rule from P ′ labelled by l. The components of the underlying array gram-
mar G can easily be collected from the description of the rules in R as described
below.

We start with the initial array A0 from Example 2 and take all rules
(I2, I (r) , here) with all rules r ∈ {pi, qi | 0 ≤ i ≤ 7} taken as array insertion
rules; instead of the array insertion rule q8 we now take the rule q′8 instead and
(I2, I (q′8) , out), where q′8 introduces the new control symbols K and KI .Using
(I1, D (q9) , out) we move the initial square out into the skin membrane.

q′8 =

K KI

Q Q

Q E

, q9 =
K KI

Q Q

To be able to simulate a derivation from GA for a specific terminal array, the
workspace in this initial square has to be large enough, but as we can generate
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such squares with arbitrary size, such an initial array can be generated for any
terminal array in L∗ (GA).

An array rule from P ′ =
{
l : ĀlvDl → BlvC̄l | l ∈ Lab′

}
is simulated by ap-

plying the following sequence of array insertion and deletion rules in the mem-
branes l1 and l2, which send the array twice the path from the skin membrane
to membrane l2 via membrane l1 and back to the skin membrane:(

0, I
(
K Kl

)
, in
)

,
(
l1, D

(
Āl vDl

)
, in
)

,(
l2, I

(
Āl vD̄

(l)
l

)
, out

)
,

(
l1, D

(
D̄

(l)
l (−v) Āl

)
, out

)
,(

0, I

(
D̄

(l)
l (−v)Bl

)
, in

)
,
(
l1, D

(
Bl vD̄

(l)
l

)
, in
)

,(
l2, D

(
K Kl

)
, out

)
,
(
l1, I

(
Bl vC̄l

)
, out

)
.

Whenever reaching the skin membrane, the current array contains exactly
one barred symbol. If we reach any of the membranes l1 and/or l2 with the
wrong symbols (which implies that none of the rules listed above is applica-

ble), we introduce the trap symbol F by the rules
(
m, I

(
F K

)
, out

)
and(

m, I
(
F F

)
, out

)
for m ∈ {l1, l2 | l ∈ Lab′ ∪ {I}}; as soon as F has been in-

troduced once, with
(

0, I
(
F F

)
, in
)

we can guarantee that the computation

in Π will never stop.
As soon as we have obtained an array representing a terminal array, the

corresponding array computed in Π is moved into membrane F1 by the rule
(0, D (K) , in) (for any X, D (X) / I (K) just means deleting/inserting X with-
out taking care of the context). In membrane F1, all superfluous symbols E
and Q as well as the marked blank symbol Ē (without loss of generality we
may assume that at the end of the simulation of a derivation from GA in Π
the marked symbol is Ē) are erased by using the rules (F1, D (X) , here) with
X ∈

{
E, Ē,Q

}
. The computation in Π halts with yielding a terminal array in

membrane F1 if and only if no other non-terminal symbols have occurred in the
array we have moved into F1; in the case that non-terminal symbols occur, we
start an infinite loop between membrane F1 and membrane F2 by introducing
the trap symbol F : (F1, D (X) , in) for X /∈ T ∪

{
E, Ē,Q

}
and (F2, I (F ) , out).

As can be seen from the description of the rules in Π, we can simulate all
terminal derivations in GA by suitable computations in Π, and a teminal array
A is obtained as the result of a halting computation (always in membrane F1)
if and only if A ∈ L∗ (GA), hence we conclude Lt (Π) = L∗ (GA).

5 Conclusion

In this paper, we have extended the notions of insertion and deletion from the
string case to the case of d-dimensional arrays. Array insertion grammars have
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already been considered as contextual array grammars in [11], whereas the in-
verse interpretation of a contextual array rule as a deletion rule has newly been
introduced here. Moreover, we have also introduced P systems using these array
insertion and deletion rules, thus continuing the research on P systems with left
and right insertion and deletion of strings, see [12].

In the main part of our paper, we have restricted ourselves to exhibit exam-
ples of 2-dimensional array languages that can be generated by array insertion
(contextual array) grammars and P systems using array insertion rules as well
as to show that array insertion and deletion P systems are computationally
complete.

As can be seen from the proof of our main result, Theorem 2, the second
part of the proof showing how to simulate array rules of the form ĀvD → BvC̄
is not restricted to the 2-dimensional case and can directly be taken over to
the d-dimensional case for arbitrary d; hence, for d > 2, the main challenge is
to generate d-dimensional cuboids of symbols E coated by a layer of symbols
Q, with the central position marked by the start symbol S̄. With regulating
mechanims such as matrix or programmed grammars without the feature of
appearance checking, this challenge so far has turned out to be intractable for
d > 2 when using #-context-free array rules, e.g., see [9]; when using array
insertion rules, this problem seems to become solvable. Moreover, we would also
like to avoid the target here in the simple P systems using array insertion and
deletion rules constructed in Theorem 2, as with avoiding the target here, the
applications of the rules could be interpreted as being carried out when passing
a membrane, in the sense of molecules passing a specific membrane channel from
one region to another one. We shall return to these questions and related ones
in an extended version of this paper.
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