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▶ Σ = {a, b, c, . . .} is an alphabet.

▶ X = {x, y, z, . . .} is a set of variables.

▶ D is a document over Σ.

D = a b b a b c c a b c =⇒
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Regular (Document) Spanners

Σ

ab

Σ

cc

Σ

Meta-symbols for variables x, y, . . . ∈ X :

▷x . . . ◁x (start and end position of span extracted by x),

▷y . . . ◁y (start and end position of span extracted by y).

D = abbababccca

abb ▷x ab◁xab ▷y cc◁yca =⇒ ([4, 6⟩, [8, 10⟩)
abb ▷x abab◁xc ▷y cc◁ya =⇒ ([4, 8⟩, [9, 11⟩)
...
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JMK(D) denotes the span-relation extracted from a document D.
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Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Since then intensely studied; many positive results.

A major result: linear preprocessing and constant delay enumeration

(Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019).
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Approach of this Paper

Spanner Evaluation over Compressed Documents

Input: A spanner represented by an NFA M,

a document D given in a compressed form∗ S.
Task: Evaluate M on D (e. g., model checking, computing or

enumerating JMK(D))... but without decompressing S.

∗Compression Scheme: Straight-Line Programs (SLPs).
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Straight-Line Programs

Straight-Line Program

A straight-line program for document D is a context-free grammar

S that describes the language {D}.



Straight-Line Programs

Example

Let S have rules

S0 → AB, A → CD, B → CE ,

C → Eb, D → cc, E → aa

S0

A B

C D C E

E E

a a a a a ab bc c
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Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

▶ Exponential compression rates.

▶ SLPs are mathematically easy to handle (⇒ good for

theoretical considerations).

▶ High practical relevance (SLPs cover many practically applied

dictionary-based compression schemes).

▶ Many approximations and heuristics exist that e�ciently

compute small SLPs.

▶ SLPs are suitable for algorithmics on compressed strings:

comparison, pattern matching, membership in a regular

language, retrieving subwords, etc.
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Research Task

Spanner Evaluation over SLP-Compressed Documents

Input: A spanner represented by an NFA M,

an SLP S for a document D.

Non-emptiness: Check whether JMK(D) ̸= ∅.
Model Checking: Check whether t ∈ JMK(D) for a span-tuple t.
Computation: Compute JMK(D).
Enumeration: Enumerate JMK(D).
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Results

Theorem (Data Complexity)

Non-emptiness: O(size(S))
Model Checking: O(size(S))
Computation: O(size(S) · size(JMK(D)))
Enumeration: preprocessing time O(size(S)) and

delay O(log(|D |)).

Two remarks about combined-complexity:

▶ Sets of markers (�{ ▷x , ◁y, ▷z }�) as arc labels of the NFA (a.k.a.

extended variable-set automata), which makes the NFA larger.

▶ For the enumeration result, we require the NFA also to be

deterministic.
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Proof Sketches



Non-Emptiness, Model-Checking and Computation

Follows (non-trivial) from known results about the regular

membership problem for SLP-compressed words:

Non-emptiness: O(size(S))
Model Checking: O(size(S))
Computation: O(size(S) · size(JMK(D)))

In the following: Sketch for Enumeration!
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Non-Compressed Enumeration
(Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019)

[Amarilli et al. ICDT 2019, SIGMOD Rec., 2020]



Marking SLPs

S0

A B

C D C E

E E

a a a a a ab bc c

=⇒ enumerate partially decompressed SLPs.
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Enumerating Partially Decompressed SLPs

S0〈1 	 5 	 6〉

A〈1 	 1 	 5〉 B〈5 	 6 	 6〉

C〈1 	 1, e〉 D〈1 	 5 	 5〉 C〈5 	 6 	 6〉 E〈6 	 6, e〉

E〈5 	 6 	 6〉 Tb〈6 	 6, e〉

Ta〈5 	 6,1〉

{ {(/y, 1)} }

Ta〈6 	 6, e〉

Tc〈1 	 5,1〉

{ {( .y , 1)} }

Tc〈5 	 5, e〉

0 5

0 3 0 3

0 1 0 2

0 1



Balancing SLPs

SLP Balancing Theorem, Ganardi, Jez and Lohrey, FOCS 2019:

Theorem

Any given SLP S can be balanced∗ in linear time.

∗ depth(S) = O(log(|D |)).



Future Work

Dynamic setting with updates!



Thank you very much for your attention.


