Combinatorial Properties and Recognition of Unit Square Visibility Graphs¹

Katrin Casel¹, Henning Fernau¹, Alexander Grigoriev², **Markus L. Schmid**¹, Sue Whitesides³

Trier University, Germany
Maastricht University, The Netherlands
University of Victoria, Canada

MFCS 2017

¹Thanks to the organizers of the 2016 workshop "Fixed-Parameter Computational Geometry" at Lorentz-Center, Leiden

• A geometric space 2-dim. Euclidean space, 3-dim. Euclidean space, ...

- A geometric space 2-dim. Euclidean space, 3-dim. Euclidean space, ...
- A layout $\mathcal{R} = \{R_i \mid 1 \leq i \leq n\}$ of of geometric objects in the space bars, discs, rectangles, . . .

- A geometric space 2-dim. Euclidean space, 3-dim. Euclidean space, ...
- A layout $\mathcal{R} = \{R_i \mid 1 \leq i \leq n\}$ of of geometric objects in the space bars, discs, rectangles, . . .
- A geometric relation $\sim \subseteq \mathcal{R} \times \mathcal{R}$ intersection, proximity, visibility, ...

- A geometric space 2-dim. Euclidean space, 3-dim. Euclidean space, ...
- A layout $\mathcal{R} = \{R_i \mid 1 \leq i \leq n\}$ of of geometric objects in the space bars, discs, rectangles, . . .
- A geometric relation $\sim \subseteq \mathcal{R} \times \mathcal{R}$ intersection, proximity, visibility, ...

A (combinatorial) graph $G = (\{v_i \mid 1 \le i \le n\}, E)$ is

• represented by \mathcal{R} if $E = \{\{v_i, v_j\} \mid R_i \sim R_j\},\$

- A geometric space 2-dim. Euclidean space, 3-dim. Euclidean space, ...
- A layout $\mathcal{R} = \{R_i \mid 1 \leq i \leq n\}$ of of geometric objects in the space bars, discs, rectangles, . . .
- A geometric relation $\sim \subseteq \mathcal{R} \times \mathcal{R}$ intersection, proximity, visibility, ...

A (combinatorial) graph $G = (\{v_i \mid 1 \le i \le n\}, E)$ is

- represented by \mathcal{R} if $E = \{\{v_i, v_j\} \mid R_i \sim R_j\},\$
- weakly represented by \mathcal{R} if $E \subseteq \{\{v_i, v_j\} \mid R_i \sim R_j\}$.

- A geometric space 2-dim. Euclidean space, 3-dim. Euclidean space, ...
- A layout $\mathcal{R} = \{R_i \mid 1 \leq i \leq n\}$ of of geometric objects in the space bars, discs, rectangles, . . .
- A geometric relation $\sim \subseteq \mathcal{R} \times \mathcal{R}$ intersection, proximity, visibility, ...

A (combinatorial) graph $G = (\{v_i \mid 1 \le i \le n\}, E)$ is

- represented by \mathcal{R} if $E = \{\{v_i, v_j\} \mid R_i \sim R_j\},\$
- weakly represented by \mathcal{R} if $E \subseteq \{\{v_i, v_j\} \mid R_i \sim R_j\}$.

Main motivation:

Graphs that model real-world systems are often geometric graphs e.g.: radio transmitters (2d/3d space, proximity as edge relation)

Rectangle Visibility Graphs

Geometric space: 2-dim. Euclidean space Geometric objects: axis-aligned rectangles

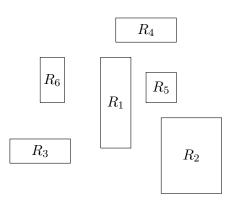
Geometric relation: vertical or horizontal axis-aligned visibility

Rectangle Visibility Graphs

Geometric space: 2-dim. Euclidean space Geometric objects: axis-aligned rectangles

Geometric relation: vertical or horizontal axis-aligned visibility

Layout:



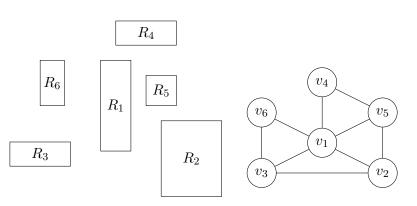
Rectangle Visibility Graphs

Geometric space: 2-dim. Euclidean space Geometric objects: axis-aligned rectangles

Geometric relation: vertical or horizontal axis-aligned visibility

Layout:

Represented graph:



Unit Square Visibility Graphs

All rectangles are unit squares (i. e., squares of size 1)

Class of unit square visibility graphs:

USV USV_w (weak representation)

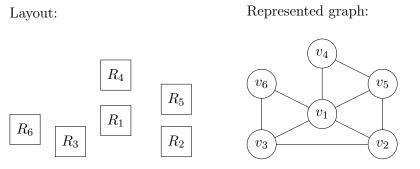
Unit Square Visibility Graphs

All rectangles are unit squares (i.e., squares of size 1)

Class of unit square visibility graphs:

USV

 USV_w (weak representation)



- bar-visibility graphs
 - motivated by VLSI
 - ▶ only planar graphs
 - combinatorial properties well-understood
 - ▶ recognition in linear time

- bar-visibility graphs
 - motivated by VLSI
 - only planar graphs
 - combinatorial properties well-understood
 - ► recognition in linear time
- rectangle visibility graphs
 - motivated by two-layer routing (in VLSI)
 - contains all planar graphs
 - ▶ NP-hard recognition problem

- bar-visibility graphs
 - motivated by VLSI
 - only planar graphs
 - combinatorial properties well-understood
 - ► recognition in linear time
- rectangle visibility graphs
 - motivated by two-layer routing (in VLSI)
 - contains all planar graphs
 - ▶ NP-hard recognition problem
- unit square visibility graphs
 - ▶ motivation: unbounded size of rectangles unrealistic
 - characterisations of C_n , K_n , $K_{n,m}$ and trees within USV exist.
 - ▶ Hardness of recognition: settled in this paper

- bar-visibility graphs
 - motivated by VLSI
 - only planar graphs
 - combinatorial properties well-understood
 - ► recognition in linear time
- rectangle visibility graphs
 - motivated by two-layer routing (in VLSI)
 - contains all planar graphs
 - ▶ NP-hard recognition problem
- unit square visibility graphs
 - ▶ motivation: unbounded size of rectangles unrealistic
 - characterisations of C_n , K_n , $K_{n,m}$ and trees within USV exist.
 - ▶ Hardness of recognition: settled in this paper

Additional motivation from graph drawing:

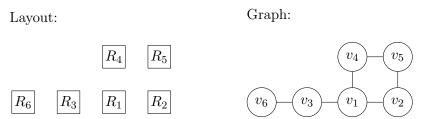
- good readability properties:
 - ⋆ only rectangular edge crossings,
 - ★ angles between adjacent edges are rectangular,

Grid Case

Unit square grid visibility graphs (USGV, USGV_w): all coordinates of unit squares from \mathbb{N}^2

Grid Case

Unit square grid visibility graphs (USGV, USGV_w): all coordinates of unit squares from \mathbb{N}^2



Research Questions

• Combinatorial properties: what kind of graphs can be represented by unit square layouts?

Research Questions

• Combinatorial properties: what kind of graphs can be represented by unit square layouts?

• Recognition problem: decide whether a given graph can be represented by a unit square layout.

Unit Square Grid Visibility Graphs (USGV)

• $\mathsf{USGV} = \mathsf{USGV}_w$. (visibilities can be deleted by "stretching" the layout)

• $\mathsf{USGV} = \mathsf{USGV}_w$. (visibilities can be deleted by "stretching" the layout)

Rectilinear Drawing

(RLG)

Vertices are \mathbb{N}^2 grid points, edges are horizontal or vertical line segments (edges do not intersect non-adjacent vertices).

• $\mathsf{USGV} = \mathsf{USGV}_w$. (visibilities can be deleted by "stretching" the layout)

Rectilinear Drawing

(RLG

Vertices are \mathbb{N}^2 grid points, edges are horizontal or vertical line segments (edges do not intersect non-adjacent vertices).

USGV = RLG (all combinatorial results of RLG apply to USGV).
USGV ⊆ RLG: an USGV-layout is a RLG-drawing
USGV ⊇ RLG: vertex-points → squares, delete unwanted edges

ullet USGV have maximum degree 4

- USGV have maximum degree 4
- USGV is downward closed w.r.t. subgraph-relation

- USGV have maximum degree 4
- USGV is downward closed w.r.t. subgraph-relation
- USGV do not contain $K_{1,5}, K_{2,3}$ or K_3 as subgraphs

- USGV have maximum degree 4
- USGV is downward closed w.r.t. subgraph-relation
- USGV do not contain $K_{1,5}, K_{2,3}$ or K_3 as subgraphs
- USGV contains non-bipartite graphs (e.g., C_5)

${\color{red} \textbf{USGV}} - \textbf{Planarity}$

Call a layout planar iff no visibilities are crossing

USGV – Planarity

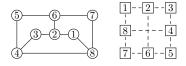
Call a layout planar iff no visibilities are crossing

• G has planar layout $\Rightarrow G$ is planar

USGV – Planarity

Call a layout planar iff no visibilities are crossing

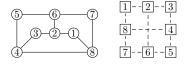
- G has planar layout $\Rightarrow G$ is planar
- \bullet There are planar $G \in \mathsf{USGV}$ that have no planar layout:



USGV – Planarity

Call a layout planar iff no visibilities are crossing

- G has planar layout $\Rightarrow G$ is planar
- There are planar $G \in \mathsf{USGV}$ that have no planar layout:



• USGV contains non-planar graphs (subdivisions of $K_{3,3}$ and K_5):



USGV – Characterisations

• USGV does not admit a characterisation by a finite number of forbidden induced subgraphs.

USGV – Characterisations

 USGV does not admit a characterisation by a finite number of forbidden induced subgraphs.

- Characterisations of cycles, complete graphs, complete bipartite graphs and trees within USGV:
 - $C_i \in \mathsf{USGV} \iff i \geq 4$
 - $K_i \in \mathsf{USGV} \iff i \leq 2,$
 - ▶ $K_{i,j} \in \mathsf{USGV}, i \leq j \iff (i = 1 \text{ and } j \leq 4) \text{ or } (i = 2 \text{ and } j = 2).$
 - ▶ Tree $T \in \mathsf{USGV} \iff T$ has maximum degree ≤ 4 .

USGV – Recognition Problem, Known Results

Recognition Problem:

Given graph G, does there exist a layout representing G?

USGV – Recognition Problem, Known Results

Recognition Problem:

Given graph G, does there exist a layout representing G?

NP-hard for RLG (so also for USGV).

Recognition Problem:

Given graph G, does there exist a layout representing G?

NP-hard for RLG (so also for USGV).

LRDU-Restricted variant:

Given graph G and $R: E \to \{\mathsf{L}, \mathsf{R}, \mathsf{D}, \mathsf{U}\}$ (the LRDU-Restriction), does there exist a layout representing G with

 $R(\{u,v\}) = \mathsf{R} \Rightarrow \text{unit square for } v \text{ is to the right of unit square for } u,$ $R(\{u,v\}) = \mathsf{D} \Rightarrow \text{unit square for } v \text{ is below the unit square for } u, \text{ etc. } ?$

Recognition Problem:

Given graph G, does there exist a layout representing G?

NP-hard for RLG (so also for USGV).

LRDU-Restricted variant:

Given graph G and $R:E\to \{\mathsf{L},\mathsf{R},\mathsf{D},\mathsf{U}\}$ (the LRDU-Restriction), does there exist a layout representing G with

 $R(\{u,v\}) = \mathsf{R} \Rightarrow \text{unit square for } v \text{ is to the right of unit square for } u,$ $R(\{u,v\}) = \mathsf{D} \Rightarrow \text{unit square for } v \text{ is below the unit square for } u, \text{ etc. } ?$

Can be solved for RLG in $O(|E| \cdot |V|)$ (so also for USGV).

Area-minimisation variant:

Given graph G and $w, h \in \mathbb{N}$, does there exist a layout representing G with height h and width w?

Area-minimisation variant:

Given graph G and $w, h \in \mathbb{N}$, does there exist a layout representing G with height h and width w?

NP-hard for RLG

Area-minimisation variant:

Given graph G and $w, h \in \mathbb{N}$, does there exist a layout representing G with height h and width w?

NP-hard for RLG

remains hard if LRDU-restriction is added

Area-minimisation variant:

Given graph G and $w, h \in \mathbb{N}$, does there exist a layout representing G with height h and width w?

NP-hard for RLG

remains hard if LRDU-restriction is added

Reduction does not work for USGV: transforming RLG drawing into USGV layout requires more space.

3-Partition

Input: $B \in \mathbb{N}$, multiset $A = \{a_1, a_2, \dots, a_{3m}\} \subseteq \mathbb{N}$ with $\frac{B}{4} < a_i < \frac{B}{2}$ and $\sum_{i=1}^{3m} a_i = mB$.

Question: \exists partition $A = A_1, \dots, A_m$ with $\sum_{a \in A_j} = B, 1 \le j \le m$?

3-Partition

Input: $B \in \mathbb{N}$, multiset $A = \{a_1, a_2, \dots, a_{3m}\} \subseteq \mathbb{N}$ with $\frac{B}{4} < a_i < \frac{B}{2}$ and $\sum_{i=1}^{3m} a_i = mB$.

Question: \exists partition $A = A_1, \dots, A_m$ with $\sum_{a \in A_j} = B, 1 \le j \le m$?

for every $i, 1 \le i \le 3m$

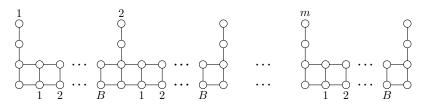
3-Partition

Input: $B \in \mathbb{N}$, multiset $A = \{a_1, a_2, \dots, a_{3m}\} \subseteq \mathbb{N}$ with $\frac{B}{4} < a_i < \frac{B}{2}$ and $\sum_{i=1}^{3m} a_i = mB$.

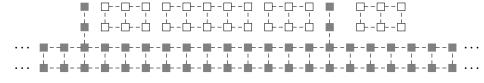
Question: \exists partition $A = A_1, \dots, A_m$ with $\sum_{a \in A_j} = B, 1 \le j \le m$?

Reduction:

for every $i, 1 \le i \le 3m$



$$a_{i_1} = 3$$
, $a_{i_2} = 5$, $a_{i_3} = 3$ and $B = 11$



$$a_{i_1} = 3$$
, $a_{i_2} = 5$, $a_{i_3} = 3$ and $B = 11$

G has a weak
$$(7 \times (2(mB+m+1)-1))$$
 unit square grid layout \iff \exists partition $A=A_1,\ldots,A_m$ with $\sum_{a\in A_j}=B,\ 1\leq j\leq m.$

Area minimisation recognition for USGV_w is $\mathsf{NP}\text{-hard}$

Area minimisation recognition for USGV_w is $\mathsf{NP}\text{-}\mathsf{hard}$

Furthermore:

 \bullet Hardness remains if input graph is from USGV_w given by a layout.

Area minimisation recognition for USGV_w is $\mathsf{NP}\text{-hard}$

Furthermore:

- Hardness remains if input graph is from USGV_w given by a layout.
- Hardness remains for the LRDU-restricted case.

Area minimisation recognition for USGV_w is $\mathsf{NP}\text{-hard}$

Furthermore:

- Hardness remains if input graph is from USGV_w given by a layout.
- Hardness remains for the LRDU-restricted case.
- Reduction serves as an easier reduction for the hardness of area minimisation recognition for LRDU-restricted rectilinear graphs.

Area minimisation recognition for USGV_w is $\mathsf{NP}\text{-hard}$

Furthermore:

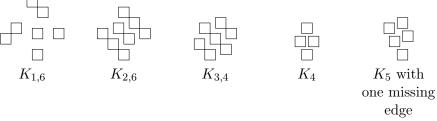
- Hardness remains if input graph is from USGV_w given by a layout.
- Hardness remains for the LRDU-restricted case.
- Reduction serves as an easier reduction for the hardness of area minimisation recognition for LRDU-restricted rectilinear graphs.

Area minimisation variant of LRDU-restricted Recognition Problem for USGV still open!

Unit Square Visibility Graphs (USV)

Some Examples:

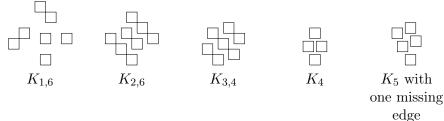
Some Examples:



Some simple observations:

• Every graph with at most 4 vertices is in USV.

Some Examples:



Some simple observations:

- Every graph with at most 4 vertices is in USV.

Some Examples:

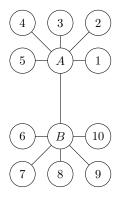
Some simple observations:

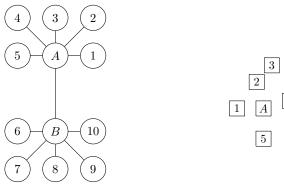
- Every graph with at most 4 vertices is in USV.
- Vertex has degree $\geq 7 \Rightarrow \exists$ paths between some of its neighbours. (However, $K_{1,n}$ may exist as induced subgraph for every n.)

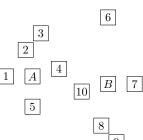
Some Examples:

Some simple observations:

- Every graph with at most 4 vertices is in USV.
- Vertex has degree $\geq 7 \Rightarrow \exists$ paths between some of its neighbours. (However, $K_{1,n}$ may exist as induced subgraph for every n.)
- USV \subsetneq USV_w (separated, e.g., by $K_{1,7}$)







- Recognition problem for USV is in NP.
 - ▶ If $G \in USV$, then there is a $n \times n$ layout.
 - ▶ No arbitrary small "shifting" between unit squares necessary.

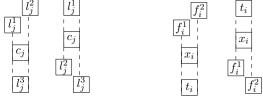
- Recognition problem for USV is in NP.
 - ▶ If $G \in USV$, then there is a $n \times n$ layout.
 - ▶ No arbitrary small "shifting" between unit squares necessary.
- Recognition problem for USV is NP-hard.
 - ► Reduction from NAE-3SAT (not-all-equal 3-satisfiability).
 - ▶ Sketch follows . . .

${\sf USV}$ - Recognition Problem, Sketch of Reduction

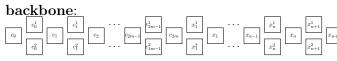
backbone:

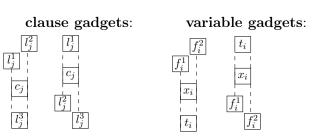
USV - Recognition Problem, Sketch of Reduction

clause gadgets: variable gadgets:



USV - Recognition Problem, Sketch of Reduction





USV - Recognition Problem, Full Reduction

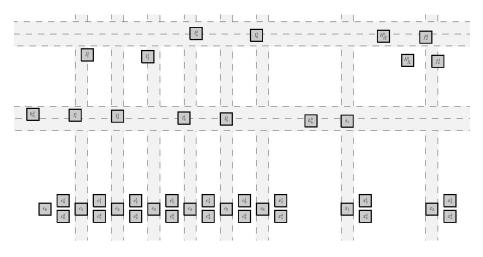
Formula:

$${c_1, c_2, c_3}$$
 with $c_1 = {x_1, \bar{x}_2, x_3}, c_2 = {x_1, x_3, \bar{x}_4}, c_3 = {\bar{x}_2, x_3, x_4}$:

USV - Recognition Problem, Full Reduction

Formula:

$$\{c_1,c_2,c_3\}$$
 with $c_1=\{x_1,\bar{x}_2,x_3\},c_2=\{x_1,x_3,\bar{x}_4\},c_3=\{\bar{x}_2,x_3,x_4\}$:



• Area minimisation variant of LRDU-restricted Recognition Problem for USGV.

• Area minimisation variant of LRDU-restricted Recognition Problem for USGV.

• Recognition Problem for USV_w .

- Area minimisation variant of LRDU-restricted Recognition Problem for USGV.
- Recognition Problem for USV_w .
- Is inclusion "USGV $\subseteq \text{res-}\frac{\pi}{2}$ -graphs" proper?

- Area minimisation variant of LRDU-restricted Recognition Problem for USGV.
- Recognition Problem for USV_w .
- Is inclusion "USGV $\subseteq \text{res-}\frac{\pi}{2}\text{-graphs}$ " proper?
- Practically more realistic: $\{\frac{\ell}{k} \mid \ell \in \mathbb{N}\}^2$ grid (with k treated as parameter).

Thank you very much for your attention