Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number

Katrin Casel ${ }^{1}$, Joel D. Day ${ }^{2}$, Pamela Fleischmann ${ }^{3}$, Tomasz Kociumaka ${ }^{4}$, Florin Manea ${ }^{3}$, Markus L. Schmid ${ }^{5}$

${ }^{1} \mathrm{HPI}$, University of Potsdam, Germany
${ }^{2}$ Loughborough University, UK
${ }^{3}$ Kiel University, Germany
${ }^{4}$ University of Warsaw, Poland, and Bar-Ilan University, Israel
${ }^{5}$ Trier University, Germany

Theorietag 2019 - Marburg

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence:
marked blocks:
maximum number of marked blocks:

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence: b
marked blocks: 4
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence: b, c
marked blocks: 3
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence: b, c, e
marked blocks: 3
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

ad abadbdaecbcb
marking sequence: b, c, e, d
marked blocks: 4
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

ad abadbdaecbcb
marking sequence: b, c, e, d, a
marked blocks: 1
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence:
marked blocks:
maximum number of marked blocks:

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

ad abadbdaecbcb
marking sequence: d
marked blocks: 3
maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence: d, a
marked blocks: 3
maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence: $\mathrm{d}, \mathrm{a}, \mathrm{b}$
marked blocks: 3
maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence: d, a, b, c
marked blocks: 2
maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game
Given: String α over (finite) alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Objective: Mark all symbols $a_{1}, a_{2}, \ldots, a_{n}$ in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

ad abadbdaecbcb
marking sequence: d, a, b, c, e
marked blocks: 1
maximum number of marked blocks: 3

The Locality Number

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite alphabet.
Marking Sequence
Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma:\{1,2, \ldots,|X|\} \rightarrow X)$ is a marking sequence.

The Locality Number

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite alphabet.
Marking Sequence
Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma:\{1,2, \ldots,|X|\} \rightarrow X)$ is a marking sequence.

Marking Number

The marking number $\pi_{\sigma}(\alpha)$ (of σ with respect to α) is the maximum number of marked blocks obtained while marking α according to σ.

The Locality Number

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite alphabet.
Marking Sequence
Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma:\{1,2, \ldots,|X|\} \rightarrow X)$ is a marking sequence.

Marking Number

The marking number $\pi_{\sigma}(\alpha)$ (of σ with respect to α) is the maximum number of marked blocks obtained while marking α according to σ.

Locality Number
A string α over X is k-local $\Longleftrightarrow \pi_{\sigma}(\alpha) \leq k$, for some marking sequence σ.
The locality number of α is $\operatorname{loc}(\alpha)=\min \{k \mid \alpha$ is k-local $\}$.

The Locality Number

Example

Let $\alpha=$ adabadbdaecbcb, $\sigma_{1}=(\mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{d}, \mathrm{a}), \sigma_{2}=(\mathrm{d}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e})$

The Locality Number

Example

Let $\alpha=$ adabadbdaecbcb, $\sigma_{1}=(\mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{d}, \mathrm{a}), \sigma_{2}=(\mathrm{d}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e})$

$$
\pi_{\sigma_{1}}(\alpha)=4(\Rightarrow \operatorname{loc}(\alpha) \leq 4)
$$

The Locality Number

Example

Let $\alpha=$ adabadbdaecbcb, $\sigma_{1}=(\mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{d}, \mathrm{a}), \sigma_{2}=(\mathrm{d}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e})$

$$
\begin{aligned}
& \pi_{\sigma_{1}}(\alpha)=4(\Rightarrow \operatorname{loc}(\alpha) \leq 4) \\
& \pi_{\sigma_{2}}(\alpha)=3(\Rightarrow \operatorname{loc}(\alpha) \leq 3)
\end{aligned}
$$

The Locality Number

Example

Let $\alpha=$ adabadbdaecbcb, $\sigma_{1}=(\mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{d}, \mathrm{a}), \sigma_{2}=(\mathrm{d}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e})$

$$
\begin{aligned}
& \pi_{\sigma_{1}}(\alpha)=4(\Rightarrow \operatorname{loc}(\alpha) \leq 4) \\
& \pi_{\sigma_{2}}(\alpha)=3(\Rightarrow \operatorname{loc}(\alpha) \leq 3) \\
& \operatorname{loc}(\alpha)=3
\end{aligned}
$$

The Locality Number

Example

$$
\begin{aligned}
& \text { Let } \alpha=\text { adabadbdaecbcb, } \sigma_{1}=(\mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{~d}, \mathrm{a}), \sigma_{2}=(\mathrm{d}, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{e}) \\
& \pi_{\sigma_{1}}(\alpha)=4(\Rightarrow \operatorname{loc}(\alpha) \leq 4) \\
& \pi_{\sigma_{2}}(\alpha)=3(\Rightarrow \operatorname{loc}(\alpha) \leq 3) \\
& \operatorname{loc}(\alpha)=3
\end{aligned}
$$

Motivation

Pattern matching with variables.
Marking sequence $=$ dynamic programming algorithm
\sim XP-algorithms w.r.t. parameter $\operatorname{loc}(\alpha)$.

Known Results and Open Problems

Computing the locality number
Loc
Input: \quad String $\alpha \in \Sigma^{*}, k \in \mathbb{N}$.
Question: $\operatorname{loc}(\alpha) \leq k$?

Known Results and Open Problems

Computing the locality number

Loc
Input: \quad String $\alpha \in \Sigma^{*}, k \in \mathbb{N}$.
Question: $\operatorname{loc}(\alpha) \leq k$?
MinLoc denotes the corresponding minimisation problem.

Known Results and Open Problems

Computing the locality number

Loc
Input: \quad String $\alpha \in \Sigma^{*}, k \in \mathbb{N}$.
Question: $\operatorname{loc}(\alpha) \leq k$?
MinLoc denotes the corresponding minimisation problem.

Known Results

Loc $\in X P$ w.r.t. parameter k (i. e., in P for fixed k).

Known Results and Open Problems

Computing the locality number

Loc
Input: \quad String $\alpha \in \Sigma^{*}, k \in \mathbb{N}$.
Question: $\operatorname{loc}(\alpha) \leq k$?
MinLoc denotes the corresponding minimisation problem.

Known Results

Loc $\in X P$ w.r.t. parameter k (i. e., in P for fixed k).

Open Problems

- Is Loc NP-complete?
- Is Loc \in FPT (w.r.t. k or $|\Sigma|$)?
- Are there good approximation algorithms for MinLoc?

Cutwidth

Let $G=(V, E)$ be a (multi)graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
Cuts
Cut: partition $\left(V_{1}, V_{2}\right)$ of V.

Cutwidth

Let $G=(V, E)$ be a (multi)graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
Cuts
Cut: partition $\left(V_{1}, V_{2}\right)$ of V.
Cut set: $\mathcal{C}\left(V_{1}, V_{2}\right)=\left\{\{x, y\} \in E \mid x \in V_{1}, y \in V_{2}\right\}$.

Cutwidth

Let $G=(V, E)$ be a (multi)graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
Cuts
Cut: partition $\left(V_{1}, V_{2}\right)$ of V.
Cut set: $\mathcal{C}\left(V_{1}, V_{2}\right)=\left\{\{x, y\} \in E \mid x \in V_{1}, y \in V_{2}\right\}$.
Size of a cut: $\left|\mathcal{C}\left(V_{1}, V_{2}\right)\right|$.

Cutwidth

Let $G=(V, E)$ be a (multi)graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
Cuts
Cut: partition $\left(V_{1}, V_{2}\right)$ of V.
Cut set: $\mathcal{C}\left(V_{1}, V_{2}\right)=\left\{\{x, y\} \in E \mid x \in V_{1}, y \in V_{2}\right\}$.
Size of a cut: $\left|\mathcal{C}\left(V_{1}, V_{2}\right)\right|$.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence $L=\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{n}}\right)$, where $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is a permutation of $(1,2, \ldots, n)$.

Cutwidth

Let $G=(V, E)$ be a (multi)graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
Cuts
Cut: partition $\left(V_{1}, V_{2}\right)$ of V.
Cut set: $\mathcal{C}\left(V_{1}, V_{2}\right)=\left\{\{x, y\} \in E \mid x \in V_{1}, y \in V_{2}\right\}$.
Size of a cut: $\left|\mathcal{C}\left(V_{1}, V_{2}\right)\right|$.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence $L=\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{n}}\right)$, where $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is a permutation of $(1,2, \ldots, n)$.
Cutwidth of L : $\mathrm{cw}(L)=\max \left\{\left|\mathcal{C}\left(\left\{v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{i}}\right\},\left\{v_{j_{i+1}}, \ldots, v_{j_{n}}\right\}\right)\right| \mid 0 \leq i \leq n\right\}$

Cutwidth

Let $G=(V, E)$ be a (multi)graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
Cuts
Cut: partition $\left(V_{1}, V_{2}\right)$ of V.
Cut set: $\mathcal{C}\left(V_{1}, V_{2}\right)=\left\{\{x, y\} \in E \mid x \in V_{1}, y \in V_{2}\right\}$.
Size of a cut: $\left|\mathcal{C}\left(V_{1}, V_{2}\right)\right|$.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence $L=\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{n}}\right)$, where $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ is a permutation of $(1,2, \ldots, n)$.
Cutwidth of L : $\mathrm{cw}(L)=\max \left\{\left|\mathcal{C}\left(\left\{v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{i}}\right\},\left\{v_{j_{i+1}}, \ldots, v_{j_{n}}\right\}\right)\right| \mid 0 \leq i \leq n\right\}$
Cutwidth of $G: \operatorname{cw}(G)=\min \{\mathrm{cw}(L) \mid L$ is lin. arr. for $G\}$.

Cutwidth - Example

Graph G:

Cutwidth - Example

Linear arrangement with cutwidth 5:

Graph G:

Cutwidth - Example

Linear arrangement with cutwidth 5:

Graph G:

Cutwidth - Example

Linear arrangement with cutwidth 5:

Graph G:

Linear arrangement with cutwidth 3 :

Cutwidth - Example

Linear arrangement with cutwidth 5:

Graph G:

Linear arrangement with cutwidth 3 :

Cutwidth - Example

Linear arrangement with cutwidth 5:

Graph G:

Linear arrangement with cutwidth 3 :

$$
\mathrm{cw}(G)=3
$$

Computing the Cutwidth

Cutwidth problem
Cutwidth
Input: (Multi)graph $G, k \in \mathbb{N}$.
Question: $\quad \mathrm{cw}(\alpha) \leq k$?

Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph $G, k \in \mathbb{N}$.
Question: $\quad \mathrm{cw}(\alpha) \leq k$?
MinCutwidth denotes the corresponding minimisation problem.

Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph $G, k \in \mathbb{N}$.
Question: $\mathrm{cw}(\alpha) \leq k$?
MinCutwidth denotes the corresponding minimisation problem.

Known Results

- Cutwidth is NP-complete.
- Cutwidth \in FPT (w.r.t. k).
- Exact exponential algorithms, linear fpt-algorithms, approximation algorithms...

Loc \leq Cutwidth

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbc}\} \mathrm{dbada} \\
& k=2 .
\end{aligned}
$$

Marking sequence: (c, b, d, a)

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbc} \mathrm{dbada} \\
& k=2 .
\end{aligned}
$$

$\alpha=\mathrm{abcbcdbada}$
Marking sequence: (c, b, d, a)

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbc} \mathrm{dbada} \\
& k=2 .
\end{aligned}
$$

$\alpha=\mathrm{abcbcdbada}$
Marking sequence: (c, b, d, a)

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbc}\} \mathrm{bada} \\
& k=2 .
\end{aligned}
$$

$\alpha=\mathrm{abcbcdbada}$
Marking sequence: (c, b, d, a)

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbc}\} \mathrm{bada} \\
& k=2 .
\end{aligned}
$$

$\alpha=\mathrm{abcbcdbada}$
Marking sequence: (c, b, d, a)

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbc} \mathrm{dbada} \\
& k=2 .
\end{aligned}
$$

$\alpha=\mathrm{abcbcdbada}$
Marking sequence: (c, b, d, a)

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbc}\} \mathrm{bada} \\
& k=2 .
\end{aligned}
$$

$\alpha=\mathrm{abcbcdbada}$
Marking sequence: (c, b, d, a)

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbcdbada} \\
& k=2 .
\end{aligned}
$$

$\alpha=\mathrm{abcbcdbada}$
Marking sequence: (c, b, d, a)

Loc \leq Cutwidth

Construct multigraph $H_{\alpha, k}=(V, E)$:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \alpha=\mathrm{abcbc}\} \mathrm{b} a d \mathrm{a} \\
& k=2 .
\end{aligned}
$$

$\alpha=\mathrm{abcbcdbada}$
Marking sequence: (c, b, d, a)

Lemma
$\operatorname{cw}\left(H_{\alpha, k}\right)=2 k$ if and only if $\operatorname{loc}(\alpha) \leq k$.

Cutwidth \leq Loc
$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

Cutwidth \leq Loc
$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

Cutwidth \leq Loc
$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

Cutwidth \leq Loc
$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

x

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

x w

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

$x w u$

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

x wux

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

$x w u x w$

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

$x w u x w u$

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

$x w u x w u x$

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

xwuxwuxv

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

xwuxwuxvu

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

xwuxwuxvuvyzvyzv

Cutwidth \leq Loc

$\mathrm{G}=(\mathrm{V}, \mathrm{E}):$

$$
\alpha_{\{x, v\}}=x w u x w u x v u v y z v y z v
$$

Cutwidth \leq Loc

$G=(V, E):$

$\alpha_{\{x, v\}}=x w u x w u x v u v y z v y z v$

Lemma

$\forall e \in E: \mathrm{cw}(G) \leq \operatorname{loc}\left(\alpha_{e}\right) \leq \mathrm{cw}(G)+1$
$\exists e \in E: \operatorname{loc}\left(\alpha_{e}\right)=\operatorname{cw}(G)$.

Consequences

Consequences

Approximation Meta-Theorem

	MinCutwidth		MinLoc
Run time:	$\mathrm{O}(f(\|E\|))$	\Rightarrow	$\mathrm{O}(f(\|\alpha\|)+\|\alpha\|)$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$\left(r(2 \mathrm{opt},\|\alpha\|)+\frac{1}{\text { opt }}\right)$

Consequences

Approximation Meta-Theorem

	MinCutwidth		MinLoc
Run time:	$\mathrm{O}(f(\|E\|))$	\Rightarrow	$\mathrm{O}(f(\|\alpha\|)+\|\alpha\|)$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$\left(r(2 \mathrm{opt},\|\alpha\|)+\frac{1}{\text { opt }}\right)$
Run time:	$\mathrm{O}(n(f(\|E\|)+\|E\|))$	\Leftarrow	$\mathrm{O}(f(\|\alpha\|))$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$r(\mathrm{opt},\|\alpha\|)$

Consequences

Approximation Meta-Theorem

	MinCutwidth		MinLoc
Run time:	$\mathrm{O}(f(\|E\|))$	\Rightarrow	$\mathrm{O}(f(\|\alpha\|)+\|\alpha\|)$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$\left(r(2 \mathrm{opt},\|\alpha\|)+\frac{1}{\text { opt }}\right)$
Run time:	$\mathrm{O}(n(f(\|E\|)+\|E\|))$	\Leftarrow	$\mathrm{O}(f(\|\alpha\|))$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$r(\mathrm{opt},\|\alpha\|)$

Theorem

The problem Loc

- is NP-complete,
(even if every symbol has at most 3 occurrences)

Consequences

Approximation Meta-Theorem

	MinCutwidth		MinLoc
Run time:	$\mathrm{O}(f(\|E\|))$	\Rightarrow	$\mathrm{O}(f(\|\alpha\|)+\|\alpha\|)$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$\left(r(2 \mathrm{opt},\|\alpha\|)+\frac{1}{\text { opt }}\right)$
Run time:	$\mathrm{O}(n(f(\|E\|)+\|E\|))$	\Leftarrow	$\mathrm{O}(f(\|\alpha\|))$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$r(\mathrm{opt},\|\alpha\|)$

Theorem

The problem Loc

- is NP-complete,
(even if every symbol has at most 3 occurrences)
- can be solved in $\mathrm{O}^{*}\left(2^{|\Sigma|}\right)$,

Consequences

Approximation Meta-Theorem

	MinCutwidth		MinLoc
Run time:	$\mathrm{O}(f(\|E\|))$	\Rightarrow	$\mathrm{O}(f(\|\alpha\|)+\|\alpha\|)$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$\left(r(2 \mathrm{opt},\|\alpha\|)+\frac{1}{\text { opt }}\right)$
Run time:	$\mathrm{O}(n(f(\|E\|)+\|E\|))$	\Leftarrow	$\mathrm{O}(f(\|\alpha\|))$
Appr. ratio:	$r(\mathrm{opt},\|E\|)$		$r(\mathrm{opt},\|\alpha\|)$

Theorem

The problem Loc

- is NP-complete,
(even if every symbol has at most 3 occurrences)
- can be solved in $\mathrm{O}^{*}\left(2^{|\Sigma|}\right)$,
- in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition
A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition
A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures
Let $G=(V, E)$ be a graph.
Path-decomposition Q of G :

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition
A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures
Let $G=(V, E)$ be a graph.
Path-decomposition Q of G :

- Initially all vertices are blue.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition
A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures
Let $G=(V, E)$ be a graph.
Path-decomposition Q of G :

- Initially all vertices are blue.
- Until all vertices are blue again,
- color a vertex red that has never been red before, or
- color a red vertex blue again,

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition
A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures
Let $G=(V, E)$ be a graph.
Path-decomposition Q of G :

- Initially all vertices are blue.
- Until all vertices are blue again,
- color a vertex red that has never been red before, or
- color a red vertex blue again,
- such that each two adjacent vertices are red at the same time.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition
A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures
Let $G=(V, E)$ be a graph.
Path-decomposition Q of G :

- Initially all vertices are blue.
- Until all vertices are blue again,
- color a vertex red that has never been red before, or
- color a red vertex blue again,
- such that each two adjacent vertices are red at the same time. $\mathrm{pw}(Q)$: Max. number of marked vertices.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition
A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures
Let $G=(V, E)$ be a graph.
Path-decomposition Q of G :

- Initially all vertices are blue.
- Until all vertices are blue again,
- color a vertex red that has never been red before, or
- color a red vertex blue again,
- such that each two adjacent vertices are red at the same time. $\mathrm{pw}(Q)$: Max. number of marked vertices.
$\mathrm{pw}(G)$: Min. pw (Q) over all path-decompositions.

Computing the Pathwidth

Pathwidth problem
Pathwidth
Input: $\quad G r a p h ~ G, k \in \mathbb{N}$.
Question: $\mathrm{pw}(\alpha) \leq k$?

Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: $\quad G r a p h ~ G, k \in \mathbb{N}$.
Question: $\mathrm{pw}(\alpha) \leq k$?
MinPathwidth denotes the corresponding minimisation problem.

Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: $\quad G r a p h ~ G, k \in \mathbb{N}$.
Question: $\mathrm{pw}(\alpha) \leq k$?
MinPathwidth denotes the corresponding minimisation problem.

Known Results

- Pathwidth is NP-complete.
- Pathwidth \in FPT (w.r.t. k).
- Exact exponential algorithms, linear fpt-algorithms, approximation algorithms...

Loc \leq Pathwidth

$$
\alpha=\mathrm{cabacabac}
$$

Loc \leq Pathwidth

$\alpha=\mathrm{cabacabac}$
$\mathcal{G}_{\alpha}:$

Loc \leq Pathwidth

$\alpha=\mathrm{cabacabac}$
$\mathcal{G}_{\alpha}:$

Loc \leq Pathwidth

$\alpha=\mathrm{cabacabac}$
\mathcal{G}_{α} :

Loc \leq Pathwidth

$\alpha=\mathrm{cabacabac}$
\mathcal{G}_{α} :

Results

Lemma
$\operatorname{loc}(\alpha) \leq \mathrm{pw}\left(\mathcal{G}_{\alpha}\right) \leq 2 \operatorname{loc}(\alpha)$.

Results

Lemma

$\operatorname{loc}(\alpha) \leq \mathrm{pw}\left(\mathcal{G}_{\alpha}\right) \leq 2 \operatorname{loc}(\alpha)$.

Lemma

$\exists \alpha: \operatorname{pw}\left(\mathcal{G}_{\alpha}\right)=2 \operatorname{loc}(\alpha)$,
$\exists \beta: \operatorname{loc}(\beta)=\mathrm{pw}\left(\mathcal{G}_{\beta}\right)$.

Results

Lemma

$\operatorname{loc}(\alpha) \leq \mathrm{pw}\left(\mathcal{G}_{\alpha}\right) \leq 2 \operatorname{loc}(\alpha)$.

Lemma

$\exists \alpha: \operatorname{pw}\left(\mathcal{G}_{\alpha}\right)=2 \operatorname{loc}(\alpha)$,
$\exists \beta: \operatorname{loc}(\beta)=\mathrm{pw}\left(\mathcal{G}_{\beta}\right)$.
Theorem
There is an $\mathrm{O}(\sqrt{\log (\text { opt })} \log (n))$-approx. algo. for MinLoc.

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: $\mathrm{O}(\log (n) \log (n))$-approximation.
(Based on more general approximation techniques for edge-seperators)

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: $\mathrm{O}(\log (n) \log (n))$-approximation.
(Based on more general approximation techniques for edge-seperators)

MinPathwidth

Feige et al., SICOMP 2008: $O(\sqrt{\log (\mathrm{opt})} \log (n))$-approximation.
(Based on more general approximation techniques for vertex-seperators)

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: $\mathrm{O}(\log (n) \log (n))$-approximation.
(Based on more general approximation techniques for edge-seperators)

MinPathwidth

Feige et al., SICOMP 2008: $O(\sqrt{\log (\mathrm{opt})} \log (n))$-approximation.
(Based on more general approximation techniques for vertex-seperators)

MinCutwidth \leq MinLoc \leq MinPathwidth

There is an $\mathrm{O}(\sqrt{\log (\mathrm{opt})} \log (h))$-approximation algorithm for MinCutwidth on multigraphs with h edges.

Direct Reduction: MinCutwidth \leq MinPathwidth

