On the Complexity of Grammar-Based Compression over Fixed Alphabets

Katrin Casel¹, Henning Fernau¹, Serge Gaspers², Benjamin Gras³, Markus L. Schmid¹

¹ Trier University, Germany

² Data61, CSIRO, Australia

 3 École Normale Superieure de Lyon, France

ICALP 2016

Context-Free Grammars

```
G = (N, \Sigma, R, S), N \quad \text{set of } nonterminals, \Sigma \quad terminal \ alphabet, S \in N \quad start \ symbol, R \subseteq N \times (N \cup \Sigma)^+ \quad \text{set of rules } rules.
```

Context-Free Grammars

$$G = (N, \Sigma, R, S),$$

$$N \quad \text{set of } nonterminals,$$

$$\Sigma \quad terminal \ alphabet,$$

$$S \in N \quad start \ symbol,$$

$$R \subseteq N \times (N \cup \Sigma)^+ \quad \text{set of rules } rules.$$

G "straight-line program" (or simply grammar) $\Leftrightarrow |L(G)| = 1$

Context-Free Grammars

$$G = (N, \Sigma, R, S),$$

$$N \quad \text{set of } nonterminals,$$

$$\Sigma \quad terminal \ alphabet,$$

$$S \in N \quad start \ symbol,$$

$$R \subseteq N \times (N \cup \Sigma)^+ \quad \text{set of rules } rules.$$

$$G$$
 "straight-line program" (or simply grammar) $\Leftrightarrow |L(G)|=1$

$$|G| = \sum_{A \to \alpha \in R} |\alpha|$$

Grammar-Based Compression

General idea

Input: word w,

Output: grammar for w.

Grammar-Based Compression

General idea

Input: word w,

Output: grammar for w.

We may ask for

- a shortest grammar.
- a short grammar (but computed fast).
- a grammar that is shortest (short) among all grammars with
 - ightharpoonup only k non-terminals (i. e., only k rules),
 - ightharpoonup a derivations tree with at most k levels,
 - \triangleright rules that have right sides of size at most k,
 - **.** . . .

Algorithmics on Compressed Strings

Requirement for compression schemes:

- linear or near linear time compression and decompression,
- suitability for solving problems directly on the compressed data.
 ⇒ Algorithmics on compressed strings

Algorithmics on Compressed Strings

Requirement for compression schemes:

- linear or near linear time compression and decompression,
- suitability for solving problems directly on the compressed data.
 - \Rightarrow Algorithmics on compressed strings

Grammars

- cover many compression schemes from practice (e.g., Lempel-Ziv),
- are mathematically easy to handle,
- allow solving of basic problems (comparison, pattern matching, membership in a regular language, retrieving subwords) efficiently.

Algorithmics on Compressed Strings

Requirement for compression schemes:

- linear or near linear time compression and decompression,
- suitability for solving problems directly on the compressed data.
 ⇒ Algorithmics on compressed strings

Grammars

- cover many compression schemes from practice (e.g., Lempel-Ziv),
- are mathematically easy to handle,
- allow solving of basic problems (comparison, pattern matching, membership in a regular language, retrieving subwords) efficiently.

Grammar-based compression has

- applications in combinatorial group theory, comput. topology,
- \bullet been extended to more complicated objects, e.g., trees, 2D words.

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 \to 10$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 \to 10$$

$$A_2 \rightarrow A_10$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 \to 10$$

$$A_2 \to A_10$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 \to 10$$

$$A_2 \to A_10$$

$$A_2 \to A_10$$
$$A_3 \to A_20$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 \to 10$$

$$A_2 \to A_10$$

$$A_2 \rightarrow A_10$$

 $A_3 \rightarrow A_20$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 A_2 A_3 A_4 100000 1000000 10000000 100000000 \dots$$

$$A_1 \rightarrow 10$$
 $A_2 \rightarrow A_10$

$$A_2 \rightarrow A_10$$

$$A_3 \rightarrow A_20$$

$$A_4 \rightarrow A_3 0$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 A_2 A_3 A_4 100000 1000000 10000000 100000000 \dots$$

$$A_1 \rightarrow 10$$
 $A_2 \rightarrow A_10$

$$A_3 \to A_10$$
$$A_3 \to A_20$$

$$A_4 \rightarrow A_3 0$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 A_2 A_3 A_4 A_5 1000000 10000000 100000000 \dots$$

$$A_1 \rightarrow 10$$
 $A_2 \rightarrow A_10$

$$A_3 \rightarrow A_2 0$$

$$A_3 \rightarrow A_20$$

 $A_4 \rightarrow A_30$

$$A_4 \rightarrow A_30$$

$$A_5 \to A_4 0$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 A_2 A_3 A_4 A_5 1000000 10000000 100000000 \dots$$

$$A_1 \rightarrow 10$$
 $A_2 \rightarrow A_10$

$$A_2 \rightarrow A_{10}$$

 $A_3 \rightarrow A_{20}$

$$A_3 \rightarrow A_20$$

 $A_4 \rightarrow A_30$

$$A_5 \rightarrow A_40$$

$$A_5 \rightarrow A_40$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 A_2 A_3 A_4 A_5 1000000 10000000 100000000 \dots$$

$$A_1 \rightarrow 10$$
 $A_2 \rightarrow A_10$

$$A_3 \to A_2 0$$

$$A_4 \rightarrow A_30$$

$$A_5 \rightarrow A_4 0$$

$$\Rightarrow$$
 grammar G with $|G| = 3n - 1$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 \rightarrow 010$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$A_1 \rightarrow 010$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$1A_1A_1A_2A_2$$
000 1000000 10000000 100000000 ...

$$A_1 \rightarrow 010$$

$$A_2 \rightarrow 0A_10$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$1A_1A_1A_2A_2$$
000 1000000 10000000 100000000 ...

$$A_1 \rightarrow 010$$

$$A_2 \rightarrow 0A_10$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$1A_1A_1A_2A_2A_3A_30000100000000\dots$$

$$A_1 \rightarrow 010$$

$$A_2 \rightarrow 0A_10$$

 $A_3 \rightarrow 0A_20$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$1A_1A_1A_2A_2A_3A_300001000000000\dots$$

$$A_1 \rightarrow 010$$

$$A_2 \rightarrow 0A_10$$

$$A_3 \to 0 A_2 0$$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$1A_1A_1A_2A_2A_3A_30000100000000\dots$$

$$A_1 \rightarrow 010$$

$$A_2 \rightarrow 0A_10$$

$$A_3 \to 0A_20$$

$$\Rightarrow$$
 grammar G with $|G| = \frac{5n}{2} + 2k - 3$

$$w = \prod_{i=1}^{n} 10^{i}$$
, with $n = 2^{k}$.

$$1A_1A_1A_2A_2A_3A_30000100000000\dots$$

$$A_1 \rightarrow 010$$

 $A_2 \rightarrow 0A_10$

$$A_2 \rightarrow 0A_10$$

 $A_3 \rightarrow 0A_20$

$$\Rightarrow$$
 grammar G with $|G| = \frac{5n}{2} + 2k - 3$

Best grammar we found:
$$|G| = \frac{9n}{4} + 2k - 2$$

Derivation Trees

$$\begin{split} S &\to ABCAC \,, \\ A &\to B \mathbf{b} \,, \\ B &\to \mathbf{a}C \,, \\ C &\to \mathbf{a} \mathbf{b} \,. \end{split}$$

Derivation Trees

Derivation Trees

1-Level Grammars

$$\begin{split} S &\to ABCAC\,, \\ A &\to \mathtt{aabb}\,, \\ B &\to \mathtt{aab}\,, \\ C &\to \mathtt{ab}\,. \end{split}$$

1-Level Grammars

$$S
ightarrow ABCAC \, , \ A
ightarrow$$
 aabb $\, , \ B
ightarrow$ aab $\, , \ C
ightarrow$ ab $\, . \,$

Shortest Grammar Problem

SHORTEST GRAMMAR PROBLEM SGP

Instance: A word w and a $k \in \mathbb{N}$.

Question: \exists grammar G with $L(G) = \{w\}$ and $|G| \leq k$?

Shortest Grammar Problem

SHORTEST (1-LEVEL) GRAMMAR PROBLEM (1-)SGP

Instance: A word w and a $k \in \mathbb{N}$.

Question: \exists (1-level) grammar G with $L(G) = \{w\}$ and $|G| \leq k$?

• NP-complete (for unbounded alphabets).

- NP-complete (for unbounded alphabets).
- Many simple and fast approximation algorithms exist.

- NP-complete (for unbounded alphabets).
- Many simple and fast approximation algorithms exist.
- Best known approximation ratio is $\mathcal{O}(\log(\frac{|w|}{m^*}))$ (where m^* is the size of a smallest grammar).

- NP-complete (for unbounded alphabets).
- Many simple and fast approximation algorithms exist.
- Best known approximation ratio is $\mathcal{O}(\log(\frac{|w|}{m^*}))$ (where m^* is the size of a smallest grammar).
- No $\frac{8569}{8568} \approx 1.0001$ approximation ratio (assuming P \neq NP and for unbounded alphabets).

- NP-complete (for unbounded alphabets).
- Many simple and fast approximation algorithms exist.
- Best known approximation ratio is $\mathcal{O}(\log(\frac{|w|}{m^*}))$ (where m^* is the size of a smallest grammar).
- No $\frac{8569}{8568} \approx 1.0001$ approximation ratio (assuming P \neq NP and for unbounded alphabets).

 \Rightarrow

Solid theoretical foundation for approximations (or heuristics) missing.

NP-Completeness of the Shortest Grammar Problem

Theorem

 $1\text{-}\mathrm{SGP}\ is\ \mathsf{NP}\text{-}complete,\ even\ for\ alphabets\ of\ size\ 5.$

NP-Completeness of the Shortest Grammar Problem

Theorem

 $1\text{-}\mathrm{SGP}\ is\ \mathsf{NP}\text{-}complete,\ even\ for\ alphabets\ of\ size\ 5.$

Theorem

SGP is NP-complete, even for alphabets of size 24.

- Reduction from vertex cover (unbounded alphabets):
 - represent edges (v_i, v_j) as factors $\#v_i \#v_j \#$,
 - ▶ make sure that only $\#v_i$, $v_i\#$ or $\#v_i\#$ are compressed,
 - ▶ grammar is smallest if every $\#v_i\#v_j\#$ is compressed by a $A_i \to \#v_i\#$ or $A_j \to \#v_j\#$.

- Reduction from vertex cover (unbounded alphabets):
 - represent edges (v_i, v_j) as factors $\#v_i \#v_j \#$,
 - ▶ make sure that only $\#v_i$, $v_i\#$ or $\#v_i\#$ are compressed,
 - ▶ grammar is smallest if every $\#v_i\#v_j\#$ is compressed by a $A_i \to \#v_i\#$ or $A_j \to \#v_j\#$.
- Finite alphabet: Using symbols or constant size factors for representing vertices (edges) or as separators is not possible (⇒ some encoding needed!).

- Reduction from vertex cover (unbounded alphabets):
 - represent edges (v_i, v_j) as factors $\#v_i \#v_j \#$,
 - ▶ make sure that only $\#v_i$, $v_i\#$ or $\#v_i\#$ are compressed,
 - ▶ grammar is smallest if every $\#v_i\#v_j\#$ is compressed by a $A_i \to \#v_i\#$ or $A_j \to \#v_j\#$.
- Finite alphabet: Using symbols or constant size factors for representing vertices (edges) or as separators is not possible (\Rightarrow some encoding needed!).
- 1-level case: Using unary sequences as separators works!

 (in 1-level case, separators fully determine the compressed factors.)

- Reduction from vertex cover (unbounded alphabets):
 - represent edges (v_i, v_j) as factors $\#v_i \#v_j \#$,
 - ▶ make sure that only $\#v_i$, $v_i\#$ or $\#v_i\#$ are compressed,
 - ▶ grammar is smallest if every $\#v_i\#v_j\#$ is compressed by a $A_i \to \#v_i\#$ or $A_j \to \#v_j\#$.
- Finite alphabet: Using symbols or constant size factors for representing vertices (edges) or as separators is not possible (⇒ some encoding needed!).
- 1-level case: Using unary sequences as separators works!
 (in 1-level case, separators fully determine the compressed factors.)
- Multi-level case: We do not know how the encodings will be compressed by a shortest grammar (recall introductory example 10100100010000...).

Proof Ideas Multi-Level Case

• palindromic codewords: $u \star u^R, \star \in \Sigma, u$ is 7-ary number.

Proof Ideas Multi-Level Case

- palindromic codewords: $u \star u^R, \star \in \Sigma$, u is 7-ary number.
- Crucial properties:
 - ▶ overlapping between neighbouring codewords are not repeated
 ⇒ codewords are compressed individually.
 - ▶ codewords are produced best "from the middle": $A \rightarrow a \star a$, $B \rightarrow bAb$, $C \rightarrow cBc$,

Reduction

Graph $G \Rightarrow$ word uvw

Reduction

Graph $G \Rightarrow \text{word } uvw$

$$u = \prod_{j=0}^{6} \ \left(\prod_{i=1}^{14n} \left(\langle i \rangle_{\diamond} \ \langle M(i+j,14n) \rangle_{\mathbf{v}} \right) \right) \ \$_{1}$$

$$\begin{split} \mathbf{v} &= \prod_{i=1}^{n} \left(\# \ \langle 7\mathbf{i} + \mathbf{C_v}(\mathbf{i}) \rangle_\mathbf{v} \ \mathbb{c}_1 \ \langle 7\mathbf{i} - \mathbf{1} \rangle_\diamond \right) \ \mathbb{s}_2 \prod_{i=1}^{n} \left(\# \ \langle 7\mathbf{i} + \mathbf{C_v}(\mathbf{i}) \rangle_\mathbf{v} \ \mathbb{c}_2 \ \langle 7\mathbf{i} - \mathbf{2} \rangle_\diamond \right) \ \mathbb{s}_3 \\ &\prod_{i=1}^{n} \left(\langle 7\mathbf{i} + \mathbf{C_v}(\mathbf{i}) \rangle_\mathbf{v} \ \# \ \langle 7\mathbf{i} - \mathbf{2} \rangle_\diamond \ \mathbb{c}_1 \right) \ \mathbb{s}_4 \prod_{i=1}^{n} \left(\langle 7\mathbf{i} + \mathbf{C_v}(\mathbf{i}) \rangle_\mathbf{v} \ \# \ \langle 7\mathbf{i} - \mathbf{1} \rangle_\diamond \ \mathbb{c}_2 \right) \ \mathbb{s}_5 \\ &\prod_{i=1}^{n} \left(\# \ \langle 7\mathbf{i} + \mathbf{C_v}(\mathbf{i}) \rangle_\mathbf{v} \ \# \ \langle 7\mathbf{i} \rangle_\diamond \right) \ \mathbb{s}_6 \end{split}$$

$$\begin{split} \mathbf{w} &= \prod_{i=1}^{m-1} \ (\# \ \langle 7\mathbf{j}_{2i-1} + \mathbf{C_v}(\mathbf{j}_{2i-1}) \rangle_\mathbf{v} \ \# \ \langle 7\mathbf{j}_{2i} + \mathbf{C_v}(\mathbf{j}_{2i}) \rangle_\mathbf{v} \ \# \ \langle 7\mathbf{i} + \mathbf{C_e}(\mathbf{v_{j_{2i}}}, \mathbf{v_{j_{2i+1}}}) \rangle_\diamond) \\ & \# \ \langle 7\mathbf{j}_{2m-1} + \mathbf{C_v}(\mathbf{j}_{2m-1}) \rangle_\mathbf{v} \ \# \ \langle 7\mathbf{j}_{2m} + \mathbf{C_v}(\mathbf{j}_{2m}) \rangle_\mathbf{v} \ \# \end{split}$$

Bounded Number of Non-Terminals

Theorem

Let $w \in \Sigma^*$ and $k \in \mathbb{N}$,

- a grammar that is minimal among all grammars with at most k rules,
- a 1-level grammar that is minimal among all 1-level grammars with at most k rules

can be computed in polynomial time.

Bounded Number of Non-Terminals

General idea:

- Transform word w into an undirected graph G_w , such that
- independent dominating sets of G_w correspond to grammars for w.
- "Compute minimal independent dominating sets of G_w ".

$$(1,1) \qquad (2,2) \qquad (3,3) \qquad \cdots \qquad \cdots \qquad (9,9)$$

$$(1,2) \qquad (2,3) \qquad (3,4) \qquad \cdots \qquad (8,9)$$

$$(1,3) \qquad (2,4) \qquad \cdots \qquad (7,9)$$

$$\vdots \qquad \vdots \qquad \vdots$$

Theorem

Let $w \in \Sigma^*$ and $k \in \mathbb{N}$. A 1-level grammar for w with at most k rules that is minimal among all 1-level grammars for w with at most k rules can be computed in time $\mathcal{O}(|w|^{2k+4})$.

Theorem

Let $w \in \Sigma^*$ and $k \in \mathbb{N}$. A grammar for w with at most k rules that is minimal among all grammars for w with at most k rules can be computed in time $\mathcal{O}(|w|^{2k+6})$.

- Previous approach: $\mathcal{O}(2^{|w|^2})$.
- Enumerating all ordered trees with |w| leaves: $\mathcal{O}(8^{|w|})$.

- Previous approach: $\mathcal{O}(2^{|w|^2})$.
- Enumerating all ordered trees with |w| leaves: $\mathcal{O}(8^{|w|})$.

Theorem

Smallest 1-level grammars can be computed in time $\mathcal{O}^*(1.8392^{|w|})$.

Proof sketch: Enumerate all factorisations of w without consecutive factors of length 1.

Obvious dynamic programming approach for multi-level:

- Compute size of best k-level grammar,
- store "last level" (kth level??),
- compute size of best k + 1-level grammar by somehow extending the last level,
- again store "last level",
-

a a a b b a b a a a a a a b b a b

a a a b b a b a a a a a b b a b

${\bf Exact} \ {\bf Exponential-Time} \ {\bf Algorithms}$

A	B	aaa	A	B
aaabb	ab		aaabb	ab

Solution: More sophisticated definition of "levels". $N_i = \{A \in N \mid A \text{ yields terminal string in } i \text{ steps} \}.$

Solution: More sophisticated definition of "levels". $N_i = \{A \in N \mid A \text{ yields terminal string in } i \text{ steps} \}.$

Solution: More sophisticated definition of "levels". $N_i = \{A \in N \mid A \text{ yields terminal string in } i \text{ steps} \}.$

$$N_1=\{B,D\},\,N_2=\{A\},\,N_3=\{C\},$$

Solution: More sophisticated definition of "levels". $N_i = \{A \in N \mid A \text{ yields terminal string in } i \text{ steps} \}.$

$$N_1 = \{B, D\}, N_2 = \{A\}, N_3 = \{C\},$$

 1^{st} level: compressed string, 2^{nd} level: derive all N_k in 1^{st} level, 3^{rd} level: derive all N_{k-1} in 2^{nd} level,

. . .

Solution: More sophisticated definition of "levels". $N_i = \{A \in N \mid A \text{ yields terminal string in } i \text{ steps} \}.$

$$N_1 = \{B, D\}, N_2 = \{A\}, N_3 = \{C\},$$

 1^{st} level: compressed string, 2^{nd} level: derive all N_k in 1^{st} level, 3^{rd} level: derive all N_{k-1} in 2^{nd} level,

. .

CDC

Solution: More sophisticated definition of "levels". $N_i = \{A \in N \mid A \text{ yields terminal string in } i \text{ steps} \}.$

$$N_1 = \{B, D\}, N_2 = \{A\}, N_3 = \{C\},$$

 1^{st} level: compressed string, 2^{nd} level: derive all N_k in 1^{st} level, 3^{rd} level: derive all N_{k-1} in 2^{nd} level,

CDC ABDAB

. . .

Solution: More sophisticated definition of "levels". $N_i = \{A \in N \mid A \text{ yields terminal string in } i \text{ steps} \}.$

$$N_1 = \{B, D\}, N_2 = \{A\}, N_3 = \{C\},$$

 1^{st} level: compressed string, 2^{nd} level: derive all N_k in 1^{st} level, 3^{rd} level: derive all N_{k-1} in 2^{nd} level,

 $CDC \ ABDAB \ D$ bbBDDbbB

. . .

Solution: More sophisticated definition of "levels". $N_i = \{A \in N \mid A \text{ yields terminal string in } i \text{ steps} \}.$

$$N_1 = \{B, D\}, N_2 = \{A\}, N_3 = \{C\},\$$

 1^{st} level: compressed string, 2^{nd} level: derive all N_k in 1^{st} level, 3^{rd} level: derive all N_{k-1} in 2^{nd} level,

 $D {\tt bb} B D D {\tt bb} B$ aaabbabaaaaaabbab

CDC

ABDAB

 $k^{
m th}$ ABaCbCBa

 $w_1w_2\ldots w_8$

 $k^{\rm th}$ ABaCbCBa $w_1w_2\dots w_8$ $(k+1)^{\rm th}$ ABaDbAbDbABa $w_1\dots w_{4,1}w_{4,2}w_{4,3}\dots w_{6,1}w_{6,2}w_{6,3}\dots w_8$

 $k^{ ext{th}}$ ABaCbCBa $w_1w_2\dots w_8$ $(k+1)^{ ext{th}}$ ABaDbAbDbABa $w_1\dots w_{4,1}w_{4,2}w_{4,3}\dots w_{6,1}w_{6,2}w_{6,3}\dots w_8$

$$k^{ ext{th}}$$
 $ABaCbCBa$ $w_1w_2\dots w_8$ $(k+1)^{ ext{th}}$ $ABaDbAbDbABa$ $w_1\dots w_{4,1}w_{4,2}w_{4,3}\dots w_{6,1}w_{6,2}w_{6,3}\dots w_8$

Sufficient local information:

Size of smallest k-level grammar

$$u$$
 ... v ... u ... v $(u_1 \dots u_m)$... $(v_1 \dots v_\ell)$... $(u_1 \dots u_m)$... $(v_1 \dots v_\ell)$

$$k^{ ext{th}}$$
 $ABaCbCBa$ $w_1w_2\dots w_8$ $(k+1)^{ ext{th}}$ $ABaDbAbDbABa$ $w_1\dots w_{4,1}w_{4,2}w_{4,3}\dots w_{6,1}w_{6,2}w_{6,3}\dots w_8$

Sufficient local information:

Size of smallest k-level grammar

$$u$$
 ... v ... u ... v $(u_1 \dots u_m)$... $(v_1 \dots v_\ell)$... $(u_1 \dots u_m)$... $(v_1 \dots v_\ell)$

Theorem

Smallest grammars can be computed in time $\mathcal{O}^*(3^{|w|})$.

Thank you very much for your attention