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Graph databases

directed, edge-labelled multigraphs.

Graph Databases

xr finite alphabet (edge labels)
Vp vertices (or nodes)

Ep C Vp x X x Vp edges (or arcs)

Graph database D = (Vp, Ep)

Regular Path Queries (RPQs)

Regular expressions g over %.
q(D) = {(u, v) | 3 u-to-v path labelled by a word from L(q)}
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Different Variants of RPQs

Query results:
» Only node pairs (u, v).
» Node pairs (u, v) and a witness path.

» Node pairs (u, v) and all witness paths.

Path semantics: (u,v) € q(D) if there is

> an arbitrary path.
> a simple path.

> a trail

> a shortest path.
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Product Graph Approach (PG-Approach)

D: Graph database
q:  Regular path query
M: NFA for g with state set Q

Product Graph

G(D,q) = (V(D,q),E(D,q))
V(Da q) = VD x Q
E(D,q) € (V(D,q) x V(D,q)):

(u,p) = (v,p)) <= IxeT:uSvapSp.
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PG-Approach Example




RPQ Evaluation Tasks

Name Input | Task

RPQ-Boole D, q | Decide whether q(D) = 0.

RPQ-Eval D, q | Compute the whole set q(D).

RPQ-Count D, q | Compute |q(D)|.

(Sorted) RPQ-Enum | D, q | Enumerate the whole set q(D)
(lexicographically ordered).




RPQ Evaluation Tasks

Name Input | Task

RPQ-Boole D, q | Decide whether q(D) = 0.
RPQ-Eval Compute the whole set q(D).
RPQ-Count Compute |q(D)|.

(Sorted) RPQ-Enum

Enumerate the whole set (D)
(lexicographically ordered).

Updates: Adding/deleting isolated nodes, adding/deleting arcs.



Research Question

» PG-approach good for simple tasks like checking g(D) = () or
(u,v) € q(D).
What about computing, counting or enumerating q(D)?

» Is the PG-approach optimal?

» Can we complement upper bounds with conditional lower
bounds?



Fine-Grained Complexity and
Conditional Lower Bounds
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OV-Hypothesis
For every € > 0, OV cannot be solved in O(n®~¢poly(d)).
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Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)

Input: Boolean n x n matrices A, B.
Task: Compute A x B.

com-BMM-Hypothesis

For every ¢ > 0, BMM cannot be solved in O(n®~¢) by a
combinatorial algorithm.

SBMM-Hypothesis

BMM cannot be solved in O(m), where m = number of 1-entries.



Our Results
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RPQ-Boole

RPQ-Boole can be solved in time O(| D ||q]).

If RPQ-Boole can be solved in time
» O(]| D|?>¢ + |q|?), then OV-hypothesis fails.
» O(]| D|? + |q|>~¢), then OV-hypothesis fails.
» O(|Vp >~ + |q/37¢), com-BMM-hypothesis fails.

From now on ALL bounds in data complexity!
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RPQ-Eval and RPQ-Count

RPQ-Eval (and RPQ-Count) can be solved in time O(|Vpl|| D).

If RPQ-Eval can be solved in time
» O((|Vp|| D|)}~¢), then com-BMM-hypothesis fails.
» O((]q(D)| + | D)), then SBMM-hypothesis fails.

If RPQ-Count can be solved in time O((|Vp|| D ])}~¢) then the
OV-hypothesis fails.
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RPQ-Enum — Upper Bound

Sorted RPQ-Enum can be solved with preprocessing O(| D |), delay
O(|D|) and O(1) updates.

Some Thoughts

> Linear preprocessing is reasonable.
» Linear delay is bad.
» What about updates??
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RPQ-Enum — Lower Bounds

Conditional Lower Bounds
Linear preprocessing and

» constant delay? No!

» delay sublinear in |Vp|? No!

» delay sublinear in | D|? Not if we also want updates!

Open Question
RPQ-Enum with O(| D) preprocessing and O(|Vp|) delay???

Next objective:

Just any enumeration that guarantees delay sublinear in | D |.
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Three Approaches to Sublinear Delay

A “representative” subset A C q(D) can be enumerated with linear
preprocessing and constant delay.

A(D) denotes the average degree of D.

Sorted RPQ-Enum can be solved with preprocessing
O(log(A(D)) A(D) | D) and delay O(| Vip|).

A(D) denotes the maximum degree of D.

For a @ C RPQ, RPQ-Enum can be solved with preprocessing
O(| D) and delay O(A(D)).
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» Short RPQ (S-RPQ):
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» Basic Transitive RPQ (BT-RPQ):
g=(0aV...Vxx)*org=0aV...Vx)t,
where xg,...,xc € X.

Example: g = (aVcVvd)T'.

» Alternation Closure:

\/(S-RPQ UBT-RPQ) =
{(q1V...Vagm) | qi € SSRPQUBT-RPQ,1 < i < m}.
Example: g = (abVc*Vb(cVvd)V(aVvbVvd)h)
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Theorem

Semi-sorted Enum(\/(S-RPQ U BT-RPQ)) can be solved with
preprocessing O(| D |) and delay O(A(D)).

Proof Sketch

» Semi-sorted Enum(S-RPQ) and Enum(BT-RPQ) can be
solved with preprocessing O(| D |) and delay O(A(D)).

» For every Q C RPQ: Semi-sorted Enum( Q) can be solved
with linear preprocessing and some delay, then Enum(\/(Q))
can be solved with the same preprocessing and delay.

Theorem

If RPQ-Enum(S-RPQ) can be solved with preprocessing O(|Vp|3~¢)
and delay O(| A(D)|'~¢), then the com-BMM-hypothesis fails.



Thank you very much for your attention,



