Fine-Grained Complexity of Regular Path Queries

Katrin Casel ${ }^{1}$, Markus L. Schmid ${ }^{2}$

${ }^{1} \mathrm{HPI}$, University of Potsdam, Germany
${ }^{2}$ HU Berlin, Germany

Graph Databases and Regular Path Queries

Querying Graphs with Regular Expressions

Graph databases

directed, edge-labelled multigraphs.

Querying Graphs with Regular Expressions

Graph databases

 directed, edge-labelled multigraphs.
Graph Databases

$\Sigma_{\mathcal{D}}$
V^{\prime}
finite alphabet (edge labels)
vertices (or nodes)
$E_{\mathcal{D}} \subseteq V_{\mathcal{D}} \times \Sigma \times V_{\mathcal{D}} \quad$ edges (or arcs)
Graph database
$\mathcal{D}=\left(V_{\mathcal{D}}, E_{\mathcal{D}}\right)$

Querying Graphs with Regular Expressions

Graph databases

 directed, edge-labelled multigraphs.
Graph Databases

```
\(\Sigma \quad\) finite alphabet (edge labels)
\(V_{\mathcal{D}} \quad\) vertices (or nodes)
\(E_{\mathcal{D}} \subseteq V_{\mathcal{D}} \times \Sigma \times V_{\mathcal{D}} \quad\) edges (or arcs)
Graph database
\(\mathcal{D}=\left(V_{\mathcal{D}}, E_{\mathcal{D}}\right)\)
```


Regular Path Queries (RPQs)

Regular expressions q over Σ.
$q(\mathcal{D})=\{(u, v) \mid \exists u$-to- v path labelled by a word from $\mathcal{L}(q)\}$

Regular Path Query Example

Graph database \mathcal{D} :

Regular Path Query Example

Graph database \mathcal{D} :

Regular path query:

$$
q=a^{*}(b \vee c)
$$

Different Variants of RPQs

Different Variants of RPQs

Query results:

- Only node pairs (u, v).
- Node pairs (u, v) and a witness path.
- Node pairs (u, v) and all witness paths.

Different Variants of RPQs

Query results:

- Only node pairs (u, v).
- Node pairs (u, v) and a witness path.
- Node pairs (u, v) and all witness paths.

Path semantics: $(u, v) \in q(\mathcal{D})$ if there is

- an arbitrary path.
- a simple path.
- a trail.
- a shortest path.

Product Graph Approach (PG-Approach)

D: Graph database
q : Regular path query
M: NFA for q with state set Q

Product Graph Approach (PG-Approach)

D: Graph database
q : Regular path query
M: NFA for q with state set Q

Product Graph

$$
\begin{aligned}
& G(\mathcal{D}, q)=(V(\mathcal{D}, q), E(\mathcal{D}, q)) \\
& V(\mathcal{D}, q)=V_{\mathcal{D}} \times Q \\
& E(\mathcal{D}, q) \subseteq(V(\mathcal{D}, q) \times V(\mathcal{D}, q)):
\end{aligned}
$$

$$
(u, p) \rightarrow\left(v, p^{\prime}\right) \Longleftrightarrow \exists x \in \Sigma: u \xrightarrow{x} v \wedge p \xrightarrow{x} p^{\prime} .
$$

PG-Approach Example

PG-Approach Example

RPQ Evaluation Tasks

Name	Input	Task
RPQ-Boole	\mathcal{D}, q	Decide whether $q(\mathcal{D})=\emptyset$.
RPQ-Eval	\mathcal{D}, q	Compute the whole set $q(\mathcal{D})$.
RPQ-Count	\mathcal{D}, q	Compute $\|q(\mathcal{D})\|$.
(Sorted) RPQ-Enum	\mathcal{D}, q	Enumerate the whole set $q(\mathcal{D})$
		(lexicographically ordered).

RPQ Evaluation Tasks

Name	Input	Task
RPQ-Boole	\mathcal{D}, q	Decide whether $q(\mathcal{D})=\emptyset$.
RPQ-Eval	\mathcal{D}, q	Compute the whole set $q(\mathcal{D})$.
RPQ-Count	\mathcal{D}, q	Compute $\|q(\mathcal{D})\|$.
(Sorted) RPQ-Enum	\mathcal{D}, q	Enumerate the whole set $q(\mathcal{D})$
		(lexicographically ordered).

Updates: Adding/deleting isolated nodes, adding/deleting arcs.

Research Question

- PG-approach good for simple tasks like checking $q(\mathcal{D})=\emptyset$ or $(u, v) \in q(\mathcal{D})$. What about computing, counting or enumerating $q(\mathcal{D})$?
- Is the PG-approach optimal?
- Can we complement upper bounds with conditional lower bounds?

Fine-Grained Complexity and Conditional Lower Bounds

Orthogonal Vectors

Orthogonal Vectors (OV)
Input: Sets A, B each containing n Boolean d-dimensional vectors.
Question: Are there orthogonal vectors $\vec{a} \in A$ and $\vec{b} \in B$?

Orthogonal Vectors

Orthogonal Vectors (OV)
Input: Sets A, B each containing n Boolean d-dimensional vectors. Question: Are there orthogonal vectors $\vec{a} \in A$ and $\vec{b} \in B$?

OV-Hypothesis
For every $\epsilon>0$, OV cannot be solved in $\mathrm{O}\left(n^{2-\epsilon}\right.$ poly $\left.(d)\right)$.

Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)

Input: Boolean $n \times n$ matrices A, B.
Task: Compute $A \times B$.

Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)

Input: Boolean $n \times n$ matrices A, B.
Task: Compute $A \times B$.

com-BMM-Hypothesis

For every $\epsilon>0$, BMM cannot be solved in $\mathrm{O}\left(n^{3-\epsilon}\right)$ by a combinatorial algorithm.

Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)
Input: Boolean $n \times n$ matrices A, B.
Task: Compute $A \times B$.

com-BMM-Hypothesis

For every $\epsilon>0$, BMM cannot be solved in $\mathrm{O}\left(n^{3-\epsilon}\right)$ by a combinatorial algorithm.

SBMM-Hypothesis

BMM cannot be solved in $\mathrm{O}(m)$, where $m=$ number of 1-entries.

Our Results

RPQ-Boole

Theorem
RPQ-Boole can be solved in time $\mathrm{O}(|\mathcal{D} \| q|)$.

RPQ-Boole

Theorem

RPQ-Boole can be solved in time $\mathrm{O}(|\mathcal{D} \| q|)$.

Theorem

If RPQ-Boole can be solved in time

- $\mathrm{O}\left(|\mathcal{D}|^{2-\epsilon}+|q|^{2}\right)$, then OV-hypothesis fails.
- $\mathrm{O}\left(|\mathcal{D}|^{2}+|q|^{2-\epsilon}\right)$, then OV-hypothesis fails.
- $\mathrm{O}\left(\left|V_{\mathcal{D}}\right|^{3-\epsilon}+|q|^{3-\epsilon}\right)$, com-BMM-hypothesis fails.

RPQ-Boole

Theorem
 RPQ-Boole can be solved in time $\mathrm{O}(|\mathcal{D} \| q|)$.

Theorem

If RPQ-Boole can be solved in time

- $\mathrm{O}\left(|\mathcal{D}|^{2-\epsilon}+|q|^{2}\right)$, then OV-hypothesis fails.
- $\mathrm{O}\left(|\mathcal{D}|^{2}+|q|^{2-\epsilon}\right)$, then OV-hypothesis fails.
- $\mathrm{O}\left(\left|V_{\mathcal{D}}\right|^{3-\epsilon}+|q|^{3-\epsilon}\right)$, com-BMM-hypothesis fails.

Data Complexity

From now on ALL bounds in data complexity!

RPQ-Eval and RPQ-Count

Theorem RPQ-Eval (and RPQ-Count) can be solved in time $\mathrm{O}\left(\left|V_{\mathcal{D}} \| \mathcal{D}\right|\right)$.

RPQ-Eval and RPQ-Count

Theorem RPQ-Eval (and RPQ-Count) can be solved in time $\mathrm{O}\left(\left|V_{\mathcal{D}} \| \mathcal{D}\right|\right)$.

Theorem

If RPQ-Eval can be solved in time

- $\mathrm{O}\left(\left(\left|V_{\mathcal{D}}\right||\mathcal{D}|\right)^{1-\epsilon}\right)$, then com-BMM-hypothesis fails.
- $\mathrm{O}((|q(\mathcal{D})|+|\mathcal{D}|))$, then SBMM-hypothesis fails.

RPQ-Eval and RPQ-Count

Theorem

 RPQ-Eval (and RPQ-Count) can be solved in time $\mathrm{O}\left(\left|V_{\mathcal{D}} \| \mathcal{D}\right|\right)$.
Theorem

If RPQ-Eval can be solved in time

- $\mathrm{O}\left(\left(\left|V_{\mathcal{D}}\right||\mathcal{D}|\right)^{1-\epsilon}\right)$, then com-BMM-hypothesis fails.
- $\mathrm{O}((|q(\mathcal{D})|+|\mathcal{D}|))$, then SBMM-hypothesis fails.

Theorem

If $R P Q$-Count can be solved in time $O\left(\left(\left|V_{\mathcal{D}} \| \mathcal{D}\right|\right)^{1-\epsilon}\right)$ then the OV-hypothesis fails.

RPQ-Enum - Upper Bound

Theorem

Sorted RPQ-Enum can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$, delay $\mathrm{O}(|\mathcal{D}|)$ and $\mathrm{O}(1)$ updates.

RPQ-Enum - Upper Bound

Theorem

Sorted RPQ-Enum can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$, delay $\mathrm{O}(|\mathcal{D}|)$ and $\mathrm{O}(1)$ updates.

Some Thoughts

- Linear preprocessing is reasonable.
- Linear delay is bad.
- What about updates??

RPQ-Enum - Lower Bounds

Conditional Lower Bounds
Linear preprocessing and

- constant delay? No!

RPQ-Enum - Lower Bounds

Conditional Lower Bounds
Linear preprocessing and

- constant delay? No!
- delay sublinear in $\left|V_{\mathcal{D}}\right|$? No!

RPQ-Enum - Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

- constant delay? No!
- delay sublinear in $\left|V_{\mathcal{D}}\right|$? No!
- delay sublinear in $|\mathcal{D}|$? Not if we also want updates!

RPQ-Enum - Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

- constant delay? No!
- delay sublinear in $\left|V_{\mathcal{D}}\right|$? No!
- delay sublinear in $|\mathcal{D}|$? Not if we also want updates!

Open Question

RPQ-Enum with $\mathrm{O}(|\mathcal{D}|)$ preprocessing and $\mathrm{O}\left(\left|V_{\mathcal{D}}\right|\right)$ delay???

RPQ-Enum - Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

- constant delay? No!
- delay sublinear in $\left|V_{\mathcal{D}}\right|$? No!
- delay sublinear in $|\mathcal{D}|$? Not if we also want updates!

Open Question
RPQ-Enum with $\mathrm{O}(|\mathcal{D}|)$ preprocessing and $\mathrm{O}\left(\left|V_{\mathcal{D}}\right|\right)$ delay???

Next objective:
Just any enumeration that guarantees delay sublinear in $|\mathcal{D}|$.

Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set
A "representative" subset $A \subseteq q(\mathcal{D})$ can be enumerated with linear preprocessing and constant delay.

Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set
A "representative" subset $A \subseteq q(\mathcal{D})$ can be enumerated with linear preprocessing and constant delay.
$\bar{\Delta}(\mathcal{D})$ denotes the average degree of \mathcal{D}.
Second Approach: Super-Linear Preprocessing
Sorted RPQ-Enum can be solved with preprocessing $\mathrm{O}(\log (\bar{\Delta}(\mathcal{D})) \bar{\Delta}(\mathcal{D})|\mathcal{D}|)$ and delay $\mathrm{O}\left(\left|V_{\mathcal{D}}\right|\right)$.

Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set
A "representative" subset $A \subseteq q(\mathcal{D})$ can be enumerated with linear preprocessing and constant delay.
$\bar{\Delta}(\mathcal{D})$ denotes the average degree of \mathcal{D}.
Second Approach: Super-Linear Preprocessing
Sorted RPQ-Enum can be solved with preprocessing $\mathrm{O}(\log (\bar{\Delta}(\mathcal{D})) \bar{\Delta}(\mathcal{D})|\mathcal{D}|)$ and delay $\mathrm{O}\left(\left|V_{\mathcal{D}}\right|\right)$.
$\Delta(\mathcal{D})$ denotes the maximum degree of \mathcal{D}.

Third Approach: Restricted Class of RPQs

For a $Q \subseteq R P Q, R P Q-E n u m$ can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$ and delay $\mathrm{O}(\Delta(\mathcal{D}))$.

Third Approach: Restricted Class of RPQs

- Short RPQ (S-RPQ):

$$
q=\left(x_{1} \vee \ldots \vee x_{k}\right) \text { or } q=\left(x_{1} \vee \ldots \vee x_{k}\right)\left(y_{1} \vee \ldots \vee y_{k^{\prime}}\right)
$$

$$
\text { where } x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k^{\prime}} \in \Sigma \text {. }
$$

Example: $q=(a \vee b)(a \vee c \vee d)$.

Third Approach: Restricted Class of RPQs

- Short RPQ (S-RPQ):
$q=\left(x_{1} \vee \ldots \vee x_{k}\right)$ or $q=\left(x_{1} \vee \ldots \vee x_{k}\right)\left(y_{1} \vee \ldots \vee y_{k^{\prime}}\right)$, where $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k^{\prime}} \in \Sigma$.

Example: $q=(a \vee b)(a \vee c \vee d)$.

- Basic Transitive RPQ (BT-RPQ):
$q=\left(x_{1} \vee \ldots \vee x_{k}\right)^{*}$ or $q=\left(x_{1} \vee \ldots \vee x_{k}\right)^{+}$, where $x_{1}, \ldots, x_{k} \in \Sigma$.
Example: $q=(a \vee c \vee d)^{+}$.

Third Approach: Restricted Class of RPQs

- Short RPQ (S-RPQ):

$$
q=\left(x_{1} \vee \ldots \vee x_{k}\right) \text { or } q=\left(x_{1} \vee \ldots \vee x_{k}\right)\left(y_{1} \vee \ldots \vee y_{k^{\prime}}\right)
$$

where $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k^{\prime}} \in \Sigma$.
Example: $q=(\mathrm{a} \vee \mathrm{b})(\mathrm{a} \vee \mathrm{c} \vee \mathrm{d})$.

- Basic Transitive RPQ (BT-RPQ):
$q=\left(x_{1} \vee \ldots \vee x_{k}\right)^{*}$ or $q=\left(x_{1} \vee \ldots \vee x_{k}\right)^{+}$, where $x_{1}, \ldots, x_{k} \in \Sigma$.
Example: $q=(a \vee c \vee d)^{+}$.
- Alternation Closure:
$V(S-R P Q \cup B T-R P Q)=$
$\left\{\left(q_{1} \vee \ldots \vee q_{m}\right) \mid q_{i} \in \mathrm{~S}-\mathrm{RPQ} \cup \mathrm{BT}-\mathrm{RPQ}, 1 \leq i \leq m\right\}$.
Example: $q=\left(a b \vee c^{*} \vee b(c \vee d) \vee(a \vee b \vee d)^{+}\right)$

Third Approach: Restricted Class of RPQs

Theorem
Semi-sorted Enum $(V(S-R P Q \cup B T-R P Q))$ can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$ and delay $\mathrm{O}(\Delta(\mathcal{D}))$.

Third Approach: Restricted Class of RPQs

Theorem

Semi-sorted Enum $(V(S-R P Q \cup B T-R P Q))$ can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$ and delay $\mathrm{O}(\Delta(\mathcal{D}))$.

Proof Sketch

- Semi-sorted Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$ and delay $\mathrm{O}(\Delta(\mathcal{D}))$.

Third Approach: Restricted Class of RPQs

Theorem

Semi-sorted Enum $(V(S-R P Q \cup B T-R P Q))$ can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$ and delay $\mathrm{O}(\Delta(\mathcal{D}))$.

Proof Sketch

- Semi-sorted Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$ and delay $\mathrm{O}(\Delta(\mathcal{D}))$.
- For every $Q \subseteq \mathrm{RPQ}$: Semi-sorted Enum (Q) can be solved with linear preprocessing and some delay, then Enum $(\bigvee(Q))$ can be solved with the same preprocessing and delay.

Third Approach: Restricted Class of RPQs

Theorem

Semi-sorted Enum $(V(S-R P Q \cup B T-R P Q))$ can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$ and delay $\mathrm{O}(\Delta(\mathcal{D}))$.

Proof Sketch

- Semi-sorted Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing $\mathrm{O}(|\mathcal{D}|)$ and delay $\mathrm{O}(\Delta(\mathcal{D}))$.
- For every $Q \subseteq \mathrm{RPQ}$: Semi-sorted Enum (Q) can be solved with linear preprocessing and some delay, then Enum $(\bigvee(Q))$ can be solved with the same preprocessing and delay.

Theorem

If RPQ-Enum (S-RPQ) can be solved with preprocessing $\mathrm{O}\left(\left|V_{\mathcal{D}}\right|^{3-\epsilon}\right)$ and delay $\mathrm{O}\left(|\Delta(\mathcal{D})|^{1-\epsilon}\right)$, then the com-BMM-hypothesis fails.

Thank you very much for your attention.

