Graph and String Parameters:
Connections Between Pathwidth,
Cutwidth and the Locality Number

Katrin Casel®, Joel D. Day2, Pamela Fleischmann3,

Tomasz Kociumaka*, Florin Manea3, Markus L. Schmid®

1 HPI, University of Potsdam, Germany
2 Loughborough University, UK
3 Kiel University, Germany
* University of Warsaw, Poland, and Bar-llan University, Israel
® Trier University, Germany

Theorietag 2019 — Marburg

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbchb
marking sequence:

marked blocks:
maximum number of marked blocks:

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbchb
marking sequence: b

marked blocks: 4
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbchb
marking sequence: b, ¢

marked blocks: 3
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbchb
marking sequence: b, c, e

marked blocks: 3
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbch
marking sequence: b, c, e, d

marked blocks: 4
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbch
marking sequence: b, c, e, 4, a

marked blocks: 1
maximum number of marked blocks: 4

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbchb
marking sequence:

marked blocks:
maximum number of marked blocks:

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbchb
marking sequence: d

marked blocks: 3
maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence: d, a

marked blocks: 3
maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbcb
marking sequence: d, a, b

marked blocks: 3
maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbch
marking sequence: 4, a, b, ¢

marked blocks: 2
maximum number of marked blocks: 3

A Solitaire Game on Strings

The Game
Given: String « over (finite) alphabet X = {a1,ap,...,an}.

Objective: Mark all symbols a1, az, ..., a, in some order (all occ.
of the same symbol in parallel), such that there are only few
contiguous blocks of marked symbols in the word.

Example

adabadbdaecbch
marking sequence: 4, a, b, ¢, e

marked blocks: 1
maximum number of marked blocks: 3

The Locality Number
Let X = {x1,x2,...,xn} be a finite alphabet.
Marking Sequence

Any ordered list o of the symbols from X (or, equivalently, a
bijection ¢ : {1,2,...,|X|} = X) is a marking sequence.

The Locality Number
Let X = {x1,x2,...,xn} be a finite alphabet.
Marking Sequence

Any ordered list o of the symbols from X (or, equivalently, a
bijection ¢ : {1,2,...,|X|} = X) is a marking sequence.

Marking Number

The marking number 7,(«) (of o with respect to «) is the
maximum number of marked blocks obtained while marking «
according to o.

The Locality Number
Let X = {x1,x2,...,xn} be a finite alphabet.

Marking Sequence

Any ordered list o of the symbols from X (or, equivalently, a
bijection ¢ : {1,2,...,|X|} = X) is a marking sequence.

Marking Number

The marking number 7,(«) (of o with respect to «) is the
maximum number of marked blocks obtained while marking «
according to o.

Locality Number

A string « over X is k-local <= () < k, for some marking
sequence o.

The locality number of a is loc(a) = min{k | v is k-local}.

The Locality Number

Example

Let a = adabadbdaecbeb, 01 = (b, ¢, e,d,a), oo = (d,a,b,c,e)

The Locality Number

Example
Let a = adabadbdaecbeb, 01 = (b, ¢, e,d,a), oo = (d,a,b,c,e)

Toy () =4 (= loc(a) < 4)

The Locality Number

Example
Let a = adabadbdaecbeb, 01 = (b, ¢, e,d,a), oo = (d,a,b,c,e)
Toy () =4 (= loc(a) < 4)

7oy (@) = 3 (= loc(a) < 3)

The Locality Number

Example

Let a = adabadbdaecbeb, 01 = (b, ¢, e,d,a), oo = (d,a,b,c,e)
Toy () =4 (= loc(a) < 4)

Ty (@) = 3 (= loc(a) < 3)

loc(a) =3

The Locality Number

Example

Let a = adabadbdaecbeb, 01 = (b, ¢, e,d,a), oo = (d,a,b,c,e)

Toy () =4 (= loc(a) < 4)
Top(a) = 3 (= loc(a) < 3)
loc(a) =3
Motivation

Pattern matching with variables.
Marking sequence = dynamic programming algorithm

~» XP-algorithms w.r.t. parameter loc(«).

Known Results and Open Problems

Computing the locality number

Loc
Input: String a € ¥*, k € N.
Question: loc(ar) < k7

Known Results and Open Problems

Computing the locality number

Loc
Input: String a € ¥*, k € N.
Question: loc(ar) < k7

MinLoc denotes the corresponding minimisation problem.

Known Results and Open Problems

Computing the locality number

Loc
Input: String a € ¥*, k € N.
Question: loc(ar) < k7

MinLoc denotes the corresponding minimisation problem.

Loc € XP w.r.t. parameter k (i.e., in P for fixed k).

Known Results and Open Problems

Computing the locality number

Loc
Input: String a € ¥*, k € N.
Question: loc(ar) < k7

MinLoc denotes the corresponding minimisation problem.

Loc € XP w.r.t. parameter k (i.e., in P for fixed k).

> |s Loc NP-complete?
> Is Loc € FPT (w.r.t. k or [X|)?
» Are there good approximation algorithms for MinLoc?

Cutwidth

Let G = (V, E) be a (multi)graph with V = {wv1,...,v,}.

Cuts
Cut: partition (V4, V5) of V.

Cutwidth

Let G = (V, E) be a (multi)graph with V = {wv1,...,v,}.

Cuts
Cut: partition (V4, V5) of V.

Cut set: C(V4, Vo) = {{x,y} € E|xe W1,y € Va}.

Cutwidth

Let G = (V, E) be a (multi)graph with V = {wv1,...,v,}.

Cuts
Cut: partition (V4, V5) of V.

Cut set: C(V4, Vo) = {{x,y} € E|xe W1,y € Va}.
Size of a cut: [C(V4, Vo).

Cutwidth

Let G = (V, E) be a (multi)graph with V = {wv1,...,v,}.

Cuts

Cut: partition (V4, V5) of V.

Cut set: C(V4, Vo) = {{x,y} € E|xe W1,y € Va}.
Size of a cut: [C(V4, Vo).

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence L = (vj,, v}, .., Vj,), Where
(j1,J25 - - - »Jn) is @ permutation of (1,2,...,n).

Cutwidth

Let G = (V, E) be a (multi)graph with V = {wv1,...,v,}.

Cuts

Cut: partition (V4, V5) of V.

Cut set: C(V4, Vo) = {{x,y} € E|xe W1,y € Va}.
Size of a cut: [C(V4, Vo).

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence L = (vj,, v}, .., Vj,), Where
(j1,J25 - - - »Jn) is @ permutation of (1,2,...,n).

Cutwidth of L:

CW(L) - max{‘ C({Vj17 Vigs) ‘/ji}7 {\/ji+17 0oog an})’ ’ 0<i< n}

Cutwidth

Let G = (V, E) be a (multi)graph with V = {wv1,...,v,}.

Cuts

Cut: partition (V4, V5) of V.

Cut set: C(V4, Vo) = {{x,y} € E|xe W1,y € Va}.
Size of a cut: [C(V4, Vo).

Linear Arrangements and Cutwidth

Linear arrangement of G: sequence L = (vj,, v}, .., Vj,), Where
(j1,J25 - - - »Jn) is @ permutation of (1,2,...,n).

Cutwidth of L:
CW(L) - max{‘ C({Vj17 Vigs) ‘/ji}7 {\/ji+17 0oog an})’ ’ 0<i< n}
Cutwidth of G: cw(G) = min{cw(L) | L is lin. arr. for G}.

Cutwidth — Example

Cutwidth — Example

Linear arrangement with cutwidth 5:

Q\‘QIJ@‘@)=

Cutwidth — Example

Linear arrangement with cutwidth 5:

Cutwidth — Example

Linear arrangement with cutwidth 5:

Cutwidth — Example

Linear arrangement with cutwidth 5:

“‘a Linear arrangement with cutwidth 3:

S N N0 o= 000

Cutwidth — Example

Linear arrangement with cutwidth 5:

“‘a Linear arrangement with cutwidth 3:

EENO®0: foR 0GR

cw(G) =3

Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G, k € N.
Question: cw(a) < k?

Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G, k € N.
Question: cw(a) < k?

MinCutwidth denotes the corresponding minimisation problem.

Computing the Cutwidth

Cutwidth problem

Cutwidth
Input: (Multi)graph G, k € N.
Question: cw(a) < k?

MinCutwidth denotes the corresponding minimisation problem.

Known Results

» Cutwidth is NP-complete.
» Cutwidth € FPT (w.r.t. k).

» Exact exponential algorithms, linear fpt-algorithms,
approximation algorithms...

Loc < Cutwidth

Y ={a,b,c,d}
o = abcbcedbada
k=2.

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Z =) b})
o= a{l‘scEchc:zla @ @
k=2.

ORNC)

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

R
k =2.
OO

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Y ={a,b,c,d} a
o = abcbcedbada e
k=2.

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Y ={a,b,c,d} a
o = abcbcedbada e

k=2 /

OO

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Y ={a,b,c,d}
o = abcbcdbada e a
k=2 /

OO

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Y ={a,b,c,d}
o = abcbcedbada e a
k=2 /

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Y ={a,b,c,d}

« = abcbcedbada e a
/.
(o)

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Y ={a,b,c,d}

« = abcbcedbada e—a
/.
(o)

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

= svebeabata OO
)

Loc < Cutwidth
Construct multigraph
Hox = (V,E):
Y ={a,b,c,d}
« = abcbcedbada
k=2.

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Y ={a,b,c,d}
o = abcbcedbada
k=2.

Loc < Cutwidth
Construct multigraph
Hox = (V,E):
Y ={a,b,c,d}
« = abcbcedbada

o
[
#)

Loc < Cutwidth

Construct multigraph
Hox = (V,E):

Y ={a,b,c,d}
o = abcbcdbada
k=2.

Loc < Cutwidth
Construct multigraph

Ho o = (V,E):
Y ={a,b,c,d}
o = abcbcdbada
k=2.

a=abcbcdbada Marking sequence: (c,b,d,a)

Loc < Cutwidth
Construct multigraph

Hox = (V,E):
Y ={a,b,c,d}
« = abcbcedbada
k=2.
a=abcbcdbada Marking sequence: (c,b,d,a)

GSOZ0=020-0

Loc < Cutwidth

Y ={a,b,c,d}
o = abcbcedbada
k=2.

a=abcbcdbada

Construct multigraph
Hox = (V,E):

Loc < Cutwidth

Y ={a,b,c,d}
o = abcbcedbada
k=2.

a=abcbcdbada

Construct multigraph
Hox = (V,E):

Loc < Cutwidth

Y ={a,b,c,d}
o = abcbcedbada
k=2.

a=abcbcdbada

Construct multigraph
Hox = (V,E):

Loc < Cutwidth

Y ={a,b,c,d}
o = abcbcedbada
k=2.

a=abcbcdbada

Construct multigraph
Hox = (V,E):

Loc < Cutwidth

Construct multigraph

Y ={a,b,c,d}
o = abcbcedbada
k=2.

a=abcbcdbada

Loc < Cutwidth
Construct multigraph

Hox = (V,E):
Y ={a,b,c,d}
« = abcbcedbada
k=2.
a=abcbcdbada Marking sequence: (c,b,d,a)

GSOZ0=020-0

Loc < Cutwidth
Construct multigraph

Hox = (V,E):
Y ={a,b,c,d}
« = abcbcdbada
k=2.
a=abcbcdbada Marking sequence: (c,b,d,a)

C= == =#)

cw(Hq k) = 2k if and only if loc(a) < k.

Cutwidth < Loc
G = (V, E):

)
Su\a

Cutwidth < Loc
G = (V, E):

)
Su\a

Cutwidth < Loc
G = (V, E):

Cutwidth < Loc
G = (V, E):

Cutwidth < Loc

Cutwidth < Loc

Cutwidth < Loc

Cutwidth < Loc
G = (V, E):

Cutwidth < Loc
G = (V, E):

Xwuxwu

Cutwidth < Loc

XWwWuxwux

Cutwidth < Loc
G = (V, E):

XwWuxwuxyVv

Cutwidth < Loc
G = (V, E):

Xwuxwuxyvu

Cutwidth < Loc
G = (V, E):

Xwuxwuxvuvyzvyzyv

Cutwidth < Loc
G = (V, E):

Ay} =XWUXWUXVUVYZVYZV

Cutwidth < Loc

O[{va}=XWUXWUXVUV}/ZV)/ZV

Ve € E : cw(G) < loc(ae) < cw(G) + 1
Je € E : loc(ae) = cw(G).

Consequences

Consequences

MinCutwidth MinLoc
Run time: | O(f(|E|)) = O(f(la]) + |a])
Appr. ratio: | r(opt, |E|) (r(20pt, |a]) + oLpt)

Consequences

MinCutwidth MinLoc
Run time: | O(f(|E|)) = O(f(la]) + |a])
Appr. ratio: | r(opt, |E|) (r(2opt, |a]) + oipt)
Run time: | O(n(f(|E|) + |E|)) < O(f(]er]))
Appr. ratio: | r(opt, |E|) r(opt, |c|)

Consequences

MinCutwidth MinLoc
Run time: | O(f(|E|)) = O(f(la]) + |a])
Appr. ratio: | r(opt, |E|) (r(2opt, |a]) + oipt)
Run time: | O(n(f(|E|) + |E|)) < O(f(]er]))
Appr. ratio: | r(opt, |E|) r(opt, |c|)

The problem Loc

» is NP-complete,
(even if every symbol has at most 3 occurrences)

Consequences

MinCutwidth MinLoc
Run time: | O(f(|E|)) = O(f(la]) + |a])
Appr. ratio: | r(opt, |E|) (r(2opt, |a]) + oipt)
Run time: | O(n(f(|E|) + |E|)) < O(f(]er]))
Appr. ratio: | r(opt, |E|) r(opt, |c|)

The problem Loc

» is NP-complete,
(even if every symbol has at most 3 occurrences)

> can be solved in 0*(2/*),

Consequences

MinCutwidth MinLoc
Run time: | O(f(|E|)) = O(f(la]) + |a])
Appr. ratio: | r(opt, |E|) (r(2opt, |a]) + oipt)
Run time: | O(n(f(|E|) + |E])) < O(f(|al))
Appr. ratio: | r(opt, |E|) r(opt, |c|)

The problem Loc

» is NP-complete,
(even if every symbol has at most 3 occurrences)

> can be solved in 0*(2/*),

» in FPT (w.r.t. parameter k), with linear fpt-algorithm.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-decompositions as marking procedures
Let G = (V, E) be a graph.
Path-decomposition Q of G:

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-decompositions as marking procedures
Let G = (V, E) be a graph.
Path-decomposition Q of G:

» Initially all vertices are blue.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-decompositions as marking procedures
Let G = (V, E) be a graph.
Path-decomposition Q of G:

» Initially all vertices are blue.

» Until all vertices are blue again,

» color a vertex red that has never been red before, or
» color a red vertex blue again,

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-decompositions as marking procedures
Let G = (V, E) be a graph.
Path-decomposition Q of G:

» Initially all vertices are blue.

» Until all vertices are blue again,

» color a vertex red that has never been red before, or
» color a red vertex blue again,

» such that each two adjacent vertices are red at the same time.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-decompositions as marking procedures
Let G = (V, E) be a graph.
Path-decomposition Q of G:

» Initially all vertices are blue.
» Until all vertices are blue again,

» color a vertex red that has never been red before, or
» color a red vertex blue again,

» such that each two adjacent vertices are red at the same time.

pw(Q): Max. number of marked vertices.

Path-Decompositions and Pathwidth

Path-decompositions as tree-decomposition

A path-decomposition is a tree-decomposition the underlying
tree-structure of which is a path.

Path-decompositions as marking procedures
Let G = (V, E) be a graph.
Path-decomposition Q of G:

» Initially all vertices are blue.

» Until all vertices are blue again,

» color a vertex red that has never been red before, or
» color a red vertex blue again,

» such that each two adjacent vertices are red at the same time.
pw(Q): Max. number of marked vertices.
pw(G): Min. pw(Q) over all path-decompositions.

Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: Graph G, k € N.
Question: pw(a) < k7

Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: Graph G, k € N.
Question: pw(a) < k7

MinPathwidth denotes the corresponding minimisation problem.

Computing the Pathwidth

Pathwidth problem

Pathwidth
Input: Graph G, k € N.
Question: pw(a) < k7

MinPathwidth denotes the corresponding minimisation problem.

Known Results

» Pathwidth is NP-complete.
» Pathwidth € FPT (w.r.t. k).

» Exact exponential algorithms, linear fpt-algorithms,
approximation algorithms...

Loc < Pathwidth

a=cabacabac

Loc < Pathwidth

a=cabacabac

Ga:

O—"O0—C0—C0—~0—C0—C0—C—70

Loc < Pathwidth

a=cabacabac

Ga:

Loc < Pathwidth

a=cabacabac

Ga:

_——~—
a5

Loc < Pathwidth

a=cabacabac

Ga:

Results

loc(a) < pw(Ga) < 2loc(a).

Results

loc(ar) < pw(Gqy) < 2loc(a).

Lemma
Ja : pw(Ga) = 2loc(w),

3B : loc(B) = pw(Gs).

Results

loc(ar) < pw(Gqy) < 2loc(a).

Ja : pw(Ga) = 2loc(w),
3B : loc(B) = pw(Gs).

There is an O(y/log(opt) log(n))-approx. algo. for MinLoc.

Consequences for Cutwidth

Leighton and Rao, JACM 1999: O(log(n) log(n))-approximation.

(Based on more general approximation techniques for
edge-seperators)

Consequences for Cutwidth

Leighton and Rao, JACM 1999: O(log(n) log(n))-approximation.

(Based on more general approximation techniques for
edge-seperators)

Feige et al., SICOMP 2008: O(+/log(opt) log(n))-approximation.

(Based on more general approximation techniques for
vertex-seperators)

Consequences for Cutwidth

Leighton and Rao, JACM 1999: O(log(n) log(n))-approximation.

(Based on more general approximation techniques for
edge-seperators)

Feige et al., SICOMP 2008: O(+/log(opt) log(n))-approximation.

(Based on more general approximation techniques for
vertex-seperators)

There is an O(y/log(opt) log(h))-approximation algorithm for
MinCutwidth on multigraphs with h edges.

Direct Reduction: MinCutwidth < MinPathwidth

