
Graph and String Parameters:

Connections Between Pathwidth,

Cutwidth and the Locality Number

Katrin Casel1, Joel D. Day2, Pamela Fleischmann3,

Tomasz Kociumaka4, Florin Manea3, Markus L. Schmid5

1 HPI, University of Potsdam, Germany
2 Loughborough University, UK

3 Kiel University, Germany
4 University of Warsaw, Poland, and Bar-Ilan University, Israel

5 Trier University, Germany

Theorietag 2019 � Marburg

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence:

marked blocks:

maximum number of marked blocks:

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence:

marked blocks:

maximum number of marked blocks:

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: b

marked blocks: 4

maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: b, c

marked blocks: 3

maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: b, c, e

marked blocks: 3

maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: b, c, e, d

marked blocks: 4

maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: b, c, e, d, a

marked blocks: 1

maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence:

marked blocks:

maximum number of marked blocks:

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: d

marked blocks: 3

maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: d, a

marked blocks: 3

maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: d, a, b

marked blocks: 3

maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: d, a, b, c

marked blocks: 2

maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game

Given: String α over (�nite) alphabet Σ = {a1, a2, . . . , an}.

Objective: Mark all symbols a1, a2, . . . , an in some order (all occ.

of the same symbol in parallel), such that there are only few

contiguous blocks of marked symbols in the word.

Example

a d a b a d b d a e c b c b

marking sequence: d, a, b, c, e

marked blocks: 1

maximum number of marked blocks: 3

The Locality Number

Let X = {x1, x2, . . . , xn} be a �nite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a

bijection σ : {1, 2, . . . , |X |} → X) is a marking sequence.

Marking Number

The marking number πσ(α) (of σ with respect to α) is the
maximum number of marked blocks obtained while marking α
according to σ.

Locality Number

A string α over X is k-local ⇐⇒ πσ(α) ≤ k , for some marking

sequence σ.

The locality number of α is loc(α) = min{k | α is k-local}.

The Locality Number

Let X = {x1, x2, . . . , xn} be a �nite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a

bijection σ : {1, 2, . . . , |X |} → X) is a marking sequence.

Marking Number

The marking number πσ(α) (of σ with respect to α) is the
maximum number of marked blocks obtained while marking α
according to σ.

Locality Number

A string α over X is k-local ⇐⇒ πσ(α) ≤ k , for some marking

sequence σ.

The locality number of α is loc(α) = min{k | α is k-local}.

The Locality Number

Let X = {x1, x2, . . . , xn} be a �nite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a

bijection σ : {1, 2, . . . , |X |} → X) is a marking sequence.

Marking Number

The marking number πσ(α) (of σ with respect to α) is the
maximum number of marked blocks obtained while marking α
according to σ.

Locality Number

A string α over X is k-local ⇐⇒ πσ(α) ≤ k , for some marking

sequence σ.

The locality number of α is loc(α) = min{k | α is k-local}.

The Locality Number

Example

Let α = adabadbdaecbcb, σ1 = (b, c, e, d, a), σ2 = (d, a, b, c, e)

πσ1(α) = 4 (⇒ loc(α) ≤ 4)

πσ2(α) = 3 (⇒ loc(α) ≤ 3)

loc(α) = 3

Motivation

Pattern matching with variables.

Marking sequence = dynamic programming algorithm

; XP-algorithms w.r.t. parameter loc(α).

The Locality Number

Example

Let α = adabadbdaecbcb, σ1 = (b, c, e, d, a), σ2 = (d, a, b, c, e)

πσ1(α) = 4 (⇒ loc(α) ≤ 4)

πσ2(α) = 3 (⇒ loc(α) ≤ 3)

loc(α) = 3

Motivation

Pattern matching with variables.

Marking sequence = dynamic programming algorithm

; XP-algorithms w.r.t. parameter loc(α).

The Locality Number

Example

Let α = adabadbdaecbcb, σ1 = (b, c, e, d, a), σ2 = (d, a, b, c, e)

πσ1(α) = 4 (⇒ loc(α) ≤ 4)

πσ2(α) = 3 (⇒ loc(α) ≤ 3)

loc(α) = 3

Motivation

Pattern matching with variables.

Marking sequence = dynamic programming algorithm

; XP-algorithms w.r.t. parameter loc(α).

The Locality Number

Example

Let α = adabadbdaecbcb, σ1 = (b, c, e, d, a), σ2 = (d, a, b, c, e)

πσ1(α) = 4 (⇒ loc(α) ≤ 4)

πσ2(α) = 3 (⇒ loc(α) ≤ 3)

loc(α) = 3

Motivation

Pattern matching with variables.

Marking sequence = dynamic programming algorithm

; XP-algorithms w.r.t. parameter loc(α).

The Locality Number

Example

Let α = adabadbdaecbcb, σ1 = (b, c, e, d, a), σ2 = (d, a, b, c, e)

πσ1(α) = 4 (⇒ loc(α) ≤ 4)

πσ2(α) = 3 (⇒ loc(α) ≤ 3)

loc(α) = 3

Motivation

Pattern matching with variables.

Marking sequence = dynamic programming algorithm

; XP-algorithms w.r.t. parameter loc(α).

Known Results and Open Problems

Computing the locality number

Loc
Input: String α ∈ Σ∗, k ∈ N.
Question: loc(α) ≤ k?

MinLoc denotes the corresponding minimisation problem.

Known Results

Loc ∈ XP w.r.t. parameter k (i. e., in P for �xed k).

Open Problems

I Is Loc NP-complete?

I Is Loc ∈ FPT (w.r.t. k or |Σ|)?
I Are there good approximation algorithms for MinLoc?

Known Results and Open Problems

Computing the locality number

Loc
Input: String α ∈ Σ∗, k ∈ N.
Question: loc(α) ≤ k?

MinLoc denotes the corresponding minimisation problem.

Known Results

Loc ∈ XP w.r.t. parameter k (i. e., in P for �xed k).

Open Problems

I Is Loc NP-complete?

I Is Loc ∈ FPT (w.r.t. k or |Σ|)?
I Are there good approximation algorithms for MinLoc?

Known Results and Open Problems

Computing the locality number

Loc
Input: String α ∈ Σ∗, k ∈ N.
Question: loc(α) ≤ k?

MinLoc denotes the corresponding minimisation problem.

Known Results

Loc ∈ XP w.r.t. parameter k (i. e., in P for �xed k).

Open Problems

I Is Loc NP-complete?

I Is Loc ∈ FPT (w.r.t. k or |Σ|)?
I Are there good approximation algorithms for MinLoc?

Known Results and Open Problems

Computing the locality number

Loc
Input: String α ∈ Σ∗, k ∈ N.
Question: loc(α) ≤ k?

MinLoc denotes the corresponding minimisation problem.

Known Results

Loc ∈ XP w.r.t. parameter k (i. e., in P for �xed k).

Open Problems

I Is Loc NP-complete?

I Is Loc ∈ FPT (w.r.t. k or |Σ|)?
I Are there good approximation algorithms for MinLoc?

Cutwidth

Let G = (V ,E) be a (multi)graph with V = {v1, . . . , vn}.

Cuts

Cut: partition (V1,V2) of V .

Cut set: C(V1,V2) = {{x , y} ∈ E | x ∈ V1, y ∈ V2}.

Size of a cut: | C(V1,V2)|.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence L = (vj1 , vj2 , . . . , vjn), where
(j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n).

Cutwidth of L:
cw(L) = max{| C({vj1 , vj2 , . . . , vji}, {vji+1

, . . . , vjn})| | 0 ≤ i ≤ n}

Cutwidth of G : cw(G) = min{cw(L) | L is lin. arr. for G}.

Cutwidth

Let G = (V ,E) be a (multi)graph with V = {v1, . . . , vn}.

Cuts

Cut: partition (V1,V2) of V .

Cut set: C(V1,V2) = {{x , y} ∈ E | x ∈ V1, y ∈ V2}.

Size of a cut: | C(V1,V2)|.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence L = (vj1 , vj2 , . . . , vjn), where
(j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n).

Cutwidth of L:
cw(L) = max{| C({vj1 , vj2 , . . . , vji}, {vji+1

, . . . , vjn})| | 0 ≤ i ≤ n}

Cutwidth of G : cw(G) = min{cw(L) | L is lin. arr. for G}.

Cutwidth

Let G = (V ,E) be a (multi)graph with V = {v1, . . . , vn}.

Cuts

Cut: partition (V1,V2) of V .

Cut set: C(V1,V2) = {{x , y} ∈ E | x ∈ V1, y ∈ V2}.

Size of a cut: | C(V1,V2)|.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence L = (vj1 , vj2 , . . . , vjn), where
(j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n).

Cutwidth of L:
cw(L) = max{| C({vj1 , vj2 , . . . , vji}, {vji+1

, . . . , vjn})| | 0 ≤ i ≤ n}

Cutwidth of G : cw(G) = min{cw(L) | L is lin. arr. for G}.

Cutwidth

Let G = (V ,E) be a (multi)graph with V = {v1, . . . , vn}.

Cuts

Cut: partition (V1,V2) of V .

Cut set: C(V1,V2) = {{x , y} ∈ E | x ∈ V1, y ∈ V2}.

Size of a cut: | C(V1,V2)|.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence L = (vj1 , vj2 , . . . , vjn), where
(j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n).

Cutwidth of L:
cw(L) = max{| C({vj1 , vj2 , . . . , vji}, {vji+1

, . . . , vjn})| | 0 ≤ i ≤ n}

Cutwidth of G : cw(G) = min{cw(L) | L is lin. arr. for G}.

Cutwidth

Let G = (V ,E) be a (multi)graph with V = {v1, . . . , vn}.

Cuts

Cut: partition (V1,V2) of V .

Cut set: C(V1,V2) = {{x , y} ∈ E | x ∈ V1, y ∈ V2}.

Size of a cut: | C(V1,V2)|.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence L = (vj1 , vj2 , . . . , vjn), where
(j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n).

Cutwidth of L:
cw(L) = max{| C({vj1 , vj2 , . . . , vji}, {vji+1

, . . . , vjn})| | 0 ≤ i ≤ n}

Cutwidth of G : cw(G) = min{cw(L) | L is lin. arr. for G}.

Cutwidth

Let G = (V ,E) be a (multi)graph with V = {v1, . . . , vn}.

Cuts

Cut: partition (V1,V2) of V .

Cut set: C(V1,V2) = {{x , y} ∈ E | x ∈ V1, y ∈ V2}.

Size of a cut: | C(V1,V2)|.

Linear Arrangements and Cutwidth

Linear arrangement of G : sequence L = (vj1 , vj2 , . . . , vjn), where
(j1, j2, . . . , jn) is a permutation of (1, 2, . . . , n).

Cutwidth of L:
cw(L) = max{| C({vj1 , vj2 , . . . , vji}, {vji+1

, . . . , vjn})| | 0 ≤ i ≤ n}

Cutwidth of G : cw(G) = min{cw(L) | L is lin. arr. for G}.

Cutwidth � Example

Graph G :

u v

w x

y

z

Linear arrangement with cutwidth 5:

u v w x y z

Linear arrangement with cutwidth 3:

w u x v y z

cw(G) = 3

Cutwidth � Example

Graph G :

u v

w x

y

z

Linear arrangement with cutwidth 5:

u v w x y z

Linear arrangement with cutwidth 3:

w u x v y z

cw(G) = 3

Cutwidth � Example

Graph G :

u v

w x

y

z

Linear arrangement with cutwidth 5:

u v w x y z

Linear arrangement with cutwidth 3:

w u x v y z

cw(G) = 3

Cutwidth � Example

Graph G :

u v

w x

y

z

Linear arrangement with cutwidth 5:

u v w x y z

Linear arrangement with cutwidth 3:

w u x v y z

cw(G) = 3

Cutwidth � Example

Graph G :

u v

w x

y

z

Linear arrangement with cutwidth 5:

u v w x y z

Linear arrangement with cutwidth 3:

w u x v y z

cw(G) = 3

Cutwidth � Example

Graph G :

u v

w x

y

z

Linear arrangement with cutwidth 5:

u v w x y z

Linear arrangement with cutwidth 3:

w u x v y z

cw(G) = 3

Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G , k ∈ N.
Question: cw(α) ≤ k?

MinCutwidth denotes the corresponding minimisation problem.

Known Results

I Cutwidth is NP-complete.

I Cutwidth ∈ FPT (w.r.t. k).

I Exact exponential algorithms, linear fpt-algorithms,

approximation algorithms...

Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G , k ∈ N.
Question: cw(α) ≤ k?

MinCutwidth denotes the corresponding minimisation problem.

Known Results

I Cutwidth is NP-complete.

I Cutwidth ∈ FPT (w.r.t. k).

I Exact exponential algorithms, linear fpt-algorithms,

approximation algorithms...

Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G , k ∈ N.
Question: cw(α) ≤ k?

MinCutwidth denotes the corresponding minimisation problem.

Known Results

I Cutwidth is NP-complete.

I Cutwidth ∈ FPT (w.r.t. k).

I Exact exponential algorithms, linear fpt-algorithms,

approximation algorithms...

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Loc ≤ Cutwidth

Σ = {a, b, c, d}
α = abcbcdbada

k = 2.

Construct multigraph

Hα,k = (V ,E):

a b

c d

$

#

$

#

α = a b c b c d b a d a Marking sequence: (c, b, d, a)

c b d a $ #

Lemma

cw(Hα,k) = 2k if and only if loc(α) ≤ k .

Cutwidth ≤ Loc

G = (V, E):

u v

w x

y

z

α{x ,v} =

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

w x

y

z

α{x ,v} =

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

w x

y

z

α{x ,v} =

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

w xx

y

z

α{x ,v} =

x

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

ww x

y

z

α{x ,v} =

x w

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

uu v

w x

y

z

α{x ,v} =

x w u

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

w xx

y

z

α{x ,v} =

x w u x

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

ww x

y

z

α{x ,v} =

x w u x w

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

uu v

w x

y

z

α{x ,v} =

x w u x w u

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

w xx

y

z

α{x ,v} =

x w u x w u x

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u vv

w x

y

z

α{x ,v} =

x w u x w u x v

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

uu v

w x

y

z

α{x ,v} =

x w u x w u x v u

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

w x

y

z

α{x ,v} =

x w u x w u x v u v y z v y z v

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

w x

y

z

α{x ,v} = x w u x w u x v u v y z v y z v

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Cutwidth ≤ Loc

G = (V, E):

u v

w x

y

z

α{x ,v} = x w u x w u x v u v y z v y z v

Lemma

∀e ∈ E : cw(G) ≤ loc(αe) ≤ cw(G) + 1

∃e ∈ E : loc(αe) = cw(G).

Consequences

Approximation Meta-Theorem

MinCutwidth MinLoc

Run time: O(f (|E |)) ⇒ O(f (|α|) + |α|)
Appr. ratio: r(opt, |E |) (r(2 opt, |α|) + 1

opt
)

Run time: O(n(f (|E |) + |E |)) ⇐ O(f (|α|))
Appr. ratio: r(opt, |E |) r(opt, |α|)

Theorem

The problem Loc

I is NP-complete,

(even if every symbol has at most 3 occurrences)

I can be solved in O∗(2|Σ|),

I in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Consequences

Approximation Meta-Theorem

MinCutwidth MinLoc

Run time: O(f (|E |)) ⇒ O(f (|α|) + |α|)
Appr. ratio: r(opt, |E |) (r(2 opt, |α|) + 1

opt
)

Run time: O(n(f (|E |) + |E |)) ⇐ O(f (|α|))
Appr. ratio: r(opt, |E |) r(opt, |α|)

Theorem

The problem Loc

I is NP-complete,

(even if every symbol has at most 3 occurrences)

I can be solved in O∗(2|Σ|),

I in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Consequences

Approximation Meta-Theorem

MinCutwidth MinLoc

Run time: O(f (|E |)) ⇒ O(f (|α|) + |α|)
Appr. ratio: r(opt, |E |) (r(2 opt, |α|) + 1

opt
)

Run time: O(n(f (|E |) + |E |)) ⇐ O(f (|α|))
Appr. ratio: r(opt, |E |) r(opt, |α|)

Theorem

The problem Loc

I is NP-complete,

(even if every symbol has at most 3 occurrences)

I can be solved in O∗(2|Σ|),

I in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Consequences

Approximation Meta-Theorem

MinCutwidth MinLoc

Run time: O(f (|E |)) ⇒ O(f (|α|) + |α|)
Appr. ratio: r(opt, |E |) (r(2 opt, |α|) + 1

opt
)

Run time: O(n(f (|E |) + |E |)) ⇐ O(f (|α|))
Appr. ratio: r(opt, |E |) r(opt, |α|)

Theorem

The problem Loc

I is NP-complete,

(even if every symbol has at most 3 occurrences)

I can be solved in O∗(2|Σ|),

I in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Consequences

Approximation Meta-Theorem

MinCutwidth MinLoc

Run time: O(f (|E |)) ⇒ O(f (|α|) + |α|)
Appr. ratio: r(opt, |E |) (r(2 opt, |α|) + 1

opt
)

Run time: O(n(f (|E |) + |E |)) ⇐ O(f (|α|))
Appr. ratio: r(opt, |E |) r(opt, |α|)

Theorem

The problem Loc

I is NP-complete,

(even if every symbol has at most 3 occurrences)

I can be solved in O∗(2|Σ|),

I in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Consequences

Approximation Meta-Theorem

MinCutwidth MinLoc

Run time: O(f (|E |)) ⇒ O(f (|α|) + |α|)
Appr. ratio: r(opt, |E |) (r(2 opt, |α|) + 1

opt
)

Run time: O(n(f (|E |) + |E |)) ⇐ O(f (|α|))
Appr. ratio: r(opt, |E |) r(opt, |α|)

Theorem

The problem Loc

I is NP-complete,

(even if every symbol has at most 3 occurrences)

I can be solved in O∗(2|Σ|),

I in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying

tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V ,E) be a graph.

Path-decomposition Q of G :

I Initially all vertices are blue.

I Until all vertices are blue again,
I color a vertex red that has never been red before, or
I color a red vertex blue again,

I such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

pw(G): Min. pw(Q) over all path-decompositions.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying

tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V ,E) be a graph.

Path-decomposition Q of G :

I Initially all vertices are blue.

I Until all vertices are blue again,
I color a vertex red that has never been red before, or
I color a red vertex blue again,

I such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

pw(G): Min. pw(Q) over all path-decompositions.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying

tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V ,E) be a graph.

Path-decomposition Q of G :

I Initially all vertices are blue.

I Until all vertices are blue again,
I color a vertex red that has never been red before, or
I color a red vertex blue again,

I such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

pw(G): Min. pw(Q) over all path-decompositions.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying

tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V ,E) be a graph.

Path-decomposition Q of G :

I Initially all vertices are blue.

I Until all vertices are blue again,
I color a vertex red that has never been red before, or
I color a red vertex blue again,

I such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

pw(G): Min. pw(Q) over all path-decompositions.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying

tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V ,E) be a graph.

Path-decomposition Q of G :

I Initially all vertices are blue.

I Until all vertices are blue again,
I color a vertex red that has never been red before, or
I color a red vertex blue again,

I such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

pw(G): Min. pw(Q) over all path-decompositions.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying

tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V ,E) be a graph.

Path-decomposition Q of G :

I Initially all vertices are blue.

I Until all vertices are blue again,
I color a vertex red that has never been red before, or
I color a red vertex blue again,

I such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

pw(G): Min. pw(Q) over all path-decompositions.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying

tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V ,E) be a graph.

Path-decomposition Q of G :

I Initially all vertices are blue.

I Until all vertices are blue again,
I color a vertex red that has never been red before, or
I color a red vertex blue again,

I such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

pw(G): Min. pw(Q) over all path-decompositions.

Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: Graph G , k ∈ N.
Question: pw(α) ≤ k?

MinPathwidth denotes the corresponding minimisation problem.

Known Results

I Pathwidth is NP-complete.

I Pathwidth ∈ FPT (w.r.t. k).

I Exact exponential algorithms, linear fpt-algorithms,

approximation algorithms...

Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: Graph G , k ∈ N.
Question: pw(α) ≤ k?

MinPathwidth denotes the corresponding minimisation problem.

Known Results

I Pathwidth is NP-complete.

I Pathwidth ∈ FPT (w.r.t. k).

I Exact exponential algorithms, linear fpt-algorithms,

approximation algorithms...

Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: Graph G , k ∈ N.
Question: pw(α) ≤ k?

MinPathwidth denotes the corresponding minimisation problem.

Known Results

I Pathwidth is NP-complete.

I Pathwidth ∈ FPT (w.r.t. k).

I Exact exponential algorithms, linear fpt-algorithms,

approximation algorithms...

Loc ≤ Pathwidth

α = c a b a c a b a c

Gα:

Loc ≤ Pathwidth

α = c a b a c a b a c

Gα:

Loc ≤ Pathwidth

α = c a b a c a b a c

Gα:

Loc ≤ Pathwidth

α = c a b a c a b a c

Gα:

Loc ≤ Pathwidth

α = c a b a c a b a c

Gα:

Results

Lemma

loc(α) ≤ pw(Gα) ≤ 2 loc(α).

Lemma

∃α : pw(Gα) = 2 loc(α),

∃β : loc(β) = pw(Gβ).

Theorem

There is an O(
√

log(opt) log(n))-approx. algo. for MinLoc.

Results

Lemma

loc(α) ≤ pw(Gα) ≤ 2 loc(α).

Lemma

∃α : pw(Gα) = 2 loc(α),

∃β : loc(β) = pw(Gβ).

Theorem

There is an O(
√

log(opt) log(n))-approx. algo. for MinLoc.

Results

Lemma

loc(α) ≤ pw(Gα) ≤ 2 loc(α).

Lemma

∃α : pw(Gα) = 2 loc(α),

∃β : loc(β) = pw(Gβ).

Theorem

There is an O(
√

log(opt) log(n))-approx. algo. for MinLoc.

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: O(log(n) log(n))-approximation.

(Based on more general approximation techniques for

edge-seperators)

MinPathwidth

Feige et al., SICOMP 2008: O(
√

log(opt) log(n))-approximation.

(Based on more general approximation techniques for

vertex-seperators)

MinCutwidth ≤ MinLoc ≤ MinPathwidth

There is an O(
√

log(opt) log(h))-approximation algorithm for

MinCutwidth on multigraphs with h edges.

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: O(log(n) log(n))-approximation.

(Based on more general approximation techniques for

edge-seperators)

MinPathwidth

Feige et al., SICOMP 2008: O(
√

log(opt) log(n))-approximation.

(Based on more general approximation techniques for

vertex-seperators)

MinCutwidth ≤ MinLoc ≤ MinPathwidth

There is an O(
√

log(opt) log(h))-approximation algorithm for

MinCutwidth on multigraphs with h edges.

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: O(log(n) log(n))-approximation.

(Based on more general approximation techniques for

edge-seperators)

MinPathwidth

Feige et al., SICOMP 2008: O(
√

log(opt) log(n))-approximation.

(Based on more general approximation techniques for

vertex-seperators)

MinCutwidth ≤ MinLoc ≤ MinPathwidth

There is an O(
√

log(opt) log(h))-approximation algorithm for

MinCutwidth on multigraphs with h edges.

Direct Reduction: MinCutwidth ≤ MinPathwidth

u

vw

x

y

z

uw

ux

uv

wu

wx

xw

xu

xv

vu

vx

vy

vz

yv

yz

zv

zy

