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Graph Databases and Regular Path Queries



Querying Graphs with Regular Expressions

Graph databases

directed, edge-labelled multigraphs.

Graph Databases

Σ �nite alphabet (edge labels)
VD vertices (or nodes)
ED ⊆ VD × Σ× VD edges (or arcs)
Graph database D = (VD,ED)

Regular Path Queries (RPQs)

Regular expressions q over Σ.
q(D) = {(u, v) | ∃ u-to-v path labelled by a word from L(q)}
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Regular Path Query Example

Graph database D:
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Di�erent Variants of RPQs

Query results:

I Only node pairs (u, v).

I Node pairs (u, v) and a witness path.

I Node pairs (u, v) and all witness paths.

Path semantics: (u, v) ∈ q(D) if there is

I an arbitrary path.

I a simple path.

I a trail.

I a shortest path.
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Product Graph Approach (PG-Approach)

D: Graph database
q: Regular path query
M: NFA for q with state set Q

Product Graph

G (D, q) = (V (D, q),E (D, q))

V (D, q) = VD × Q

E (D, q) ⊆ (V (D, q)× V (D, q)):

(u, p)→ (v , p′) ⇐⇒ ∃x ∈ Σ : u
x−→ v ∧ p

x−→ p′ .
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RPQ Evaluation Tasks

Name Input Task

RPQ-Boole D, q Decide whether q(D) = ∅.
RPQ-Eval D, q Compute the whole set q(D).
RPQ-Count D, q Compute |q(D)|.
(Sorted) RPQ-Enum D, q Enumerate the whole set q(D)

(lexicographically ordered).

Updates: Adding/deleting isolated nodes, adding/deleting arcs.
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Research Question

I PG-approach good for simple tasks like checking q(D) = ∅ or
(u, v) ∈ q(D).
What about computing, counting or enumerating q(D)?

I Is the PG-approach optimal?

I Can we complement upper bounds with conditional lower
bounds?



Fine-Grained Complexity and

Conditional Lower Bounds



Orthogonal Vectors

Orthogonal Vectors (OV)

Input: Sets A,B each containing n Boolean d-dimensional vectors.
Question: Are there orthogonal vectors ~a ∈ A and ~b ∈ B?

OV-Hypothesis

For every ε > 0, OV cannot be solved in O(n2−ε poly(d)).
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Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)

Input: Boolean n × n matrices A,B .
Task: Compute A× B .

com-BMM-Hypothesis

For every ε > 0, BMM cannot be solved in O(n3−ε) by a
combinatorial algorithm.

SBMM-Hypothesis

BMM cannot be solved in O(m), where m = number of 1-entries.
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Our Results



RPQ-Boole

Theorem

RPQ-Boole can be solved in time O(| D ||q|).

Theorem

If RPQ-Boole can be solved in time

I O(| D |2−ε + |q|2), then OV-hypothesis fails.

I O(| D |2 + |q|2−ε), then OV-hypothesis fails.

I O(|VD|3−ε + |q|3−ε), com-BMM-hypothesis fails.

Data Complexity

From now on ALL bounds in data complexity!
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RPQ-Enum � Upper Bound

Theorem

Sorted RPQ-Enum can be solved with preprocessing O(| D |), delay
O(| D |) and O(1) updates.

Some Thoughts

I Linear preprocessing is reasonable.

I Linear delay is bad.

I What about updates??
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RPQ-Enum � Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

I constant delay? No!

I delay sublinear in |VD|? No!

I delay sublinear in | D |? Not if we also want updates!

Open Question

RPQ-Enum with O(| D |) preprocessing and O(|VD|) delay???

Next objective:

Just any enumeration that guarantees delay sublinear in | D |.
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Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set

A �representative� subset A ⊆ q(D) can be enumerated with linear
preprocessing and constant delay.

∆(D) denotes the average degree of D.

Second Approach: Super-Linear Preprocessing

Sorted RPQ-Enum can be solved with preprocessing
O(log(∆(D)) ∆(D) | D |) and delay O(|VD|).

∆(D) denotes the maximum degree of D.

Third Approach: Restricted Class of RPQs

For a Q ⊆ RPQ, RPQ-Enum can be solved with preprocessing
O(| D |) and delay O(∆(D)).
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Third Approach: Restricted Class of RPQs

I Short RPQ (S-RPQ):

q = (x1 ∨ . . .∨ xk) or q = (x1 ∨ . . .∨ xk)(y1 ∨ . . .∨ yk ′),

where x1, . . . , xk , y1, . . . , yk ′ ∈ Σ.

Example: q = (a∨ b)(a∨ c∨ d).

I Basic Transitive RPQ (BT-RPQ):

q = (x1 ∨ . . .∨ xk)∗ or q = (x1 ∨ . . .∨ xk)+,

where x1, . . . , xk ∈ Σ.

Example: q = (a∨ c∨ d)+.

I Alternation Closure:∨
(S-RPQ ∪ BT-RPQ) =
{(q1 ∨ . . .∨ qm) | qi ∈ S-RPQ ∪ BT-RPQ, 1 ≤ i ≤ m}.
Example: q = (ab∨ c∗ ∨ b(c∨ d)∨(a∨ b∨ d)+)
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Third Approach: Restricted Class of RPQs

Theorem

Semi-sorted Enum(
∨

(S-RPQ ∪ BT-RPQ)) can be solved with
preprocessing O(| D |) and delay O(∆(D)).

Proof Sketch

I Semi-sorted Enum(S-RPQ) and Enum(BT-RPQ) can be
solved with preprocessing O(| D |) and delay O(∆(D)).

I For every Q ⊆ RPQ: Semi-sorted Enum(Q) can be solved
with linear preprocessing and some delay, then Enum(

∨
(Q))

can be solved with the same preprocessing and delay.

�

Theorem

If RPQ-Enum(S-RPQ) can be solved with preprocessing O(|VD|3−ε)
and delay O(|∆(D)|1−ε), then the com-BMM-hypothesis fails.
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Thank you very much for your attention.


