Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number

Katrin Casel¹, Joel D. Day², Pamela Fleischmann³, Tomasz Kociumaka⁴, Florin Manea³, **Markus L. Schmid**⁵

HPI, University of Potsdam, Germany
 Loughborough University, UK
 Kiel University, Germany
 University of Warsaw, Poland, and Bar-Ilan University, Israel
 Trier University, Germany

Theorietag 2019 – Marburg

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence:

marked blocks:

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: b

marked blocks: 4

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: b, c

marked blocks: 3

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: b, c, e

marked blocks: 3

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

ad ab ad bd aecbcb

marking sequence: b, c, e, d

marked blocks: 4

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: b, c, e, d, a

marked blocks: 1

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence:

marked blocks:

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: d

marked blocks: 3

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: d, a

marked blocks: 3

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: d, a, b

marked blocks: 3

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: d, a, b, c

marked blocks: 2

The Game

Given: String α over (finite) alphabet $\Sigma = \{a_1, a_2, \dots, a_n\}$.

Objective: Mark all symbols a_1, a_2, \ldots, a_n in some order (all occ. of the same symbol in parallel), such that there are only few contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb

marking sequence: d, a, b, c, e

marked blocks: 1

Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma:\{1,2,\ldots,|X|\}\to X$) is a marking sequence.

Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma:\{1,2,\ldots,|X|\}\to X$) is a marking sequence.

Marking Number

The marking number $\pi_{\sigma}(\alpha)$ (of σ with respect to α) is the maximum number of marked blocks obtained while marking α according to σ .

Let $X = \{x_1, x_2, \dots, x_n\}$ be a finite alphabet.

Marking Sequence

Any ordered list σ of the symbols from X (or, equivalently, a bijection $\sigma:\{1,2,\ldots,|X|\}\to X$) is a marking sequence.

Marking Number

The marking number $\pi_{\sigma}(\alpha)$ (of σ with respect to α) is the maximum number of marked blocks obtained while marking α according to σ .

Locality Number

A string α over X is k-local $\iff \pi_{\sigma}(\alpha) \leq k$, for some marking sequence σ .

The locality number of α is $loc(\alpha) = min\{k \mid \alpha \text{ is } k\text{-local}\}.$

Example

Let $\alpha = \text{adabadbdaecbcb}$, $\sigma_1 = (b, c, e, d, a)$, $\sigma_2 = (d, a, b, c, e)$

Example

Let $\alpha = adabadbdaecbcb$, $\sigma_1 = (b, c, e, d, a)$, $\sigma_2 = (d, a, b, c, e)$

$$\pi_{\sigma_1}(\alpha) = 4 \ (\Rightarrow \mathsf{loc}(\alpha) \le 4)$$

Example

Let
$$\alpha = adabadbdaecbcb$$
, $\sigma_1 = (b, c, e, d, a)$, $\sigma_2 = (d, a, b, c, e)$

$$\pi_{\sigma_1}(\alpha) = 4 \ (\Rightarrow \mathsf{loc}(\alpha) \leq 4)$$

$$\pi_{\sigma_2}(\alpha) = 3 \ (\Rightarrow \mathsf{loc}(\alpha) \leq 3)$$

Example

Let
$$\alpha=$$
 adabadbdaecbcb, $\sigma_1=$ (b, c, e, d, a), $\sigma_2=$ (d, a, b, c, e) $\pi_{\sigma_1}(\alpha)=4$ ($\Rightarrow \log(\alpha)\leq 4$) $\pi_{\sigma_2}(\alpha)=3$ ($\Rightarrow \log(\alpha)\leq 3$)

 $loc(\alpha) = 3$

Example

Let
$$\alpha=$$
 adabadbdaecbcb, $\sigma_1=$ (b, c, e, d, a), $\sigma_2=$ (d, a, b, c, e)
$$\pi_{\sigma_1}(\alpha)=4 \ (\Rightarrow \text{loc}(\alpha)\leq 4)$$

$$\pi_{\sigma_2}(\alpha)=3 \ (\Rightarrow \text{loc}(\alpha)\leq 3)$$

$$loc(\alpha) = 3$$

Motivation

Pattern matching with variables.

 ${\sf Marking\ sequence} = {\sf dynamic\ programming\ algorithm}$

 \sim XP-algorithms w.r.t. parameter $loc(\alpha)$.

Computing the locality number

Loc

Input: String $\alpha \in \Sigma^*$, $k \in \mathbb{N}$.

Question: $loc(\alpha) \le k$?

Computing the locality number

Loc

Input: String $\alpha \in \Sigma^*$, $k \in \mathbb{N}$.

Question: $loc(\alpha) \le k$?

MinLoc denotes the corresponding minimisation problem.

Computing the locality number

Loc

Input: String $\alpha \in \Sigma^*$, $k \in \mathbb{N}$.

Question: $loc(\alpha) \le k$?

MinLoc denotes the corresponding minimisation problem.

Known Results

Loc \in XP w.r.t. parameter k (i.e., in P for fixed k).

Computing the locality number

Loc

Input: String $\alpha \in \Sigma^*$, $k \in \mathbb{N}$.

Question: $loc(\alpha) \le k$?

MinLoc denotes the corresponding minimisation problem.

Known Results

Loc \in XP w.r.t. parameter k (i.e., in P for fixed k).

Open Problems

- Is Loc NP-complete?
- ▶ Is Loc ∈ FPT (w.r.t. k or $|\Sigma|$)?
- Are there good approximation algorithms for MinLoc?

Let G = (V, E) be a (multi)graph with $V = \{v_1, \dots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Let G = (V, E) be a (multi)graph with $V = \{v_1, \dots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}.$

Let G = (V, E) be a (multi)graph with $V = \{v_1, \dots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}.$

Size of a cut: $|\mathcal{C}(V_1, V_2)|$

Let G = (V, E) be a (multi)graph with $V = \{v_1, \dots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}.$

Size of a cut: $|\mathcal{C}(V_1, V_2)|$.

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence $L = (v_{j_1}, v_{j_2}, \dots, v_{j_n})$, where (j_1, j_2, \dots, j_n) is a permutation of $(1, 2, \dots, n)$.

Let G = (V, E) be a (multi)graph with $V = \{v_1, \dots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}.$

Size of a cut: $|\mathcal{C}(V_1, V_2)|$.

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence $L = (v_{j_1}, v_{j_2}, \dots, v_{j_n})$, where (j_1, j_2, \dots, j_n) is a permutation of $(1, 2, \dots, n)$.

Cutwidth of L:

 $cw(L) = \max\{|C(\{v_{j_1}, v_{j_2}, \dots, v_{j_i}\}, \{v_{j_{i+1}}, \dots, v_{j_n}\})| \mid 0 \le i \le n\}$

Let G = (V, E) be a (multi)graph with $V = \{v_1, \ldots, v_n\}$.

Cuts

Cut: partition (V_1, V_2) of V.

Cut set: $C(V_1, V_2) = \{\{x, y\} \in E \mid x \in V_1, y \in V_2\}.$

Size of a cut: $|\mathcal{C}(V_1, V_2)|$.

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence $L = (v_{j_1}, v_{j_2}, \dots, v_{j_n})$, where (j_1, j_2, \dots, j_n) is a permutation of $(1, 2, \dots, n)$.

Cutwidth of L.

 $cw(L) = \max\{|C(\{v_{i_1}, v_{i_2}, \dots, v_{i_i}\}, \{v_{i_{i+1}}, \dots, v_{i_n}\})| \mid 0 \le i \le n\}$

Cutwidth of G: $cw(G) = min\{cw(L) \mid L \text{ is lin. arr. for } G\}.$

Cutwidth – Example

Cutwidth - Example

Linear arrangement with cutwidth 5:

Cutwidth - Example

Linear arrangement with cutwidth 5:

Cutwidth - Example

Linear arrangement with cutwidth 5:

Cutwidth - Example

Linear arrangement with cutwidth 5:

Cutwidth - Example

Linear arrangement with cutwidth 5:

$$cw(G) = 3$$

Computing the Cutwidth

Cutwidth problem

Cutwidth

Input: (Multi)graph G, $k \in \mathbb{N}$.

Question: $cw(\alpha) \leq k$?

Computing the Cutwidth

Cutwidth problem

Cutwidth

Input: (Multi)graph $G, k \in \mathbb{N}$.

Question: $cw(\alpha) \le k$?

MinCutwidth denotes the corresponding minimisation problem.

Computing the Cutwidth

Cutwidth problem

Cutwidth

Input: (Multi)graph $G, k \in \mathbb{N}$.

Question: $cw(\alpha) \le k$?

MinCutwidth denotes the corresponding minimisation problem.

Known Results

- Cutwidth is NP-complete.
- Cutwidth ∈ FPT (w.r.t. k).
- Exact exponential algorithms, linear fpt-algorithms, approximation algorithms...

$Loc \leq Cutwidth$

$$\Sigma = \{a, b, c, d\}$$

 $\alpha = abcbcdbada$
 $k = 2$.

 $\Sigma = \{a, b, c, d\}$ $\alpha = abcbcdbada$ k = 2. Construct multigraph $H_{\alpha,k} = (V, E)$:

(a) (b

 \bigcirc \bigcirc \bigcirc \bigcirc

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{abcbcdbada} \\ k &= 2. \end{split}$$

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{abc} \mathtt{bcdbada} \\ k &= 2. \end{split}$$

$$\Sigma = \{a, b, c, d\}$$

 $\alpha = abcbcdbada$
 $k = 2$.

$$\Sigma = \{a, b, c, d\}$$

 $\alpha = abcbcdbada$
 $k = 2$.

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{abcbcdbada} \\ k &= 2. \end{split}$$

$$\Sigma = \{a, b, c, d\}$$

 $\alpha = abcbcdbada$
 $k = 2$.

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{abcbcdbada} \\ k &= 2. \end{split}$$

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{abcbcdbada} \\ k &= 2. \end{split}$$

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{abcbcdbada} \\ k &= 2. \end{split}$$

$$\Sigma = \{ a, b, c, d \}$$

 $\alpha = abcbcdbada$
 $k = 2$.

$Loc \leq Cutwidth$

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{abcbcdbada} \\ \textit{k} &= 2. \end{split}$$

$Loc \leq Cutwidth$

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{a}\mathtt{b}\mathtt{c}\mathtt{b}\mathtt{c}\mathtt{d}\mathtt{b}\mathtt{a}\mathtt{d}\mathtt{a} \\ k &= 2. \end{split}$$

$$\Sigma = \{a, b, c, d\}$$

 $\alpha = abcbcdbada$
 $k = 2$.

 $\alpha = \mathtt{a}\,\mathtt{b}\,\mathtt{c}\,\mathtt{b}\,\mathtt{c}\,\mathtt{d}\,\mathtt{b}\,\mathtt{a}\,\mathtt{d}\,\mathtt{a}$

Construct multigraph $H_{\alpha,k} = (V, E)$:

$$\begin{split} & \Sigma = \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \} \\ & \alpha = \mathbf{abcbcdbada} \\ & k = 2. \end{split}$$

 $\alpha = \mathtt{a}\,\mathtt{b}\,\mathtt{c}\,\mathtt{b}\,\mathtt{c}\,\mathtt{d}\,\mathtt{b}\,\mathtt{a}\,\mathtt{d}\,\mathtt{a}$

Construct multigraph $H_{\alpha,k} = (V, E)$:

$$\begin{split} \Sigma &= \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \} \\ \alpha &= \mathbf{abcbcdbada} \\ k &= 2. \end{split}$$

 $\alpha = abcbcdbada$

Construct multigraph $H_{\alpha,k} = (V, E)$:

$$\begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b}, \mathtt{c}, \mathtt{d} \} \\ \alpha &= \mathtt{abcbcdbada} \\ k &= 2. \end{split}$$

Construct multigraph $H_{\alpha,k} = (V, E)$:

 $\alpha = a b c b c d b a d a$

$$\begin{split} & \Sigma = \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \} \\ & \alpha = \mathbf{abcbcdbada} \\ & k = 2. \end{split}$$

 $\alpha=\mathtt{a}\,\mathtt{b}\,\mathtt{c}\,\mathtt{b}\,\mathtt{c}\,\mathtt{d}\,\mathtt{b}\,\mathtt{a}\,\mathtt{d}\,\mathtt{a}$

Construct multigraph $H_{\alpha,k} = (V, E)$:

 $\Sigma = \{ a, b, c, d \}$ $\alpha = abcbcdbada$ k = 2.

 $\alpha = a b c b c d b a d a$

Construct multigraph $H_{\alpha,k} = (V, E)$:

$$\begin{split} & \Sigma = \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \} \\ & \alpha = \mathbf{abcbcdbada} \\ & k = 2. \end{split}$$

 $\alpha=$ abcbcdbada

Construct multigraph $H_{\alpha,k} = (V, E)$:

$$egin{aligned} \Sigma &= \{ \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \} \ &lpha &= \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{b} \mathbf{a} \mathbf{d} \mathbf{a} \ &k &= 2. \end{aligned}$$

 $\alpha = abcbcdbada$

Construct multigraph $H_{\alpha,k} = (V, E)$:

$$\Sigma = \{a, b, c, d\}$$

 $\alpha = abcbcdbada$
 $k = 2$.

$$\alpha = abcbcdbada$$

Marking sequence: (c, b, d, a)

Lemma

 $cw(H_{\alpha,k}) = 2k$ if and only if $loc(\alpha) \le k$.

G = (V, E):

G = (V, E):

G = (V, E):

X

G = (V, E):

X W

G = (V, E):

x w u

G = (V, E):

x w u x

G = (V, E):

x w u x w

G = (V, E):

xwuxw<mark>u</mark>

G = (V, E):

X W U X W U X

G = (V, E):

X W U X W U X V

x w u x w u x v u

$Cutwidth \leq Loc$

G = (V, E):

x w u x w u x v u v y z v y z v

G = (V, E):

$$\alpha_{\{x,v\}} = x w u x w u x v u v y z v y z v$$

Cutwidth < Loc

$$G = (V, E)$$
:

$$\alpha_{\{x,v\}} = x w u x w u x v u v y z v y z v$$

Lemma

 $\forall e \in E : \mathsf{cw}(G) \le \mathsf{loc}(\alpha_e) \le \mathsf{cw}(G) + 1$

 $\exists e \in E : loc(\alpha_e) = cw(G).$

Approximation Meta-Theorem						
	MinCutwidth		MinLoc			
Run time:		\Rightarrow	$O(f(\alpha) + \alpha)$			
Appr. ratio:	r(opt, E)		$(r(2 \operatorname{opt}, \alpha) + \frac{1}{\operatorname{opt}})$			
			_			

Approximation Meta-Theorem				
	Min Cutwidth		MinLoc	
Run time:	O(f(E))	\Rightarrow	$O(f(\alpha) + \alpha)$	
Appr. ratio:	r(opt, E)		$(r(2 \operatorname{opt}, \alpha) + \frac{1}{\operatorname{opt}})$	
Run time:	O(n(f(E) + E))	(=	$O(f(\alpha))$	
Appr. ratio:	r(opt, E)		r(opt, lpha)	

Approximation	n		Иe	ta-T	h	ıe	orem
	1	_		_			

	MinCutwidth		MinLoc
Run time:	O(f(E))	\Rightarrow	$O(f(\alpha) + \alpha)$
Appr. ratio:	r(opt, E)		$(r(2 \operatorname{opt}, \alpha) + \frac{1}{\operatorname{opt}})$
Run time:	O(n(f(E) + E))	(=	$O(f(\alpha))$
Appr ratio:	r(opt, E)		r(opt, lpha)

Theorem

The problem Loc

is NP-complete, (even if every symbol has at most 3 occurrences)

	Min Cutwidth		MinLoc
Run time:	O(f(E))	\Rightarrow	$O(f(\alpha) + \alpha)$
Appr. ratio:	r(opt, E)		$(r(2 \operatorname{opt}, \alpha) + \frac{1}{\operatorname{opt}})$
Run time:	O(n(f(E) + E))	(=	$O(f(\alpha))$
Appr ratio:	r(opt, E)		r(opt, lpha)

Theorem

The problem Loc

- is NP-complete, (even if every symbol has at most 3 occurrences)
- can be solved in $O^*(2^{|\Sigma|})$,

	Min Cutwidth		MinLoc
Run time:	O(f(E))	\Rightarrow	$O(f(\alpha) + \alpha)$
Appr. ratio:	r(opt, E)		$(r(2 \operatorname{opt}, \alpha) + \frac{1}{\operatorname{opt}})$
Run time:	O(n(f(E) + E))	(=	$O(f(\alpha))$
Appr. ratio:	r(opt, E)		r(opt, lpha)

Theorem

The problem Loc

- is NP-complete, (even if every symbol has at most 3 occurrences)
- can be solved in $O^*(2^{|\Sigma|})$,
- ▶ in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V, E) be a graph.

Path-decomposition *Q* of *G*:

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V, E) be a graph.

Path-decomposition Q of G:

► Initially all vertices are blue.

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V, E) be a graph.

Path-decomposition Q of G:

- ► Initially all vertices are blue.
- Until all vertices are blue again,
 - color a vertex red that has never been red before, or
 - color a red vertex blue again,

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V, E) be a graph.

Path-decomposition Q of G:

- ► Initially all vertices are blue.
- Until all vertices are blue again,
 - color a vertex red that has never been red before, or
 - color a red vertex blue again,
- such that each two adjacent vertices are red at the same time.

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V, E) be a graph.

Path-decomposition *Q* of *G*:

- Initially all vertices are blue.
- Until all vertices are blue again,
 - color a vertex red that has never been red before, or
 - color a red vertex blue again,
- such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying tree-structure of which is a path.

Path-decompositions as marking procedures

Let G = (V, E) be a graph.

Path-decomposition *Q* of *G*:

- Initially all vertices are blue.
- Until all vertices are blue again,
 - ► color a vertex red that has never been red before, or
 - color a red vertex blue again,
- such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

pw(G): Min. pw(Q) over all path-decompositions.

Computing the Pathwidth

Pathwidth problem

Pathwidth

Input: Graph G, $k \in \mathbb{N}$.

Question: $pw(\alpha) \le k$?

Computing the Pathwidth

Pathwidth problem

Pathwidth

Input: Graph G, $k \in \mathbb{N}$.

Question: $pw(\alpha) \le k$?

MinPathwidth denotes the corresponding minimisation problem.

Computing the Pathwidth

Pathwidth problem

Pathwidth Input:

Graph $G, k \in \mathbb{N}$.

Question: $pw(\alpha) \le k$?

MinPathwidth denotes the corresponding minimisation problem.

Known Results

- Pathwidth is NP-complete.
- ▶ Pathwidth \in FPT (w.r.t. k).
- Exact exponential algorithms, linear fpt-algorithms, approximation algorithms...

 $\alpha = \mathtt{c}\,\,\mathtt{a}\,\mathtt{b}\,\mathtt{a}\,\mathtt{c}\,\mathtt{a}\,\mathtt{b}\,\mathtt{a}\,\mathtt{c}$

Loc ≤ Pathwidth

 $\alpha = \mathtt{cabacabac}$

 \mathcal{G}_{lpha}

 $\alpha = \mathbf{c}$ a b a \mathbf{c} a b a \mathbf{c}

 \mathcal{G}_{lpha} :

 $\alpha = \mathbf{c} \ \mathbf{a} \ \mathbf{b} \ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{b} \ \mathbf{a} \ \mathbf{c}$

 \mathcal{G}_{lpha} :

 $\alpha = \mathbf{c} \ \mathbf{a} \ \mathbf{b} \ \mathbf{a} \ \mathbf{c} \ \mathbf{a} \ \mathbf{b} \ \mathbf{a} \ \mathbf{c}$

 \mathcal{G}_{lpha} :

Results

Lemma

 $loc(\alpha) \le pw(\mathcal{G}_{\alpha}) \le 2 loc(\alpha)$.

Results

Lemma

 $loc(\alpha) \leq pw(\mathcal{G}_{\alpha}) \leq 2 loc(\alpha).$

Lemma

$$\exists \alpha : \mathsf{pw}(\mathcal{G}_{\alpha}) = 2 \, \mathsf{loc}(\alpha),$$

$$\exists \beta : \mathsf{loc}(\beta) = \mathsf{pw}(\mathcal{G}_{\beta}).$$

Results

Lemma

 $loc(\alpha) \le pw(\mathcal{G}_{\alpha}) \le 2 loc(\alpha).$

Lemma

 $\exists \alpha : \mathsf{pw}(\mathcal{G}_{\alpha}) = 2 \, \mathsf{loc}(\alpha),$

 $\exists \beta : \mathsf{loc}(\beta) = \mathsf{pw}(\mathcal{G}_{\beta}).$

Theorem

There is an $O(\sqrt{\log(\text{opt})}\log(n))$ -approx. algo. for MinLoc.

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: $O(\log(n)\log(n))$ -approximation.

(Based on more general approximation techniques for edge-seperators)

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: $O(\log(n)\log(n))$ -approximation.

(Based on more general approximation techniques for edge-seperators)

MinPathwidth

Feige et al., SICOMP 2008: $O(\sqrt{\log(\text{opt})\log(n)})$ -approximation.

(Based on more general approximation techniques for vertex-seperators)

Consequences for Cutwidth

MinCutwidth

Leighton and Rao, JACM 1999: $O(\log(n)\log(n))$ -approximation.

(Based on more general approximation techniques for edge-seperators)

MinPathwidth

Feige et al., SICOMP 2008: $O(\sqrt{\log(\text{opt})}\log(n))$ -approximation.

(Based on more general approximation techniques for vertex-seperators)

$MinCutwidth \leq MinLoc \leq MinPathwidth$

There is an $O(\sqrt{\log(opt)\log(h)})$ -approximation algorithm for MinCutwidth on multigraphs with h edges.

Direct Reduction: MinCutwidth MinPathwidth

