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Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.
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Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
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A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbch
marking sequence: 4, a, b, ¢, e

marked blocks: 1
maximum number of marked blocks: 3
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The Locality Number
Let X = {x1,x2,...,xn} be a finite alphabet.

Marking Sequence

Any ordered list o of the symbols from X (or, equivalently, a
bijection ¢ : {1,2,...,|X|} = X) is a marking sequence.

Marking Number

The marking number 7,(«) (of o with respect to «) is the
maximum number of marked blocks obtained while marking «
according to o.

Locality Number

A string « over X is k-local <= () < k, for some marking
sequence o.

The locality number of a is loc(a) = min{k | v is k-local}.
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The Locality Number

Example

Let a = adabadbdaecbeb, 01 = (b, ¢, e,d,a), oo = (d,a,b,c,e)

Toy () =4 (= loc(a) < 4)
Top(a) = 3 (= loc(a) < 3)
loc(a) =3
Motivation

Pattern matching with variables.
Marking sequence = dynamic programming algorithm

~» XP-algorithms w.r.t. parameter loc(«).
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Known Results and Open Problems

Computing the locality number

Loc
Input: String a € ¥*, k € N.
Question:  loc(ar) < k7

MinLoc denotes the corresponding minimisation problem.

Loc € XP w.r.t. parameter k (i.e., in P for fixed k).

> |s Loc NP-complete?
> Is Loc € FPT (w.r.t. k or [X|)?
» Are there good approximation algorithms for MinLoc?
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Cutwidth

Let G = (V, E) be a (multi)graph with V = {wv1,...,v,}.

Cuts

Cut: partition (V4, V5) of V.

Cut set: C(V4, Vo) = {{x,y} € E|xe W1,y € Va}.
Size of a cut: [C(V4, Vo).

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence L = (vj,, v}, .., Vj,), Where
(j1,J25 - - - »Jn) is @ permutation of (1,2,...,n).

Cutwidth of L:
CW(L) - max{‘ C({Vj17 Vigs ) ‘/ji}7 {\/ji+17 0oog an})’ ’ 0<i< n}
Cutwidth of G: cw(G) = min{cw(L) | L is lin. arr. for G}.
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Linear arrangement with cutwidth 5:

“‘a Linear arrangement with cutwidth 3:
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Cutwidth — Example

Linear arrangement with cutwidth 5:

“‘a Linear arrangement with cutwidth 3:

EENO®0: foR 0GR

cw(G) =3



Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G, k € N.
Question:  cw(a) < k?



Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G, k € N.
Question:  cw(a) < k?

MinCutwidth denotes the corresponding minimisation problem.



Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G, k € N.
Question:  cw(a) < k?

MinCutwidth denotes the corresponding minimisation problem.

Known Results

» Cutwidth is NP-complete.
» Cutwidth € FPT (w.r.t. k).

» Exact exponential algorithms, linear fpt-algorithms,
approximation algorithms...
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Loc < Cutwidth
Construct multigraph

Hox = (V,E):
Y ={a,b,c,d}
« = abcbcdbada
k=2.
a=abcbcdbada Marking sequence: (c,b,d,a)

C= == =#)

cw(Hq k) = 2k if and only if loc(a) < k.
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Cutwidth < Loc
G = (V, E):
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Cutwidth < Loc

O[{va}=XWUXWUXVUV}/ZV)/ZV

Ve € E : cw(G) < loc(ae) < cw(G) + 1
Je € E : loc(ae) = cw(G).
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Consequences

MinCutwidth MinLoc
Run time: | O(f(|E|)) = O(f(la]) + |a])
Appr. ratio: | r(opt, |E|) (r(2opt, |a]) + oipt)
Run time: | O(n(f(|E|) + |E])) < O(f(|al))
Appr. ratio: | r(opt, |E|) r(opt, |c|)

The problem Loc

» is NP-complete,
(even if every symbol has at most 3 occurrences)

> can be solved in 0*(2/*),

» in FPT (w.r.t. parameter k), with linear fpt-algorithm.
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Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-decompositions as marking procedures
Let G = (V, E) be a graph.
Path-decomposition Q of G:

» Initially all vertices are blue.

» Until all vertices are blue again,

» color a vertex red that has never been red before, or
» color a red vertex blue again,

» such that each two adjacent vertices are red at the same time.
pw(Q): Max. number of marked vertices.
pw(G): Min. pw(Q) over all path-decompositions.
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Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: Graph G, k € N.
Question:  pw(a) < k7

MinPathwidth denotes the corresponding minimisation problem.

Known Results

» Pathwidth is NP-complete.
» Pathwidth € FPT (w.r.t. k).

» Exact exponential algorithms, linear fpt-algorithms,
approximation algorithms...
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Results

loc(ar) < pw(Gqy) < 2loc(a).

Lemma
Ja : pw(Ga) = 2loc(w),

3B : loc(B) = pw(Gs).




Results

loc(ar) < pw(Gqy) < 2loc(a).

Ja : pw(Ga) = 2loc(w),
3B : loc(B) = pw(Gs).

There is an O(y/log(opt) log(n))-approx. algo. for MinLoc.
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Consequences for Cutwidth

Leighton and Rao, JACM 1999: O(log(n) log(n))-approximation.

(Based on more general approximation techniques for
edge-seperators)

Feige et al., SICOMP 2008: O(+/log(opt) log(n))-approximation.

(Based on more general approximation techniques for
vertex-seperators)

There is an O(y/log(opt) log(h))-approximation algorithm for
MinCutwidth on multigraphs with h edges.



Direct Reduction: MinCutwidth < MinPathwidth




