Fine-Grained Complexity of Regular Path Queries

Katrin Casel¹, Markus L. Schmid²

HPI, University of Potsdam, Germany
 HU Berlin, Germany

ICDT 2021

Querying Graphs with Regular Expressions

Graph databases

directed, edge-labelled multigraphs.

Querying Graphs with Regular Expressions

Graph databases

directed, edge-labelled multigraphs.

Graph Databases

```
\begin{array}{lll} \Sigma & & \text{finite alphabet (edge labels)} \\ V_{\mathcal{D}} & & \textit{vertices (or nodes)} \\ E_{\mathcal{D}} \subseteq V_{\mathcal{D}} \times \Sigma \times V_{\mathcal{D}} & \textit{edges (or arcs)} \\ \text{Graph database} & \mathcal{D} = (V_{\mathcal{D}}, E_{\mathcal{D}}) \end{array}
```

Querying Graphs with Regular Expressions

Graph databases

directed, edge-labelled multigraphs.

Graph Databases

 $\begin{array}{ll} \Sigma & \text{finite alphabet (edge labels)} \\ V_{\mathcal{D}} & \text{vertices (or nodes)} \\ E_{\mathcal{D}} \subseteq V_{\mathcal{D}} \times \Sigma \times V_{\mathcal{D}} & \text{edges (or arcs)} \\ \text{Graph database} & \mathcal{D} = (V_{\mathcal{D}}, E_{\mathcal{D}}) \end{array}$

Regular Path Queries (RPQs)

Regular expressions q over Σ . $q(\mathcal{D}) = \{(u, v) \mid \exists u \text{-to-} v \text{ path labelled by a word from } \mathcal{L}(q)\}$

Regular Path Query Example

Graph database \mathcal{D} :

Regular Path Query Example

Graph database \mathcal{D} :

Regular path query:

$$q = a^*(b \lor c)$$

Different Variants of RPQs

Different Variants of RPQs

Query results:

- Only node pairs (u, v).
- Node pairs (u, v) and a witness path.
- Node pairs (u, v) and all witness paths.

Different Variants of RPQs

Query results:

- Only node pairs (u, v).
- Node pairs (u, v) and a witness path.
- Node pairs (u, v) and all witness paths.

Path semantics: $(u,v) \in q(\mathcal{D})$ if there is

- an arbitrary path.
- a *simple* path.
- ► a trail.
- a *shortest* path.

Product Graph Approach (PG-Approach)

 \mathcal{D} : Graph database

q: Regular path query

M: NFA for q with state set Q

Product Graph Approach (PG-Approach)

 \mathcal{D} : Graph database

q: Regular path query

M: NFA for q with state set Q

Product Graph

$$G(\mathcal{D},q)=(V(\mathcal{D},q),E(\mathcal{D},q))$$

$$V(\mathcal{D},q)=V_{\mathcal{D}}\times Q$$

$$E(\mathcal{D},q)\subseteq (V(\mathcal{D},q)\times V(\mathcal{D},q))$$
:

$$(u,p) \to (v,p') \iff \exists x \in \Sigma : u \xrightarrow{x} v \land p \xrightarrow{x} p'.$$

PG-Approach Example

PG-Approach Example

RPQ Evaluation Tasks

Name	Input	Task
RPQ-Boole	\mathcal{D} , q	Decide whether $q(\mathcal{D})=\emptyset$.
RPQ-Eval	\mathcal{D} , q	Compute the whole set $q(\mathcal{D})$.
RPQ-Count	\mathcal{D} , q	Compute $ q(\mathcal{D}) $.
(Sorted) RPQ-Enum	\mathcal{D} , q	Enumerate the whole set $q(\mathcal{D})$
		(lexicographically ordered).

RPQ Evaluation Tasks

Name	Input	Task
RPQ-Boole	\mathcal{D} , q	Decide whether $q(\mathcal{D})=\emptyset$
RPQ-Eval	\mathcal{D} , q	Compute the whole set $q(\mathcal{D})$.
RPQ-Count	\mathcal{D} , q	Compute $ q(\mathcal{D}) $.
(Sorted) RPQ-Enum	\mathcal{D} , q	Enumerate the whole set $q(\mathcal{D})$
		(lexicographically ordered).

Updates: Adding/deleting isolated nodes, adding/deleting arcs.

Research Question

- ▶ PG-approach good for simple tasks like checking $q(\mathcal{D}) = \emptyset$ or $(u, v) \in q(\mathcal{D})$.

 What about computing, counting or enumerating $q(\mathcal{D})$?
- ▶ Is the PG-approach optimal?
- Can we complement upper bounds with conditional lower bounds?

Fine-Grained Complexity and

Conditional Lower Bounds

Orthogonal Vectors

Orthogonal Vectors (OV)

Input: Sets A, B each containing n Boolean d-dimensional vectors.

Question: Are there orthogonal vectors $\vec{a} \in A$ and $\vec{b} \in B$?

Orthogonal Vectors

Orthogonal Vectors (OV)

Input: Sets A, B each containing n Boolean d-dimensional vectors.

Question: Are there orthogonal vectors $\vec{a} \in A$ and $\vec{b} \in B$?

OV-Hypothesis

For every $\epsilon > 0$, OV cannot be solved in $O(n^{2-\epsilon} \text{ poly}(d))$.

Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)

Input: Boolean $n \times n$ matrices A, B.

Task: Compute $A \times B$.

Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)

Input: Boolean $n \times n$ matrices A, B.

Task: Compute $A \times B$.

com-BMM-Hypothesis

For every $\epsilon > 0$, BMM cannot be solved in $O(n^{3-\epsilon})$ by a *combinatorial* algorithm.

Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)

Input: Boolean $n \times n$ matrices A, B.

Task: Compute $A \times B$.

com-BMM-Hypothesis

For every $\epsilon > 0$, BMM cannot be solved in $O(n^{3-\epsilon})$ by a *combinatorial* algorithm.

SBMM-Hypothesis

BMM cannot be solved in O(m), where m = number of 1-entries.

Our Results

RPQ-Boole

Theorem

RPQ-Boole can be solved in time $O(|\mathcal{D}||q|)$.

RPQ-Boole

Theorem

RPQ-Boole can be solved in time $O(|\mathcal{D}||q|)$.

Theorem

If RPQ-Boole can be solved in time

- ▶ O($|\mathcal{D}|^{2-\epsilon} + |q|^2$), then OV-hypothesis fails.
- $ightharpoonup O(|\mathcal{D}|^2+|q|^{2-\epsilon})$, then OV-hypothesis fails.
- $ightharpoonup O(|V_{\mathcal{D}}|^{3-\epsilon}+|q|^{3-\epsilon})$, com-BMM-hypothesis fails.

RPQ-Boole

Theorem

RPQ-Boole can be solved in time $O(|\mathcal{D}||q|)$.

Theorem

If RPQ-Boole can be solved in time

- $ightharpoonup {
 m O}(|{\cal D}|^{2-\epsilon}+|q|^2)$, then OV-hypothesis fails.
- $ightharpoonup O(|\mathcal{D}|^2+|q|^{2-\epsilon})$, then OV-hypothesis fails.
- $ightharpoonup \mathrm{O}(|V_{\mathcal{D}}|^{3-\epsilon}+|q|^{3-\epsilon})$, com-BMM-hypothesis fails.

Data Complexity

From now on ALL bounds in data complexity!

RPQ-Eval and RPQ-Count

Theorem

RPQ-Eval (and RPQ-Count) can be solved in time $O(|V_D||D|)$.

RPQ-Eval and RPQ-Count

Theorem

RPQ-Eval (and RPQ-Count) can be solved in time $O(|V_D||D|)$.

Theorem

If RPQ-Eval can be solved in time

- $ightharpoonup {\rm O}((|V_{\mathcal{D}}||\,{\mathcal{D}}\,|)^{1-\epsilon})$, then com-BMM-hypothesis fails.
- ▶ O((|q(D)| + |D|)), then SBMM-hypothesis fails.

RPQ-Eval and RPQ-Count

Theorem

RPQ-Eval (and RPQ-Count) can be solved in time $\mathrm{O}(|V_{\mathcal{D}}||\,\mathcal{D}\,|).$

Theorem

If RPQ-Eval can be solved in time

- $ightharpoonup O((|V_{\mathcal{D}}||\mathcal{D}|)^{1-\epsilon})$, then com-BMM-hypothesis fails.
- ▶ O((|q(D)| + |D|)), then SBMM-hypothesis fails.

Theorem

If RPQ-Count can be solved in time $O((|V_D||D|)^{1-\epsilon})$ then the OV-hypothesis fails.

RPQ-Enum - Upper Bound

Theorem

Sorted RPQ-Enum can be solved with preprocessing $O(|\mathcal{D}|)$, delay $O(|\mathcal{D}|)$ and O(1) updates.

RPQ-Enum - Upper Bound

Theorem

Sorted RPQ-Enum can be solved with preprocessing $O(|\mathcal{D}|)$, delay $O(|\mathcal{D}|)$ and O(1) updates.

Some Thoughts

- Linear preprocessing is reasonable.
- Linear delay is bad.
- What about updates??

RPQ-Enum - Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

► constant delay? No!

RPQ-Enum - Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

- ► constant delay? No!
- delay sublinear in $|V_{\mathcal{D}}|$? No!

RPQ-Enum – Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

- constant delay? No!
- delay sublinear in $|V_{\mathcal{D}}|$? No!
- ightharpoonup delay sublinear in $|\mathcal{D}|$? Not if we also want updates!

RPQ-Enum – Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

- constant delay? No!
- delay sublinear in $|V_{\mathcal{D}}|$? No!
- ▶ delay sublinear in $|\mathcal{D}|$? Not if we also want updates!

Open Question

RPQ-Enum with $O(|\mathcal{D}|)$ preprocessing and $O(|V_{\mathcal{D}}|)$ delay???

RPQ-Enum – Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

- constant delay? No!
- delay sublinear in $|V_{\mathcal{D}}|$? No!
- ightharpoonup delay sublinear in $|\mathcal{D}|$? Not if we also want updates!

Open Question

RPQ-Enum with $O(|\mathcal{D}|)$ preprocessing and $O(|V_{\mathcal{D}}|)$ delay???

Next objective:

Just any enumeration that guarantees delay sublinear in $|\mathcal{D}|$.

Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set

A "representative" subset $A\subseteq q(\mathcal{D})$ can be enumerated with linear preprocessing and constant delay.

Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set

A "representative" subset $A\subseteq q(\mathcal{D})$ can be enumerated with linear preprocessing and constant delay.

 $\overline{\Delta}(\mathcal{D})$ denotes the *average* degree of \mathcal{D} .

Second Approach: Super-Linear Preprocessing

Sorted RPQ-Enum can be solved with preprocessing $O(\log(\overline{\Delta}(\mathcal{D})) | \overline{\Delta}(\mathcal{D}) | \mathcal{D}|)$ and delay $O(|V_{\mathcal{D}}|)$.

Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set

A "representative" subset $A\subseteq q(\mathcal{D})$ can be enumerated with linear preprocessing and constant delay.

 $\overline{\Delta}(\mathcal{D})$ denotes the *average* degree of \mathcal{D} .

Second Approach: Super-Linear Preprocessing

Sorted RPQ-Enum can be solved with preprocessing $O(\log(\overline{\Delta}(\mathcal{D})) | \overline{\Delta}(\mathcal{D}) | \mathcal{D}|)$ and delay $O(|V_{\mathcal{D}}|)$.

 $\Delta(\mathcal{D})$ denotes the *maximum* degree of \mathcal{D} .

Third Approach: Restricted Class of RPQs

For a $Q\subseteq \mathsf{RPQ}$, $\mathsf{RPQ} ext{-}\mathsf{Enum}$ can be solved with preprocessing $\mathsf{O}(|\mathcal{D}|)$ and delay $\mathsf{O}(\Delta(\mathcal{D}))$.

Short RPQ (S-RPQ):

```
q=(x_1\vee\ldots\vee x_k) or q=(x_1\vee\ldots\vee x_k)(y_1\vee\ldots\vee y_{k'}),
where x_1,\ldots,x_k,y_1,\ldots,y_{k'}\in\Sigma.
```

Example: $q = (a \lor b)(a \lor c \lor d)$.

Short RPQ (S-RPQ):

$$q = (x_1 \lor \ldots \lor x_k) \text{ or } q = (x_1 \lor \ldots \lor x_k)(y_1 \lor \ldots \lor y_{k'}),$$

where $x_1, \ldots, x_k, y_1, \ldots, y_{k'} \in \Sigma$.

Example: $q = (a \lor b)(a \lor c \lor d)$.

Basic Transitive RPQ (BT-RPQ):

$$q = (x_1 \vee \ldots \vee x_k)^*$$
 or $q = (x_1 \vee \ldots \vee x_k)^+$, where $x_1, \ldots, x_k \in \Sigma$.

where $x_1, \dots, x_k \in \Sigma$. Example: $q = (a \lor c \lor d)^+$.

Short RPQ (S-RPQ): $q = (x_1 \vee ... \vee x_k) \text{ or } q = (x_1 \vee ... \vee x_k)(y_1 \vee ... \vee y_{k'}),$ where $x_1, ..., x_k, y_1, ..., y_{k'} \in \Sigma$.

Example: $q = (a \lor b)(a \lor c \lor d)$.

▶ Basic Transitive RPQ (BT-RPQ): $q = (x_1 \lor ... \lor x_k)^* \text{ or } q = (x_1 \lor ... \lor x_k)^+,$ where $x_1, ..., x_k \in \Sigma$. Example: $q = (a \lor c \lor d)^+$.

Alternation Closure:

$$\bigvee (\mathsf{S}\text{-}\mathsf{RPQ} \cup \mathsf{BT}\text{-}\mathsf{RPQ}) = \\ \{(q_1 \vee \ldots \vee q_m) \mid q_i \in \mathsf{S}\text{-}\mathsf{RPQ} \cup \mathsf{BT}\text{-}\mathsf{RPQ}, 1 \leq i \leq m\}.$$
 Example: $q = (\mathsf{ab} \vee \mathsf{c}^* \vee \mathsf{b}(\mathsf{c} \vee \mathsf{d}) \vee (\mathsf{a} \vee \mathsf{b} \vee \mathsf{d})^+)$

Theorem

Semi-sorted Enum(\bigvee (S-RPQ \cup BT-RPQ)) can be solved with preprocessing O($|\mathcal{D}|$) and delay O($\Delta(\mathcal{D})$).

Theorem

Semi-sorted Enum(\bigvee (S-RPQ \cup BT-RPQ)) can be solved with preprocessing O($|\mathcal{D}|$) and delay O($\Delta(\mathcal{D})$).

Proof Sketch

▶ Semi-sorted Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing $O(|\mathcal{D}|)$ and delay $O(\Delta(\mathcal{D}))$.

Theorem

Semi-sorted Enum(\bigvee (S-RPQ \cup BT-RPQ)) can be solved with preprocessing O($\mid \mathcal{D} \mid$) and delay O($\Delta(\mathcal{D})$).

Proof Sketch

- ▶ Semi-sorted Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing $O(|\mathcal{D}|)$ and delay $O(\Delta(\mathcal{D}))$.
- ▶ For every $Q \subseteq \mathsf{RPQ}$: Semi-sorted $\mathsf{Enum}(Q)$ can be solved with linear preprocessing and some delay, then $\mathsf{Enum}(\bigvee(Q))$ can be solved with the same preprocessing and delay.

Theorem

Semi-sorted Enum(\bigvee (S-RPQ \cup BT-RPQ)) can be solved with preprocessing O($\mid \mathcal{D} \mid$) and delay O($\Delta(\mathcal{D})$).

Proof Sketch

- ▶ Semi-sorted Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing $O(|\mathcal{D}|)$ and delay $O(\Delta(\mathcal{D}))$.
- ▶ For every $Q \subseteq \mathsf{RPQ}$: Semi-sorted $\mathsf{Enum}(Q)$ can be solved with linear preprocessing and some delay, then $\mathsf{Enum}(\bigvee(Q))$ can be solved with the same preprocessing and delay.

Theorem

If RPQ-Enum(S-RPQ) can be solved with preprocessing $O(|V_D|^{3-\epsilon})$ and delay $O(|\Delta(D)|^{1-\epsilon})$, then the com-BMM-hypothesis fails.