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Geometric Graph Classes

A geometric space
2-dim. Euclidean space, 3-dim. Euclidean space, . . .

A layout R = {Ri | 1 ≤ i ≤ n} of of geometric objects in the space
bars, discs, rectangles, . . .
A geometric relation ∼⊆ R×R
intersection, proximity, visibility, . . .

A (combinatorial) graph G = ({vi | 1 ≤ i ≤ n}, E) is

represented by R if E = {{vi, vj} | Ri ∼ Rj},
weakly represented by R if E ⊆ {{vi, vj} | Ri ∼ Rj}.

Main motivation:
Graphs that model real-world systems are often geometric graphs
e. g.: radio transmitters (2d/3d space, proximity as edge relation)
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Rectangle Visibility Graphs

Geometric space: 2-dim. Euclidean space
Geometric objects: axis-aligned rectangles
Geometric relation: vertical or horizontal axis-aligned visibility

Layout:

R1
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R5
R6

Represented graph:

v1

v2v3

v4

v5v6
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Unit Square Visibility Graphs
All rectangles are unit squares (i. e., squares of size 1)

Class of unit square visibility graphs:
USV
USVw (weak representation)
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Background on Rectangle Visibility Graphs
bar-visibility graphs

I motivated by VLSI
I only planar graphs
I combinatorial properties well-understood
I recognition in linear time

rectangle visibility graphs
I motivated by two-layer routing (in VLSI)
I contains all planar graphs
I NP-hard recognition problem

unit square visibility graphs
I motivation: unbounded size of rectangles unrealistic
I characterisations of Cn, Kn, Kn,m and trees within USV exist.
I Hardness of recognition: settled in this paper

Additional motivation from graph drawing:
I good readability properties:

F only rectangular edge crossings,
F angles between adjacent edges are rectangular,
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Grid Case

Unit square grid visibility graphs (USGV, USGVw):
all coordinates of unit squares from N2

Layout:

R1 R2R3

R4 R5

R6

Graph:

v1 v2v3

v4 v5

v6
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Research Questions

Combinatorial properties: what kind of graphs can be represented
by unit square layouts?

Recognition problem: decide whether a given graph can be
represented by a unit square layout.



Research Questions

Combinatorial properties: what kind of graphs can be represented
by unit square layouts?

Recognition problem: decide whether a given graph can be
represented by a unit square layout.



Unit Square Grid Visibility Graphs
(USGV)



USGV – Simple Observations

USGV = USGVw.
(visibilities can be deleted by “stretching” the layout)

Rectilinear Drawing (RLG)
Vertices are N2 grid points,
edges are horizontal or vertical line segments
(edges do not intersect non-adjacent vertices).

USGV = RLG (all combinatorial results of RLG apply to USGV).
USGV ⊆ RLG: an USGV-layout is a RLG-drawing
USGV ⊇ RLG: vertex-points → squares, delete unwanted edges
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USGV – Simple Observations

USGV have maximum degree 4

USGV is downward closed w. r. t. subgraph-relation

USGV do not contain K1,5,K2,3 or K3 as subgraphs

USGV contains non-bipartite graphs (e. g., C5)
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USGV – Planarity
Call a layout planar iff no visibilities are crossing

G has planar layout ⇒ G is planar
There are planar G ∈ USGV that have no planar layout:
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USGV – Characterisations

USGV does not admit a characterisation by a finite number of
forbidden induced subgraphs.

Characterisations of cycles, complete graphs, complete bipartite
graphs and trees within USGV:

I Ci ∈ USGV ⇐⇒ i ≥ 4,
I Ki ∈ USGV ⇐⇒ i ≤ 2,
I Ki,j ∈ USGV, i ≤ j ⇐⇒ (i = 1 and j ≤ 4) or (i = 2 and j = 2).
I Tree T ∈ USGV ⇐⇒ T has maximum degree ≤ 4.
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USGV – Recognition Problem, Known Results

Recognition Problem:
Given graph G, does there exist a layout representing G?

NP-hard for RLG (so also for USGV).

LRDU-Restricted variant:
Given graph G and R : E → {L,R,D,U} (the LRDU-Restriction), does
there exist a layout representing G with
R({u, v}) = R⇒ unit square for v is to the right of unit square for u,
R({u, v}) = D⇒ unit square for v is below the unit square for u, etc. ?

Can be solved for RLG in O(|E| · |V |) (so also for USGV).
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USGV – Recognition Problem, Known Results

Area-minimisation variant:
Given graph G and w, h ∈ N, does there exist a layout representing G
with height h and width w?

NP-hard for RLG

remains hard if LRDU-restriction is added

Reduction does not work for USGV: transforming RLG drawing into
USGV layout requires more space.
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USGV – Recognition Problem

3-Partition
Input: B ∈ N, multiset A = {a1, a2, . . . , a3m} ⊆ N with B

4 < ai <
B
2

and
∑3m

i=1 ai = mB.
Question: ∃ partition A = A1, . . . , Am with

∑
a∈Aj

= B, 1 ≤ j ≤ m?

Reduction:

. . .

. . .

1 2 3 . . . ai

for every i, 1 ≤ i ≤ 3m

1 2 B

1

. . .

. . .

1 2 B
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USGV – Recognition Problem

ai1 = 3, ai2 = 5, ai3 = 3 and B = 11

. . .

. . .

. . .

. . .

G has a weak (7× (2(mB + m + 1)− 1)) unit square grid layout ⇐⇒
∃ partition A = A1, . . . , Am with

∑
a∈Aj

= B, 1 ≤ j ≤ m.
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USGV – Recognition Problem

Area minimisation recognition for USGVw is NP-hard

Furthermore:

Hardness remains if input graph is from USGVw given by a layout.
Hardness remains for the LRDU-restricted case.
Reduction serves as an easier reduction for the hardness of area
minimisation recognition for LRDU-restricted rectilinear graphs.

Area minimisation variant of LRDU-restricted Recognition Problem for
USGV still open!
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USV – Combinatorial Results

Some Examples:

K1,6 K2,6 K3,4 K4 K5 with
one missing

edge

Some simple observations:

Every graph with at most 4 vertices is in USV.
The degree of graphs in USV is not bounded ( )
Vertex has degree ≥ 7⇒ ∃ paths between some of its neighbours.
(However, K1,n may exist as induced subgraph for every n.)
USV ( USVw (seperated, e. g., by K1,7)
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USV - Recognition Problem

Recognition problem for USV is in NP.
I If G ∈ USV, then there is a n× n layout.
I No arbitrary small “shifting” between unit squares necessary.

Recognition problem for USV is NP-hard.
I Reduction from NAE-3SAT (not-all-equal 3-satisfiability).
I Sketch follows . . .
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USV - Recognition Problem, Sketch of Reduction
backbone:
c0 c1
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USV - Recognition Problem, Full Reduction

Formula:
{c1, c2, c3} with c1 = {x1, x̄2, x3}, c2 = {x1, x3, x̄4}, c3 = {x̄2, x3, x4}:
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USV - Recognition Problem, Full Reduction
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Further Research

Area minimisation variant of LRDU-restricted Recognition Problem
for USGV.

Recognition Problem for USVw.

Is inclusion “USGV ⊆ res-π2 -graphs” proper?

Practically more realistic: { `k | ` ∈ N}2 grid (with k treated as
parameter).
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