Combinatorial Properties and Recognition of Unit Square Visibility Graphs ${ }^{1}$

Katrin Casel ${ }^{1}$, Henning Fernau ${ }^{1}$, Alexander Grigoriev ${ }^{2}$, Markus L. Schmid ${ }^{1}$, Sue Whitesides ${ }^{3}$

${ }^{1}$ Trier University, Germany
${ }^{2}$ Maastricht University, The Netherlands
${ }^{3}$ University of Victoria, Canada

MFCS 2017

[^0]
Geometric Graph Classes

- A geometric space

2-dim. Euclidean space, 3-dim. Euclidean space, ...

Geometric Graph Classes

- A geometric space

2-dim. Euclidean space, 3-dim. Euclidean space, ...

- A layout $\mathcal{R}=\left\{R_{i} \mid 1 \leq i \leq n\right\}$ of of geometric objects in the space bars, discs, rectangles, ...

Geometric Graph Classes

- A geometric space

2-dim. Euclidean space, 3-dim. Euclidean space, ...

- A layout $\mathcal{R}=\left\{R_{i} \mid 1 \leq i \leq n\right\}$ of of geometric objects in the space bars, discs, rectangles, ...
- A geometric relation $\sim \subseteq \mathcal{R} \times \mathcal{R}$ intersection, proximity, visibility,...

Geometric Graph Classes

- A geometric space

2-dim. Euclidean space, 3-dim. Euclidean space, ...

- A layout $\mathcal{R}=\left\{R_{i} \mid 1 \leq i \leq n\right\}$ of of geometric objects in the space bars, discs, rectangles, ...
- A geometric relation $\sim \subseteq \mathcal{R} \times \mathcal{R}$ intersection, proximity, visibility,...

A (combinatorial) graph $G=\left(\left\{v_{i} \mid 1 \leq i \leq n\right\}, E\right)$ is

- represented by \mathcal{R} if $E=\left\{\left\{v_{i}, v_{j}\right\} \mid R_{i} \sim R_{j}\right\}$,

Geometric Graph Classes

- A geometric space

2-dim. Euclidean space, 3-dim. Euclidean space, ...

- A layout $\mathcal{R}=\left\{R_{i} \mid 1 \leq i \leq n\right\}$ of of geometric objects in the space bars, discs, rectangles, ...
- A geometric relation $\sim \subseteq \mathcal{R} \times \mathcal{R}$ intersection, proximity, visibility, ...

A (combinatorial) graph $G=\left(\left\{v_{i} \mid 1 \leq i \leq n\right\}, E\right)$ is

- represented by \mathcal{R} if $E=\left\{\left\{v_{i}, v_{j}\right\} \mid R_{i} \sim R_{j}\right\}$,
- weakly represented by \mathcal{R} if $E \subseteq\left\{\left\{v_{i}, v_{j}\right\} \mid R_{i} \sim R_{j}\right\}$.

Geometric Graph Classes

- A geometric space 2-dim. Euclidean space, 3-dim. Euclidean space, ...
- A layout $\mathcal{R}=\left\{R_{i} \mid 1 \leq i \leq n\right\}$ of of geometric objects in the space bars, discs, rectangles, ...
- A geometric relation $\sim \subseteq \mathcal{R} \times \mathcal{R}$ intersection, proximity, visibility, ...

A (combinatorial) graph $G=\left(\left\{v_{i} \mid 1 \leq i \leq n\right\}, E\right)$ is

- represented by \mathcal{R} if $E=\left\{\left\{v_{i}, v_{j}\right\} \mid R_{i} \sim R_{j}\right\}$,
- weakly represented by \mathcal{R} if $E \subseteq\left\{\left\{v_{i}, v_{j}\right\} \mid R_{i} \sim R_{j}\right\}$.

Main motivation:
Graphs that model real-world systems are often geometric graphs e. g.: radio transmitters ($2 \mathrm{~d} / 3 \mathrm{~d}$ space, proximity as edge relation)

Rectangle Visibility Graphs

Geometric space: 2-dim. Euclidean space
Geometric objects: axis-aligned rectangles
Geometric relation: vertical or horizontal axis-aligned visibility

Rectangle Visibility Graphs

Geometric space: 2-dim. Euclidean space
Geometric objects: axis-aligned rectangles
Geometric relation: vertical or horizontal axis-aligned visibility

Layout:

Rectangle Visibility Graphs

Geometric space: 2-dim. Euclidean space
Geometric objects: axis-aligned rectangles
Geometric relation: vertical or horizontal axis-aligned visibility

Layout:

Represented graph:
R_{4}

Unit Square Visibility Graphs

All rectangles are unit squares (i.e., squares of size 1)

Class of unit square visibility graphs: USV
USV_{w} (weak representation)

Unit Square Visibility Graphs

All rectangles are unit squares (i.e., squares of size 1)

Class of unit square visibility graphs:
USV
USV_{w} (weak representation)

Layout:

Background on Rectangle Visibility Graphs

- bar-visibility graphs
- motivated by VLSI
- only planar graphs
- combinatorial properties well-understood
- recognition in linear time

Background on Rectangle Visibility Graphs

- bar-visibility graphs
- motivated by VLSI
- only planar graphs
- combinatorial properties well-understood
- recognition in linear time
- rectangle visibility graphs
- motivated by two-layer routing (in VLSI)
- contains all planar graphs
- NP-hard recognition problem

Background on Rectangle Visibility Graphs

- bar-visibility graphs
- motivated by VLSI
- only planar graphs
- combinatorial properties well-understood
- recognition in linear time
- rectangle visibility graphs
- motivated by two-layer routing (in VLSI)
- contains all planar graphs
- NP-hard recognition problem
- unit square visibility graphs
- motivation: unbounded size of rectangles unrealistic
- characterisations of $C_{n}, K_{n}, K_{n, m}$ and trees within USV exist.
- Hardness of recognition: settled in this paper

Background on Rectangle Visibility Graphs

- bar-visibility graphs
- motivated by VLSI
- only planar graphs
- combinatorial properties well-understood
- recognition in linear time
- rectangle visibility graphs
- motivated by two-layer routing (in VLSI)
- contains all planar graphs
- NP-hard recognition problem
- unit square visibility graphs
- motivation: unbounded size of rectangles unrealistic
- characterisations of $C_{n}, K_{n}, K_{n, m}$ and trees within USV exist.
- Hardness of recognition: settled in this paper

Additional motivation from graph drawing:

- good readability properties:
* only rectangular edge crossings,
\star angles between adjacent edges are rectangular,

Grid Case

Unit square grid visibility graphs (USGV, USGV ${ }_{w}$): all coordinates of unit squares from \mathbb{N}^{2}

Grid Case

Unit square grid visibility graphs (USGV, USGV_{w}): all coordinates of unit squares from \mathbb{N}^{2}

Layout:

R_{6}

R_{1}
R_{2}

Graph:

Research Questions

- Combinatorial properties: what kind of graphs can be represented by unit square layouts?

Research Questions

- Combinatorial properties: what kind of graphs can be represented by unit square layouts?
- Recognition problem: decide whether a given graph can be represented by a unit square layout.

Unit Square Grid Visibility Graphs (USGV)

USGV - Simple Observations

- $\mathrm{USGV}=\mathrm{USGV}_{w}$.
(visibilities can be deleted by "stretching" the layout)

USGV - Simple Observations

- $\mathrm{USGV}=\mathrm{USGV}_{w}$.
(visibilities can be deleted by "stretching" the layout)

Rectilinear Drawing

Vertices are \mathbb{N}^{2} grid points, edges are horizontal or vertical line segments (edges do not intersect non-adjacent vertices).

USGV - Simple Observations

- $\mathrm{USGV}=\mathrm{USGV}_{w}$.
(visibilities can be deleted by "stretching" the layout)

Rectilinear Drawing

Vertices are \mathbb{N}^{2} grid points, edges are horizontal or vertical line segments (edges do not intersect non-adjacent vertices).

- $\operatorname{USGV}=$ RLG (all combinatorial results of RLG apply to USGV). USGV \subseteq RLG: an USGV-layout is a RLG-drawing USGV \supseteq RLG: vertex-points \rightarrow squares, delete unwanted edges

USGV - Simple Observations

- USGV have maximum degree 4

USGV - Simple Observations

- USGV have maximum degree 4
- USGV is downward closed w.r.t. subgraph-relation

USGV - Simple Observations

- USGV have maximum degree 4
- USGV is downward closed w.r.t. subgraph-relation
- USGV do not contain $K_{1,5}, K_{2,3}$ or K_{3} as subgraphs

USGV - Simple Observations

- USGV have maximum degree 4
- USGV is downward closed w.r.t. subgraph-relation
- USGV do not contain $K_{1,5}, K_{2,3}$ or K_{3} as subgraphs
- USGV contains non-bipartite graphs (e.g., C_{5})

USGV - Planarity

Call a layout planar iff no visibilities are crossing

USGV - Planarity

Call a layout planar iff no visibilities are crossing

- G has planar layout $\Rightarrow G$ is planar

USGV - Planarity

Call a layout planar ff no visibilities are crossing

- G has planar layout $\Rightarrow G$ is planar
- There are planar $G \in$ USGV that have no planar layout:

USGV - Planarity

Call a layout planar iff no visibilities are crossing

- G has planar layout $\Rightarrow G$ is planar
- There are planar $G \in$ USGV that have no planar layout:

$$
\begin{aligned}
& \text { (1)-2-- } 3 \\
& \frac{1}{8}-\frac{1}{1}
\end{aligned}
$$

- USGV contains non-planar graphs (subdivisions of $K_{3,3}$ and K_{5}):

USGV - Characterisations

- USGV does not admit a characterisation by a finite number of forbidden induced subgraphs.

USGV - Characterisations

- USGV does not admit a characterisation by a finite number of forbidden induced subgraphs.
- Characterisations of cycles, complete graphs, complete bipartite graphs and trees within USGV:
- $C_{i} \in$ USGV $\Longleftrightarrow i \geq 4$,
- $K_{i} \in$ USGV $\Longleftrightarrow i \leq 2$,
- $K_{i, j} \in$ USGV, $i \leq j \Longleftrightarrow(i=1$ and $j \leq 4)$ or $(i=2$ and $j=2)$.
- Tree $T \in$ USGV $\Longleftrightarrow T$ has maximum degree ≤ 4.

USGV - Recognition Problem, Known Results

Recognition Problem:
Given graph G, does there exist a layout representing G ?

USGV - Recognition Problem, Known Results

Recognition Problem:
Given graph G, does there exist a layout representing G ?
NP-hard for RLG (so also for USGV).

USGV - Recognition Problem, Known Results

Recognition Problem:
Given graph G, does there exist a layout representing G ?
NP-hard for RLG (so also for USGV).
LRDU-Restricted variant:
Given graph G and $R: E \rightarrow\{\mathrm{~L}, \mathrm{R}, \mathrm{D}, \mathrm{U}\}$ (the LRDU-Restriction), does there exist a layout representing G with
$R(\{u, v\})=\mathrm{R} \Rightarrow$ unit square for v is to the right of unit square for u, $R(\{u, v\})=\mathrm{D} \Rightarrow$ unit square for v is below the unit square for u, etc. ?

USGV - Recognition Problem, Known Results

Recognition Problem:
Given graph G, does there exist a layout representing G ?
NP-hard for RLG (so also for USGV).
LRDU-Restricted variant:
Given graph G and $R: E \rightarrow\{\mathrm{~L}, \mathrm{R}, \mathrm{D}, \mathrm{U}\}$ (the LRDU-Restriction), does there exist a layout representing G with
$R(\{u, v\})=\mathrm{R} \Rightarrow$ unit square for v is to the right of unit square for u, $R(\{u, v\})=\mathrm{D} \Rightarrow$ unit square for v is below the unit square for u, etc. ?

Can be solved for RLG in $\mathrm{O}(|E| \cdot|V|)$ (so also for USGV).

USGV - Recognition Problem, Known Results

Area-minimisation variant:
Given graph G and $w, h \in \mathbb{N}$, does there exist a layout representing G with height h and width w ?

USGV - Recognition Problem, Known Results

Area-minimisation variant:
Given graph G and $w, h \in \mathbb{N}$, does there exist a layout representing G with height h and width w ?

NP-hard for RLG

USGV - Recognition Problem, Known Results

Area-minimisation variant:
Given graph G and $w, h \in \mathbb{N}$, does there exist a layout representing G with height h and width w ?

NP-hard for RLG
remains hard if LRDU-restriction is added

USGV - Recognition Problem, Known Results

Area-minimisation variant:
Given graph G and $w, h \in \mathbb{N}$, does there exist a layout representing G with height h and width w ?

NP-hard for RLG
remains hard if LRDU-restriction is added
Reduction does not work for USGV: transforming RLG drawing into USGV layout requires more space.

USGV - Recognition Problem

3-Partition

Input: $B \in \mathbb{N}$, multiset $A=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\} \subseteq \mathbb{N}$ with $\frac{B}{4}<a_{i}<\frac{B}{2}$ and $\sum_{i=1}^{3 m} a_{i}=m B$.
Question: \exists partition $A=A_{1}, \ldots, A_{m}$ with $\sum_{a \in A_{j}}=B, 1 \leq j \leq m$?

USGV - Recognition Problem

3-Partition

Input: $B \in \mathbb{N}$, multiset $A=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\} \subseteq \mathbb{N}$ with $\frac{B}{4}<a_{i}<\frac{B}{2}$ and $\sum_{i=1}^{3 m} a_{i}=m B$.
Question: \exists partition $A=A_{1}, \ldots, A_{m}$ with $\sum_{a \in A_{j}}=B, 1 \leq j \leq m$?

Reduction:

$$
\text { for every } i, 1 \leq i \leq 3 m
$$

USGV - Recognition Problem

3-Partition

Input: $B \in \mathbb{N}$, multiset $A=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\} \subseteq \mathbb{N}$ with $\frac{B}{4}<a_{i}<\frac{B}{2}$ and $\sum_{i=1}^{3 m} a_{i}=m B$.
Question: \exists partition $A=A_{1}, \ldots, A_{m}$ with $\sum_{a \in A_{j}}=B, 1 \leq j \leq m$?

Reduction:

$$
\text { for every } i, 1 \leq i \leq 3 m
$$

USGV - Recognition Problem

$$
a_{i_{1}}=3, a_{i_{2}}=5, a_{i_{3}}=3 \text { and } B=11
$$

USGV - Recognition Problem

$$
a_{i_{1}}=3, a_{i_{2}}=5, a_{i_{3}}=3 \text { and } B=11
$$

G has a weak $(7 \times(2(m B+m+1)-1))$ unit square grid layout \exists partition $A=A_{1}, \ldots, A_{m}$ with $\sum_{a \in A_{j}}=B, 1 \leq j \leq m$.

USGV - Recognition Problem

Area minimisation recognition for USGV_{w} is NP-hard

USGV - Recognition Problem

Area minimisation recognition for USGV_{w} is NP-hard

Furthermore:

- Hardness remains if input graph is from USGV_{w} given by a layout.

USGV - Recognition Problem

Area minimisation recognition for USGV_{w} is NP-hard

Furthermore:

- Hardness remains if input graph is from USGV_{w} given by a layout.
- Hardness remains for the LRDU-restricted case.

USGV - Recognition Problem

Area minimisation recognition for USGV_{w} is NP-hard

Furthermore:

- Hardness remains if input graph is from USGV_{w} given by a layout.
- Hardness remains for the LRDU-restricted case.
- Reduction serves as an easier reduction for the hardness of area minimisation recognition for LRDU-restricted rectilinear graphs.

USGV - Recognition Problem

Area minimisation recognition for USGV_{w} is NP-hard

Furthermore:

- Hardness remains if input graph is from USGV_{w} given by a layout.
- Hardness remains for the LRDU-restricted case.
- Reduction serves as an easier reduction for the hardness of area minimisation recognition for LRDU-restricted rectilinear graphs.

Area minimisation variant of LRDU-restricted Recognition Problem for USGV still open!

Unit Square Visibility Graphs (USV)

USV - Combinatorial Results

Some Examples:

$K_{1,6}$

$K_{3,4}$

USV - Combinatorial Results

Some Examples:

$K_{1,6}$

$K_{2,6}$

$K_{3,4}$

K_{4}

Some simple observations:

- Every graph with at most 4 vertices is in USV.

USV - Combinatorial Results

Some Examples:

$K_{1,6}$

$K_{2,6}$

$K_{3,4}$

K_{4}

K_{5} with
one missing edge

Some simple observations:

- Every graph with at most 4 vertices is in USV.
- The degree of graphs in USV is not bounded ($\square^{\square \square \square \square \square \square) ~}$

USV - Combinatorial Results

Some Examples:

$K_{1,6}$

$K_{2,6}$

$K_{3,4}$

Some simple observations:

- Every graph with at most 4 vertices is in USV.
- The degree of graphs in USV is not bounded ($\square^{\square \square \square \square \square \square) ~}$
- Vertex has degree $\geq 7 \Rightarrow \exists$ paths between some of its neighbours. (However, $K_{1, n}$ may exist as induced subgraph for every n.)

USV - Combinatorial Results

Some Examples:

$K_{1,6}$

$K_{2,6}$

$K_{3,4}$

Some simple observations:

- Every graph with at most 4 vertices is in USV.
- The degree of graphs in USV is not bounded ($\square^{\square \square \square \square \square \square) ~}$
- Vertex has degree $\geq 7 \Rightarrow \exists$ paths between some of its neighbours. (However, $K_{1, n}$ may exist as induced subgraph for every n.)
- USV $\subsetneq \mathrm{USV}_{w}$ (seperated, e. g., by $K_{1,7}$)

USV - Combinatorial Results

USV - Combinatorial Results

$$
\begin{aligned}
& 6 \\
& \begin{array}{|l|}
\hline 2 \\
\hline 2 \\
\hline
\end{array} \\
& \begin{array}{llllll}
\hline 1 & \boxed{A} & \boxed{4} & & \\
& \boxed{5} & \boxed{10} & \boxed{7} & \\
\hline
\end{array} \\
& \begin{array}{r}
8 \\
\hline 9
\end{array}
\end{aligned}
$$

USV - Recognition Problem

- Recognition problem for USV is in NP.
- If $G \in \mathrm{USV}$, then there is a $n \times n$ layout.
- No arbitrary small "shifting" between unit squares necessary.

USV - Recognition Problem

- Recognition problem for USV is in NP.
- If $G \in \mathrm{USV}$, then there is a $n \times n$ layout.
- No arbitrary small "shifting" between unit squares necessary.
- Recognition problem for USV is NP-hard.
- Reduction from NAE-3SAT (not-all-equal 3-satisfiability).
- Sketch follows ...

USV - Recognition Problem, Sketch of Reduction backbone:

USV - Recognition Problem, Sketch of Reduction backbone:

clause gadgets:

USV - Recognition Problem, Sketch of Reduction backbone:

clause gadgets:

variable paths:

USV - Recognition Problem, Full Reduction

Formula:
$\left\{c_{1}, c_{2}, c_{3}\right\}$ with $c_{1}=\left\{x_{1}, \bar{x}_{2}, x_{3}\right\}, c_{2}=\left\{x_{1}, x_{3}, \bar{x}_{4}\right\}, c_{3}=\left\{\bar{x}_{2}, x_{3}, x_{4}\right\}:$

USV - Recognition Problem, Full Reduction

Formula:
$\left\{c_{1}, c_{2}, c_{3}\right\}$ with $c_{1}=\left\{x_{1}, \bar{x}_{2}, x_{3}\right\}, c_{2}=\left\{x_{1}, x_{3}, \bar{x}_{4}\right\}, c_{3}=\left\{\bar{x}_{2}, x_{3}, x_{4}\right\}:$

Further Research

- Area minimisation variant of LRDU-restricted Recognition Problem for USGV.

Further Research

- Area minimisation variant of LRDU-restricted Recognition Problem for USGV.
- Recognition Problem for USV_{w}.

Further Research

- Area minimisation variant of LRDU-restricted Recognition Problem for USGV.
- Recognition Problem for USV_{w}.
- Is inclusion "USGV \subseteq res- $\frac{\pi}{2}$-graphs" proper?

Further Research

- Area minimisation variant of LRDU-restricted Recognition Problem for USGV.
- Recognition Problem for USV_{w}.
- Is inclusion "USGV \subseteq res- $\frac{\pi}{2}$-graphs" proper?
- Practically more realistic: $\left\{\left.\frac{\ell}{k} \right\rvert\, \ell \in \mathbb{N}\right\}^{2} \operatorname{grid}$ (with k treated as parameter).

Thank you very much for your attention

[^0]: ${ }^{1}$ Thanks to the organizers of the 2016 workshop "Fixed-Parameter Computational Geometry" at Lorentz-Center, Leiden

