Spanner Evaluation over SLP-Compressed
 Documents

Markus L. Schmid, Nicole Schweikardt

HU Berlin, Germany

PODS 2021

Document Spanners

Document Spanners

- $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ is an alphabet.
- $\mathcal{X}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}$ is a set of variables.
- D is a document over Σ.

Document Spanners

- $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots\}$ is an alphabet.
- $\mathcal{X}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}$ is a set of variables.
- D is a document over Σ.
$D=a b b a b c c a b c$

Document Spanners

- $\Sigma=\{a, b, c, \ldots\}$ is an alphabet.
- $\mathcal{X}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}$ is a set of variables.
- D is a document over Σ.
$D=a b b a b c c a b c$ \Longrightarrow

x	y	z
$[2,5\rangle$	$[4,7\rangle$	$[1,10\rangle$
$[3,5\rangle$	$[5,8\rangle$	$[4,7\rangle$
$[1,3\rangle$	$[3,10\rangle$	$[2,4\rangle$
\vdots	\vdots	\vdots

Document Spanners

- $\Sigma=\{a, b, c, \ldots\}$ is an alphabet.
- $\mathcal{X}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}$ is a set of variables.
- D is a document over Σ.
$D=a b b a b c c a b c$ \Longrightarrow

x	y	z
$[2,5\rangle$	$[4,7\rangle$	$[1,10\rangle$
$[3,5\rangle$	$[5,8\rangle$	$[4,7\rangle$
$[1,3\rangle$	$[3,10\rangle$	$[2,4\rangle$
\vdots	\vdots	\vdots

Document Spanners

- $\Sigma=\{a, b, c, \ldots\}$ is an alphabet.
- $\mathcal{X}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}$ is a set of variables.
- D is a document over Σ.
$\mathrm{D}=\mathrm{abbabccabc}$

x	y	z
$[2,5\rangle$	$[4,7\rangle$	$[1,10\rangle$
$[3,5\rangle$	$[5,8\rangle$	$[4,7\rangle$
$[1,3\rangle$	$[3,10\rangle$	$[2,4\rangle$
\vdots	\vdots	\vdots

Document Spanners

- $\Sigma=\{a, b, c, \ldots\}$ is an alphabet.
- $\mathcal{X}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots\}$ is a set of variables.
- D is a document over Σ.
$D=a b b a b c c a b c$

x	y	z
$[2,5\rangle$	$[4,7\rangle$	$[1,10\rangle$
$[3,5\rangle$	$[5,8\rangle$	$[4,7\rangle$
$[1,3\rangle$	$[3,10\rangle$	$[2,4\rangle$
\vdots	\vdots	\vdots

Regular (Document) Spanners

Regular (Document) Spanners

Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:
${ }^{x} \triangleright \ldots \triangleleft^{x}$ (start and end position of span extracted by x),
${ }^{\mathrm{y}} \triangleright \ldots \triangleleft^{\mathrm{y}}$ (start and end position of span extracted by y).

Regular (Document) Spanners

Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:
${ }^{x} \triangleright \ldots \triangleleft^{x}$ (start and end position of span extracted by x),
${ }^{\mathrm{y}} \triangleright \ldots \triangleleft^{\mathrm{y}}$ (start and end position of span extracted by y).

Regular (Document) Spanners

Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:
${ }^{x} \triangleright \ldots \triangleleft^{x}$ (start and end position of span extracted by x),
${ }^{\mathrm{y}} \triangleright \ldots \triangleleft^{\mathrm{y}}$ (start and end position of span extracted by y).
$D=$ abbababccca

Regular (Document) Spanners

Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:
${ }^{x} \triangleright \ldots \triangleleft^{x}$ (start and end position of span extracted by x),
${ }^{\mathrm{y}} \triangleright \ldots \triangleleft^{\mathrm{y}}$ (start and end position of span extracted by y).
$\mathrm{D}=\mathrm{abbababccca}$
$a b b^{x} \triangleright a b \triangleleft^{x} a b^{y} \triangleright c c \triangleleft^{y} c a$

Regular (Document) Spanners

Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:
${ }^{x} \triangleright \ldots \triangleleft^{x}$ (start and end position of span extracted by x),
${ }^{\mathrm{y}} \triangleright \ldots \triangleleft^{\mathrm{y}}$ (start and end position of span extracted by y).
$\mathrm{D}=\mathrm{abbababccca}$
$a b b^{x} \triangleright a b \triangleleft^{x} a b^{y} \triangleright c c \triangleleft^{y} c a \Longrightarrow([4,6\rangle,[8,10\rangle)$

Regular (Document) Spanners

Meta-symbols for variables $x, y, \ldots \in \mathcal{X}$:
${ }^{x} \triangleright \ldots \triangleleft^{x}$ (start and end position of span extracted by x),
${ }^{\mathrm{y}} \triangleright \ldots \triangleleft^{\mathrm{y}}$ (start and end position of span extracted by y).
$\mathrm{D}=\mathrm{abbababccca}$
$a b b^{x} \triangleright a b \triangleleft^{x} a b b^{y} \triangleright c c \triangleleft^{y} c a \Longrightarrow([4,6\rangle,[8,10\rangle)$
$a b b^{x} \triangleright a b a b \triangleleft^{x} c^{y} \triangleright c c \triangleleft^{y} a \Longrightarrow([4,8\rangle,[9,11\rangle)$

Regular Spanners - Notations

$\llbracket M \rrbracket$ denotes the spanner represented by an NFA M.

Regular Spanners - Notations

$\llbracket M \rrbracket$ denotes the spanner represented by an NFA M.
$\llbracket M \rrbracket(\mathrm{D})$ denotes the span-relation extracted from a document D .

Regular Spanners - Notations

$\llbracket M \rrbracket$ denotes the spanner represented by an NFA M.
$\llbracket M \rrbracket(\mathrm{D})$ denotes the span-relation extracted from a document D .

A spanner S is a regular spanner if $S=\llbracket M \rrbracket$ for some NFA M.

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Since then intensely studied; many positive results.

Results About Regular Spanners

Introduced by Fagin et al. PODS 2013, JACM 2015.

Since then intensely studied; many positive results.

A major result: linear preprocessing and constant delay enumeration (Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019).

Approach of this Paper

Spanner Evaluation over Compressed Documents
Input: A spanner represented by an NFA M, a document D given in a compressed form* \mathcal{S}.
Task: Evaluate M on D (e. g., model checking, computing or enumerating $\llbracket M \rrbracket(\mathrm{D})) \ldots$ but without decompressing \mathcal{S}.
*Compression Scheme: Straight-Line Programs (SLPs).

Straight-Line Programs

Straight-Line Programs

Straight-Line Program

A straight-line program for document D is a context-free grammar \mathcal{S} that describes the language $\{\mathrm{D}\}$.

Straight-Line Programs

Example

Let \mathcal{S} have rules

$$
\begin{array}{lll}
S_{0} \rightarrow A B, & A \rightarrow C D, & B \rightarrow C E, \\
C \rightarrow E \mathrm{~b}, & D \rightarrow \mathrm{cc}, & E \rightarrow \mathrm{aa}
\end{array}
$$

Straight-Line Programs

Example

Let \mathcal{S} have rules

$$
\begin{array}{lll}
S_{0} \rightarrow A B, & A \rightarrow C D, & B \rightarrow C E, \\
C \rightarrow E \mathrm{~b}, & D \rightarrow \mathrm{cc}, & E \rightarrow \mathrm{aa}
\end{array}
$$

Straight-Line Programs

Example

Let \mathcal{S} have rules

$$
\begin{array}{lll}
S_{0} \rightarrow A B, & A \rightarrow C D, & B \rightarrow C E, \\
C \rightarrow E \mathrm{~b}, & D \rightarrow \mathrm{cc}, & E \rightarrow \mathrm{aa}
\end{array}
$$

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

- Exponential compression rates.

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

- Exponential compression rates.
- SLPs are mathematically easy to handle (\Rightarrow good for theoretical considerations).

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

- Exponential compression rates.
- SLPs are mathematically easy to handle (\Rightarrow good for theoretical considerations).
- High practical relevance (SLPs cover many practically applied dictionary-based compression schemes).

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

- Exponential compression rates.
- SLPs are mathematically easy to handle (\Rightarrow good for theoretical considerations).
- High practical relevance (SLPs cover many practically applied dictionary-based compression schemes).
- Many approximations and heuristics exist that efficiently compute small SLPs.

Good Properties of SLPs

SLPs are intensely researched in TCS and many things are known:

- Exponential compression rates.
- SLPs are mathematically easy to handle (\Rightarrow good for theoretical considerations).
- High practical relevance (SLPs cover many practically applied dictionary-based compression schemes).
- Many approximations and heuristics exist that efficiently compute small SLPs.
- SLPs are suitable for algorithmics on compressed strings: comparison, pattern matching, membership in a regular language, retrieving subwords, etc.

Research Task

Spanner Evaluation over SLP-Compressed Documents

 Input:A spanner represented by an NFA M, an SLP \mathcal{S} for a document D .

Non-emptiness: \quad Check whether $\llbracket M \rrbracket(\mathrm{D}) \neq \emptyset$.
Model Checking: Check whether $t \in \llbracket M \rrbracket(\mathrm{D})$ for a span-tuple t.
Computation:
Enumeration: Compute $\llbracket M \rrbracket$ (D).
Enumerate $\llbracket M \rrbracket(\mathrm{D})$.

Results

Results

Theorem (Data Complexity)
Non-emptiness: $\quad \mathrm{O}(\operatorname{size}(\mathcal{S}))$
Model Checking: O(size (\mathcal{S}))
Computation: $\quad \mathrm{O}(\operatorname{size}(\mathcal{S}) \cdot \operatorname{size}(\llbracket M \rrbracket(\mathrm{D})))$
Enumeration: preprocessing time $\mathrm{O}($ size $(\mathcal{S}))$ and delay $\mathrm{O}(\log (|\mathrm{D}|))$.

Results

Two remarks about combined-complexity:

- Sets of markers (" $\left\{{ }^{x} \triangleright, \triangleleft^{y},{ }^{\mathrm{z}} \triangleright\right\}^{\prime}$) as arc labels of the NFA (a.k.a. extended variable-set automata), which makes the NFA larger.

Results

Two remarks about combined-complexity:

- Sets of markers (" $\left\{{ }^{\mathrm{x}} \triangleright, \triangleleft^{\mathrm{y}},{ }^{\mathrm{z}} \triangleright\right\}^{\prime}$) as arc labels of the NFA (a.k.a. extended variable-set automata), which makes the NFA larger.
- For the enumeration result, we require the NFA also to be deterministic.

Proof Sketches

Non-Emptiness, Model-Checking and Computation

Follows (non-trivial) from known results about the regular membership problem for SLP-compressed words:

Non-emptiness: $\quad \mathrm{O}(\operatorname{size}(\mathcal{S}))$
Model Checking: $\mathrm{O}(\operatorname{size}(\mathcal{S}))$
Computation: $\quad \mathrm{O}(\operatorname{size}(\mathcal{S}) \cdot \operatorname{size}(\llbracket M \rrbracket(\mathrm{D})))$

Non-Emptiness, Model-Checking and Computation

Follows (non-trivial) from known results about the regular membership problem for SLP-compressed words:

Non-emptiness: $\quad \mathrm{O}(\operatorname{size}(\mathcal{S}))$
Model Checking: $\mathrm{O}(\operatorname{size}(\mathcal{S}))$
Computation: $\quad \mathrm{O}(\operatorname{size}(\mathcal{S}) \cdot \operatorname{size}(\llbracket M \rrbracket(\mathrm{D})))$

In the following: Sketch for Enumeration!

Non-Compressed Enumeration

(Florenzano et al. PODS 2018, Amarilli et al. ICDT 2019)

[Amarilli et al. ICDT 2019, SIGMOD Rec., 2020]

Marking SLPs

Marking SLPs

\Longrightarrow enumerate partially decompressed SLPs.

Enumerating Partially Decompressed SLPs

Balancing SLPs

SLP Balancing Theorem, Ganardi, Jez and Lohrey, FOCS 2019:

Theorem

Any given SLP \mathcal{S} can be balanced* in linear time.
${ }^{*} \operatorname{depth}(\mathcal{S})=\mathrm{O}(\log (|\mathrm{D}|))$.

Future Work

Dynamic setting with updates!

Thank you very much for your attention.

