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Grammar-Based Compression

General idea
Input: word w,
Output: grammar for w.

We may ask for
@ a shortest grammar.

e a short grammar (but computed fast).

e a grammar that is shortest (short) among all grammars with
» only & non-terminals (i.e., only k rules),
» a derivations tree with at most & levels,
» rules that have right sides of size at most k,
>
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Algorithmics on Compressed Strings

Requirement for compression schemes:
@ linear or near linear time compression and decompression,

@ suitability for solving problems directly on the compressed data.
= Algorithmics on compressed strings

Grammars
e cover many compression schemes from practice (e. g., Lempel-Ziv),
e are mathematically easy to handle,

e allow solving of basic problems (comparison, pattern matching,
membership in a regular language, retrieving subwords) efficiently.

Grammar-based compression has
e applications in combinatorial group theory, comput. topology,

@ been extended to more complicated objects, e. g., trees, 2D words.
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Examples (1/2)

w = [, 10, with n = 2*.

Ay Ag A3 Ay A5 1000000 10000000 100000000 . . .

A1 — 10

A2 — A10
A3 — AQO
A4 — A30
A5 — A40

= grammar G with |G| =3n —1
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Examples (2/2)

w = [, 10, with n = 2.

1A; A1 A3 A2 A3A30000 100000000 . . .
Al — 010

A2 — 0A10

A3 — OA20

= grammar G with |G| = 2 4+ 2k — 3

Best grammar we found: |G| = 2 4 2k — 2
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1-Level Grammars

aabb

S — ABCAC,

A — aabb,

B — aab,

C — ab.
B C A C
aab ab aabb ab
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Shortest Grammar Problem

SHORTEST (1-LEVEL) GRAMMAR PROBLEM (1—)SGP

Instance: A word w and a k € N.
Question: 3 (1-level) grammar G with L(G) = {w} and |G| < k?
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Known Complexity Results

NP-complete (for unbounded alphabets).

e Many simple and fast approximation algorithms exist.
|w]
m*

@ Best known approximation ratio is O(log(+=)) (where m* is the

size of a smallest grammar).

No % ~ 1.0001 approximation ratio (assuming P # NP and for
unbounded alphabets).

=
Solid theoretical foundation for approximations (or heuristics) missing.
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Theorem
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Theorem
SGP s NP-complete, even for alphabets of size 24.
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Proof Ideas

e Reduction from vertex cover (unbounded alphabets):
» represent edges (v;,v;) as factors #uv;#v,#,
» make sure that only #wv;, v;# or #wv;# are compressed,
» grammar is smallest if every #v;#v;# is compressed by a

Ai — #U,# or Aj — #Uj#.

e Finite alphabet: Using symbols or constant size factors for
representing vertices (edges) or as separators is not possible (=
some encoding needed!).

o 1-level case: Using unary sequences as separators works!

(in 1-level case, separators fully determine the compressed factors.)

e Multi-level case: We do not know how the encodings will be
compressed by a shortest grammar (recall introductory example
10100100010000. . .).
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Proof Ideas Multi-Level Case

R

e palindromic codewords: ux u'", * € X, u is 7T-ary number.

e Crucial properties:

» overlapping between neighbouring codewords are not repeated
= codewords are compressed individually.

» codewords are produced best “from the middle”: A — a*a,
B — bAb, C = cBec, .. ..
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Bounded Number of Non-Terminals

Theorem
Let w e X* and k € N,

o a grammar that is minimal among all grammars with at most k
rules,

o a 1-level grammar that is minimal among all 1-level grammars with
at most k rules

can be computed in polynomial time.




Bounded Number of Non-Terminals

General idea:

e Transform word w into an undirected graph G,,, such that
e independent dominating sets of G, correspond to grammars for w.

e “Compute minimal independent dominating sets of G,,”.
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Theorem

Let w € ¥* and k € N. A 1-level grammar for w with at most k rules

that s minimal among all 1-level grammars for w with at most k rules
can be computed in time O(|w|*+4).

Theorem

Let w € ¥* and k € N. A grammar for w with at most k rules that is
minimal among all grammars for w with at most k rules can be
computed in time O(|w|?$*6).
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Exact Exponential-Time Algorithms

e Previous approach: O(2/v).

o Enumerating all ordered trees with |w| leaves: O(8l*!).

Theorem

Smallest 1-level grammars can be computed in time O*(1.83921V1).

Proof sketch: Enumerate all factorisations of w without consecutive
factors of length 1.



Exact Exponential-Time Algorithms

Obvious dynamic programming approach for multi-level:
e Compute size of best k-level grammar,
e store “last level” (kth level??),

e compute size of best k + 1-level grammar by somehow extending
the last level,

again store “last level”,



Exact Exponential-Time Algorithms

aaabbabaaaaaabbab



Exact Exponential-Time Algorithms

aaabbabaaaaaabbab



Exact Exponential-Time Algorithms

A B aaa A B

aaabb ab aaabb ab



Exact Exponential-Time Algorithms

A B aaa A B

aaabb ab aaabb ab



Exact Exponential-Time Algorithms

C aaa C

aaabb ab aaabb ab



Exact Exponential-Time Algorithms

C aaa C

aaabb ab aaabb ab



Exact Exponential-Time Algorithms

C aaa C
/N RN
A B A B
/N | /N |
a Bb ab a B b ab



Exact Exponential-Time Algorithms

C aaa C

aaabb ab aaabb ab



Exact Exponential-Time Algorithms

C aaa C

aaabb ab aaabb ab



Exact Exponential-Time Algorithms

C D C
VRN | VRN
A B aaa A B
/\ | /\ |
D bb ab D bb ab

aaa aaa
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Exact Exponential-Time Algorithms

Solution: More sophisticated definition of “levels”.
N; = {A € N | A yields terminal string in i steps}.

C D C
VRN | RN
A B aaa A B
/ N\ | /\ |
D bb ab D bb ab
az‘ia ae‘ia

N ={B,D}, N; = {A}, N3 ={C},

15 level: compressed string,
2nd Jevel: derive all Ny, in 15 level,
3" level: derive all Nj_; in 29 level,

CDC
ABDAB
DbbBDDbbB



Exact Exponential-Time Algorithms
Solution: More sophisticated definition of “levels”.

N; = {A € N | A yields terminal string in ¢ steps}.

C D C
/N | /N
A B aaa A B
/ /
D

D bb ab bb ab
\ \

aaa aaa

Ny ={B,D}, Ny = {A}, N3 ={C},

15 level: compressed string, CcDC
2nd Jevel: derive all Ny, in 15 level, ABDAB
3'd Jevel: derive all Nj_; in 2" level, DbbBDDbbB

aaabbabaaaaaabbab
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Dynamic Programming Algorithm

k't ABaCb(C Ba wWiws . .. Wy
(k‘ + 1)th ABaDbAbDbABa w;... Wy, W4 2W4 3 - . . We,1 W6 2WE3 - - - WS

Sufficient local information:

Size of smallest k-level grammar

u ceo W e ce W
(U ... ) oo (U1.oovg) oo (UreecUm) oo (V1...vp)
Theorem

Smallest grammars can be computed in time O*(31V1).




Thank you very much for your attention



