On the Complexity of Grammar-Based Compression over Fixed Alphabets

Katrin Casel ${ }^{1}$, Henning Fernau ${ }^{1}$, Serge Gaspers ${ }^{2}$, Benjamin Gras ${ }^{3}$, Markus L. Schmid ${ }^{1}$

${ }^{1}$ Trier University, Germany
${ }^{2}$ Data61, CSIRO, Australia
${ }^{3}$ École Normale Superieure de Lyon, France

ICALP 2016

Context-Free Grammars

$$
G=(N, \Sigma, R, S),
$$

N set of nonterminals,
Σ terminal alphabet,

$$
S \in N \quad \text { start symbol, }
$$

$$
R \subseteq N \times(N \cup \Sigma)^{+} \quad \text { set of rules rules. }
$$

Context-Free Grammars

$$
G=(N, \Sigma, R, S),
$$

$$
\begin{aligned}
& \text { set of nonterminals, } \\
\Sigma & \text { terminal alphabet, } \\
S \in N & \text { start symbol, } \\
R \subseteq N \times(N \cup \Sigma)^{+} & \text {set of rules rules. }
\end{aligned}
$$

G "straight-line program" (or simply grammar) $\Leftrightarrow|L(G)|=1$

Context-Free Grammars

$$
G=(N, \Sigma, R, S),
$$

N set of nonterminals,
Σ terminal alphabet, $S \in N$ start symbol, $R \subseteq N \times(N \cup \Sigma)^{+} \quad$ set of rules rules.
G "straight-line program" (or simply grammar) $\Leftrightarrow|L(G)|=1$

$$
|G|=\sum_{A \rightarrow \alpha \in R}|\alpha|
$$

Grammar-Based Compression

General idea

Input: word w,
Output: grammar for w.

Grammar-Based Compression

General idea

Input: word w, Output: grammar for w.

We may ask for

- a shortest grammar.
- a short grammar (but computed fast).
- a grammar that is shortest (short) among all grammars with
- only k non-terminals (i.e., only k rules),
- a derivations tree with at most k levels,
- rules that have right sides of size at most k,

Algorithmics on Compressed Strings

Requirement for compression schemes:

- linear or near linear time compression and decompression,
- suitability for solving problems directly on the compressed data. \Rightarrow Algorithmics on compressed strings

Algorithmics on Compressed Strings

Requirement for compression schemes:

- linear or near linear time compression and decompression,
- suitability for solving problems directly on the compressed data. \Rightarrow Algorithmics on compressed strings

Grammars

- cover many compression schemes from practice (e.g., Lempel-Ziv),
- are mathematically easy to handle,
- allow solving of basic problems (comparison, pattern matching, membership in a regular language, retrieving subwords) efficiently.

Algorithmics on Compressed Strings

Requirement for compression schemes:

- linear or near linear time compression and decompression,
- suitability for solving problems directly on the compressed data. \Rightarrow Algorithmics on compressed strings

Grammars

- cover many compression schemes from practice (e.g., Lempel-Ziv),
- are mathematically easy to handle,
- allow solving of basic problems (comparison, pattern matching, membership in a regular language, retrieving subwords) efficiently.

Grammar-based compression has

- applications in combinatorial group theory, comput. topology,
- been extended to more complicated objects, e. g., trees, $2 D$ words.

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$10100100010000100000100000010000000100000000 \ldots$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
10100100010000100000100000010000000100000000 ...

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} 100100010000100000100000010000000100000000$... $A_{1} \rightarrow 10$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} 100100010000100000100000010000000100000000$... $A_{1} \rightarrow 10$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} A_{2} 100010000100000100000010000000100000000 \ldots$
$A_{1} \rightarrow 10$
$A_{2} \rightarrow A_{1} 0$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} A_{2} 100010000100000100000010000000100000000 \ldots$
$A_{1} \rightarrow 10$
$A_{2} \rightarrow A_{1} 0$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} A_{2} A_{3} 10000100000100000010000000100000000 \ldots$
$A_{1} \rightarrow 10$
$A_{2} \rightarrow A_{1} 0$
$A_{3} \rightarrow A_{2} 0$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} A_{2} A_{3} 10000100000100000010000000100000000 \ldots$
$A_{1} \rightarrow 10$
$A_{2} \rightarrow A_{1} 0$
$A_{3} \rightarrow A_{2} 0$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} A_{2} A_{3} A_{4} 100000100000010000000100000000 \ldots$

$$
A_{1} \rightarrow 10
$$

$$
A_{2} \rightarrow A_{1} 0
$$

$$
A_{3} \rightarrow A_{2} 0
$$

$$
A_{4} \rightarrow A_{3} 0
$$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} A_{2} A_{3} A_{4} 100000100000010000000100000000 \ldots$

$$
A_{1} \rightarrow 10
$$

$$
A_{2} \rightarrow A_{1} 0
$$

$$
A_{3} \rightarrow A_{2} 0
$$

$$
A_{4} \rightarrow A_{3} 0
$$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} A_{2} A_{3} A_{4} A_{5} 100000010000000100000000 \ldots$

$$
A_{1} \rightarrow 10
$$

$$
A_{2} \rightarrow A_{1} 0
$$

$$
A_{3} \rightarrow A_{2} 0
$$

$$
A_{4} \rightarrow A_{3} 0
$$

$$
A_{5} \rightarrow A_{4} 0
$$

Examples (1/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$A_{1} A_{2} A_{3} A_{4} A_{5} 100000010000000100000000 \ldots$

$$
A_{1} \rightarrow 10
$$

$$
A_{2} \rightarrow A_{1} 0
$$

$$
A_{3} \rightarrow A_{2} 0
$$

$$
A_{4} \rightarrow A_{3} 0
$$

$$
A_{5} \rightarrow A_{4} 0
$$

Examples (1/2)

$$
w=\prod_{i=1}^{n} 10^{i}, \text { with } n=2^{k} .
$$

$A_{1} A_{2} A_{3} A_{4} A_{5} 100000010000000100000000 \ldots$

$$
A_{1} \rightarrow 10
$$

$$
A_{2} \rightarrow A_{1} 0
$$

$$
A_{3} \rightarrow A_{2} 0
$$

$$
A_{4} \rightarrow A_{3} 0
$$

$$
A_{5} \rightarrow A_{4} 0
$$

\Rightarrow grammar G with $|G|=3 n-1$

Examples (2/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
10100100010000100000100000010000000100000000 ...

Examples (2/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
10100100010000100000100000010000000100000000 ...

Examples (2/2)

$$
w=\prod_{i=1}^{n} 10^{i} \text {, with } n=2^{k} .
$$

$1 A_{1} A_{1} 0010000100000100000010000000100000000 \ldots$ $A_{1} \rightarrow 010$

Examples (2/2)

$w=\prod_{i=1}^{n} 10^{i}$, with $n=2^{k}$.
$1 A_{1} A_{1} 0010000100000100000010000000100000000 \ldots$ $A_{1} \rightarrow 010$

Examples (2/2)

$$
\begin{aligned}
& w=\prod_{i=1}^{n} 10^{i}, \text { with } n=2^{k} . \\
& 1 A_{1} A_{1} A_{2} A_{2} 000100000010000000100000000 \ldots \\
& A_{1} \rightarrow 010 \\
& A_{2} \rightarrow 0 A_{1} 0
\end{aligned}
$$

Examples (2/2)

$$
\begin{aligned}
& w=\prod_{i=1}^{n} 10^{i}, \text { with } n=2^{k} . \\
& 1 A_{1} A_{1} A_{2} A_{2} 0001000000100000001000000000 \ldots \\
& A_{1} \rightarrow 010 \\
& A_{2} \rightarrow 0 A_{1} 0
\end{aligned}
$$

Examples (2/2)

$$
w=\prod_{i=1}^{n} 10^{i} \text {, with } n=2^{k} .
$$

$1 A_{1} A_{1} A_{2} A_{2} A_{3} A_{3} 0000100000000 \ldots$
$A_{1} \rightarrow 010$
$A_{2} \rightarrow 0 A_{1} 0$
$A_{3} \rightarrow 0 A_{2} 0$

Examples (2/2)

$$
w=\prod_{i=1}^{n} 10^{i} \text {, with } n=2^{k} .
$$

$1 A_{1} A_{1} A_{2} A_{2} A_{3} A_{3} 0000100000000 \ldots$
$A_{1} \rightarrow 010$
$A_{2} \rightarrow 0 A_{1} 0$
$A_{3} \rightarrow 0 A_{2} 0$

Examples (2/2)

$$
\begin{aligned}
& w=\prod_{i=1}^{n} 10^{i}, \text { with } n=2^{k} . \\
& 1 A_{1} A_{1} A_{2} A_{2} A_{3} A_{3} 0000100000000 \ldots \\
& A_{1} \rightarrow 010 \\
& A_{2} \rightarrow 0 A_{1} 0 \\
& A_{3} \rightarrow 0 A_{2} 0 \\
& \ldots \\
& \Rightarrow \text { grammar } G \text { with }|G|=\frac{5 n}{2}+2 k-3
\end{aligned}
$$

Examples (2/2)

$$
\begin{aligned}
& w=\prod_{i=1}^{n} 10^{i}, \text { with } n=2^{k} . \\
& 1 A_{1} A_{1} A_{2} A_{2} A_{3} A_{3} 0000100000000 \ldots \\
& A_{1} \rightarrow 010 \\
& A_{2} \rightarrow 0 A_{1} 0 \\
& A_{3} \rightarrow 0 A_{2} 0 \\
& \ldots \\
& \Rightarrow \text { grammar } G \text { with }|G|=\frac{5 n}{2}+2 k-3
\end{aligned}
$$

Best grammar we found: $|G|=\frac{9 n}{4}+2 k-2$

Derivation Trees

$$
\begin{aligned}
& S \rightarrow A B C A C, \\
& A \rightarrow B \mathrm{~b} \\
& B \rightarrow \mathrm{aC}, \\
& C \rightarrow \mathrm{ab}
\end{aligned}
$$

Derivation Trees

Derivation Trees

$$
\begin{aligned}
& S \rightarrow A B C A C, \\
& A \rightarrow B \mathrm{~b} \\
& B \rightarrow \mathrm{aC} \\
& C \rightarrow \mathrm{ab}
\end{aligned}
$$

1-Level Grammars

$$
\begin{aligned}
& S \rightarrow A B C A C, \\
& A \rightarrow \text { aabb } \\
& B \rightarrow \text { aab } \\
& C \rightarrow \mathrm{ab}
\end{aligned}
$$

1-Level Grammars

$$
\begin{aligned}
& S \rightarrow A B C A C, \\
& A \rightarrow \text { aabb } \\
& B \rightarrow \text { aab } \\
& C \rightarrow \mathrm{ab}
\end{aligned}
$$

Shortest Grammar Problem

Shortest Grammar Problem SGP

Instance: A word w and a $k \in \mathbb{N}$.
Question: \exists grammar G with $L(G)=\{w\}$ and $|G| \leq k$?

Shortest Grammar Problem

Shortest (1-Level) Grammar Problem (1-)SGP

Instance: A word w and a $k \in \mathbb{N}$.
Question: \exists (1-level) grammar G with $L(G)=\{w\}$ and $|G| \leq k$?

Known Complexity Results

- NP-complete (for unbounded alphabets).

Known Complexity Results

- NP-complete (for unbounded alphabets).
- Many simple and fast approximation algorithms exist.

Known Complexity Results

- NP-complete (for unbounded alphabets).
- Many simple and fast approximation algorithms exist.
- Best known approximation ratio is $\mathcal{O}\left(\log \left(\frac{|w|}{m^{*}}\right)\right)$ (where m^{*} is the size of a smallest grammar).

Known Complexity Results

- NP-complete (for unbounded alphabets).
- Many simple and fast approximation algorithms exist.
- Best known approximation ratio is $\mathcal{O}\left(\log \left(\frac{|w|}{m^{*}}\right)\right.$) (where m^{*} is the size of a smallest grammar).
- No $\frac{8569}{8568} \approx 1.0001$ approximation ratio (assuming $\mathrm{P} \neq \mathrm{NP}$ and for unbounded alphabets).

Known Complexity Results

- NP-complete (for unbounded alphabets).
- Many simple and fast approximation algorithms exist.
- Best known approximation ratio is $\mathcal{O}\left(\log \left(\frac{|w|}{m^{*}}\right)\right)$ (where m^{*} is the size of a smallest grammar).
- No $\frac{8569}{8568} \approx 1.0001$ approximation ratio (assuming $\mathrm{P} \neq \mathrm{NP}$ and for unbounded alphabets).
\Rightarrow
Solid theoretical foundation for approximations (or heuristics) missing.

NP-Completeness of the Shortest Grammar Problem

Theorem
1-SGP is NP-complete, even for alphabets of size 5.

NP-Completeness of the Shortest Grammar Problem

Theorem

1-SGP is NP-complete, even for alphabets of size 5.

Theorem
SGP is NP-complete, even for alphabets of size 24.

Proof Ideas

- Reduction from vertex cover (unbounded alphabets):
- represent edges $\left(v_{i}, v_{j}\right)$ as factors $\# v_{i} \# v_{j} \#$,
- make sure that only $\# v_{i}, v_{i} \#$ or $\# v_{i} \#$ are compressed,
- grammar is smallest if every $\# v_{i} \# v_{j} \#$ is compressed by a $A_{i} \rightarrow \# v_{i} \#$ or $A_{j} \rightarrow \# v_{j} \#$.

Proof Ideas

- Reduction from vertex cover (unbounded alphabets):
- represent edges $\left(v_{i}, v_{j}\right)$ as factors $\# v_{i} \# v_{j} \#$,
- make sure that only $\# v_{i}, v_{i} \#$ or $\# v_{i} \#$ are compressed,
- grammar is smallest if every $\# v_{i} \# v_{j} \#$ is compressed by a $A_{i} \rightarrow \# v_{i} \#$ or $A_{j} \rightarrow \# v_{j} \#$.
- Finite alphabet: Using symbols or constant size factors for representing vertices (edges) or as separators is not possible $(\Rightarrow$ some encoding needed!).

Proof Ideas

- Reduction from vertex cover (unbounded alphabets):
- represent edges $\left(v_{i}, v_{j}\right)$ as factors $\# v_{i} \# v_{j} \#$,
- make sure that only $\# v_{i}, v_{i} \#$ or $\# v_{i} \#$ are compressed,
- grammar is smallest if every $\# v_{i} \# v_{j} \#$ is compressed by a $A_{i} \rightarrow \# v_{i} \#$ or $A_{j} \rightarrow \# v_{j} \#$.
- Finite alphabet: Using symbols or constant size factors for representing vertices (edges) or as separators is not possible $(\Rightarrow$ some encoding needed!).
- 1-level case: Using unary sequences as separators works! (in 1-level case, separators fully determine the compressed factors.)

Proof Ideas

- Reduction from vertex cover (unbounded alphabets):
- represent edges $\left(v_{i}, v_{j}\right)$ as factors $\# v_{i} \# v_{j} \#$,
- make sure that only $\# v_{i}, v_{i} \#$ or $\# v_{i} \#$ are compressed,
- grammar is smallest if every $\# v_{i} \# v_{j} \#$ is compressed by a $A_{i} \rightarrow \# v_{i} \#$ or $A_{j} \rightarrow \# v_{j} \#$.
- Finite alphabet: Using symbols or constant size factors for representing vertices (edges) or as separators is not possible $(\Rightarrow$ some encoding needed!).
- 1-level case: Using unary sequences as separators works! (in 1-level case, separators fully determine the compressed factors.)
- Multi-level case: We do not know how the encodings will be compressed by a shortest grammar (recall introductory example $10100100010000 \ldots$...).

Proof Ideas Multi-Level Case

- palindromic codewords: $u \star u^{R}, \star \in \Sigma, u$ is 7 -ary number.

Proof Ideas Multi-Level Case

- palindromic codewords: $u \star u^{R}, \star \in \Sigma, u$ is 7 -ary number.
- Crucial properties:
- overlapping between neighbouring codewords are not repeated \Rightarrow codewords are compressed individually.
- codewords are produced best "from the middle": $A \rightarrow a \star a$, $B \rightarrow b A b, C \rightarrow c B c, \ldots$.

Reduction

Graph $G \Rightarrow$ word uvw

Reduction

Graph $G \Rightarrow$ word uvw

$$
\begin{aligned}
& \mathbf{u}=\prod_{\mathbf{j}=\mathbf{0}}^{\mathbf{6}}\left(\prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{1 4 n}}\left(\langle\mathbf{i}\rangle_{\diamond}\langle\mathbf{M}(\mathbf{i}+\mathbf{j}, \mathbf{1 4 n})\rangle_{\mathbf{v}}\right)\right) \$_{1} \\
& \mathbf{v}=\prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}}\left(\#\left\langle\mathbf{7} \mathbf{i}+\mathbf{C}_{\mathbf{v}}(\mathbf{i})\right\rangle_{\mathbf{v}} \mathbb{C}_{1}\langle\mathbf{7} \mathbf{i}-\mathbf{1}\rangle_{\diamond}\right) \$_{2} \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}}\left(\#\left\langle\mathbf{7} \mathbf{i}+\mathbf{C}_{\mathbf{v}}(\mathbf{i})\right\rangle_{\mathbf{v}} \mathbb{C}_{2}\langle\mathbf{7 i}-\mathbf{2}\rangle_{\diamond}\right) \$_{\mathbf{3}} \\
& \prod_{\mathbf{i}=1}^{\mathbf{n}}\left(\left\langle\mathbf{i}+\mathbf{C}_{\mathbf{v}}(\mathbf{i})\right\rangle_{\mathbf{v}} \#\langle\mathbf{i}-\mathbf{2}\rangle_{\diamond} \mathscr{C}_{1}\right) \$_{4} \prod_{\mathbf{i}=1}^{\mathbf{n}}\left(\left\langle\mathbf{i}+\mathbf{C}_{\mathbf{v}}(\mathbf{i})\right\rangle_{\mathbf{v}} \#\langle 7 \mathbf{i}-\mathbf{1}\rangle_{\diamond} \mathbb{C}_{2}\right) \$_{5} \\
& \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}}\left(\#\left\langle\mathbf{7} \mathbf{i}+\mathbf{C}_{\mathbf{v}}(\mathbf{i})\right\rangle_{\mathbf{v}} \#\langle\mathbf{7}\rangle_{\diamond}\right) \$_{6} \\
& \mathbf{w}=\prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{m}-\mathbf{1}}\left(\#\left\langle\mathbf{7} \mathbf{j}_{\mathbf{2 i}-\mathbf{1}}+\mathbf{C}_{\mathbf{v}}\left(\mathbf{j}_{2 \mathbf{i}-\mathbf{1}}\right)\right\rangle_{\mathbf{v}} \#\left\langle\mathbf{7} \mathbf{j}_{2 \mathbf{i}}+\mathbf{C}_{\mathbf{v}}\left(\mathbf{j}_{\mathbf{2} \mathbf{i}}\right)\right\rangle_{\mathbf{v}} \#\left\langle\mathbf{7} \mathbf{i}+\mathbf{C}_{\mathbf{e}}\left(\mathbf{v}_{\mathbf{j}_{2 \mathbf{i}}}, \mathbf{v}_{\mathbf{j}_{2 \mathbf{i}+1}}\right)\right\rangle_{\diamond}\right) \\
& \#\left\langle\mathbf{7} \mathbf{j}_{2 \mathrm{~m}-\mathbf{1}}+\mathbf{C}_{\mathbf{v}}\left(\mathbf{j}_{2 \mathrm{~m}-\mathbf{1}}\right)\right\rangle_{\mathbf{v}} \#\left\langle\mathbf{7} \mathbf{j}_{2 \mathrm{~m}}+\mathbf{C}_{\mathbf{v}}\left(\mathbf{j}_{2 \mathrm{~m}}\right)\right\rangle_{\mathbf{v}} \#
\end{aligned}
$$

Bounded Number of Non-Terminals

```
Theorem
Let \(w \in \Sigma^{*}\) and \(k \in \mathbb{N}\),
- a grammar that is minimal among all grammars with at most \(k\) rules,
- a 1-level grammar that is minimal among all 1-level grammars with at most \(k\) rules
can be computed in polynomial time.
```


Bounded Number of Non-Terminals

General idea:

- Transform word w into an undirected graph G_{w}, such that
- independent dominating sets of G_{w} correspond to grammars for w.
- "Compute minimal independent dominating sets of G_{w} ".

Bounded Number of Non-Terminals 1-Level Case

$$
w=a b b a b a b a b
$$

Bounded Number of Non-Terminals 1-Level Case

$$
w=a b b a b a b a b
$$

Bounded Number of Non-Terminals 1-Level Case

$$
w=a b b a b a b a b
$$

Bounded Number of Non-Terminals 1-Level Case

$$
w=a b b a b a b a b
$$

$0000 \cdots$

Bounded Number of Non-Terminals 1-Level Case

$$
w=a b b a b a b a b
$$

000
000
0000
$0000 \cdots$

Bounded Number of Non-Terminals 1-Level Case

$$
w=a b b a b a b a b
$$

Bounded Number of Non-Terminals 1-Level Case

$$
w=a b b a b a b a b
$$

Bounded Number of Non-Terminals Multi-Level Case

Bounded Number of Non-Terminals Multi-Level Case

Theorem

Let $w \in \Sigma^{*}$ and $k \in \mathbb{N}$. A 1-level grammar for w with at most k rules that is minimal among all 1-level grammars for w with at most k rules can be computed in time $\mathcal{O}\left(|w|^{2 k+4}\right)$.

Theorem

Let $w \in \Sigma^{*}$ and $k \in \mathbb{N}$. A grammar for w with at most k rules that is minimal among all grammars for w with at most k rules can be computed in time $\mathcal{O}\left(|w|^{2 k+6}\right)$.

Exact Exponential-Time Algorithms

- Previous approach: $\mathcal{O}\left(2^{|w|^{2}}\right)$.
- Enumerating all ordered trees with $|w|$ leaves: $\mathcal{O}\left(8^{|w|}\right)$.

Exact Exponential-Time Algorithms

- Previous approach: $\mathcal{O}\left(2^{|w|^{2}}\right)$.
- Enumerating all ordered trees with $|w|$ leaves: $\mathcal{O}\left(8^{|w|}\right)$.

Theorem

Smallest 1-level grammars can be computed in time $\mathcal{O}^{*}\left(1.8392^{|w|}\right)$.

Proof sketch: Enumerate all factorisations of w without consecutive factors of length 1.

Exact Exponential-Time Algorithms

Obvious dynamic programming approach for multi-level:

- Compute size of best k-level grammar,
- store "last level" (k th level??),
- compute size of best $k+1$-level grammar by somehow extending the last level,
- again store "last level",

Exact Exponential-Time Algorithms
$a \mathrm{a} a \mathrm{~b} b \mathrm{a} b \mathrm{a} a \mathrm{a} a \mathrm{a} a \mathrm{~b} b \mathrm{a} b$

Exact Exponential-Time Algorithms
$a \mathrm{a} a \mathrm{~b} b \mathrm{a} b \mathrm{a} a \mathrm{a} a \mathrm{a} a \mathrm{~b} b \mathrm{a} b$

Exact Exponential-Time Algorithms

Exact Exponential-Time Algorithms

Solution: More sophisticated definition of "levels". $N_{i}=\{A \in N \mid A$ yields terminal string in i steps $\}$.

Exact Exponential-Time Algorithms

Solution: More sophisticated definition of "levels". $N_{i}=\{A \in N \mid A$ yields terminal string in i steps $\}$.

Exact Exponential-Time Algorithms

Solution: More sophisticated definition of "levels". $N_{i}=\{A \in N \mid A$ yields terminal string in i steps $\}$.

$N_{1}=\{B, D\}, N_{2}=\{A\}, N_{3}=\{C\}$,

Exact Exponential-Time Algorithms

Solution: More sophisticated definition of "levels". $N_{i}=\{A \in N \mid A$ yields terminal string in i steps $\}$.

$N_{1}=\{B, D\}, N_{2}=\{A\}, N_{3}=\{C\}$,
$1^{\text {st }}$ level: compressed string,
$2^{\text {nd }}$ level: derive all N_{k} in $1^{\text {st }}$ level,
$3^{\text {rd }}$ level: derive all N_{k-1} in $2^{\text {nd }}$ level,

Exact Exponential-Time Algorithms

Solution: More sophisticated definition of "levels". $N_{i}=\{A \in N \mid A$ yields terminal string in i steps $\}$.

$N_{1}=\{B, D\}, N_{2}=\{A\}, N_{3}=\{C\}$,
$1^{\text {st }}$ level: compressed string,
$2^{\text {nd }}$ level: derive all N_{k} in $1^{\text {st }}$ level, $3^{\text {rd }}$ level: derive all N_{k-1} in $2^{\text {nd }}$ level,

Exact Exponential-Time Algorithms

Solution: More sophisticated definition of "levels". $N_{i}=\{A \in N \mid A$ yields terminal string in i steps $\}$.

$N_{1}=\{B, D\}, N_{2}=\{A\}, N_{3}=\{C\}$,
$1^{\text {st }}$ level: compressed string, $2^{\text {nd }}$ level: derive all N_{k} in $1^{\text {st }}$ level, $3^{\text {rd }}$ level: derive all N_{k-1} in $2^{\text {nd }}$ level,

Exact Exponential-Time Algorithms

Solution: More sophisticated definition of "levels". $N_{i}=\{A \in N \mid A$ yields terminal string in i steps $\}$.

$N_{1}=\{B, D\}, N_{2}=\{A\}, N_{3}=\{C\}$,
$1^{\text {st }}$ level: compressed string, $2^{\text {nd }}$ level: derive all N_{k} in $1^{\text {st }}$ level, $3^{\text {rd }}$ level: derive all N_{k-1} in $2^{\text {nd }}$ level,
$C D C$
$A B D A B$
$D \mathrm{bb} B D D \mathrm{bb} B$

Exact Exponential-Time Algorithms

Solution: More sophisticated definition of "levels". $N_{i}=\{A \in N \mid A$ yields terminal string in i steps $\}$.

$N_{1}=\{B, D\}, N_{2}=\{A\}, N_{3}=\{C\}$,
$1^{\text {st }}$ level: compressed string,
$2^{\text {nd }}$ level: derive all N_{k} in $1^{\text {st }}$ level,
$3^{\text {rd }}$ level: derive all N_{k-1} in $2^{\text {nd }}$ level,
$C D C$ $A B D A B$
$D \mathrm{bb} B D D \mathrm{bb} B$

Dynamic Programming Algorithm

$k^{\text {th }} \quad A B \mathrm{aCbCBa} \quad w_{1} w_{2} \ldots w_{8}$

Dynamic Programming Algorithm

$k^{\text {th }}$	$A B \mathrm{aCbCBa}$	$w_{1} w_{2} \ldots w_{8}$
$(k+1)^{\mathrm{th}}$	$A B \mathrm{a} D \mathrm{~b} A \mathrm{~b} D \mathrm{~b} A B \mathrm{a}$	$w_{1} \ldots w_{4,1} w_{4,2} w_{4,3} \ldots w_{6,1} w_{6,2} w_{6,3} \ldots w_{8}$

Dynamic Programming Algorithm

$k^{\text {th }}$	$A B \mathrm{a} C \mathrm{bCBa}$	$w_{1} w_{2} \ldots w_{8}$
$(k+1)^{\mathrm{th}}$	$A B \mathrm{a} D \mathrm{~b} A \mathrm{~b} D \mathrm{~b} A B \mathrm{a}$	$w_{1} \ldots w_{4,1} w_{4,2} w_{4,3} \ldots w_{6,1} w_{6,2} w_{6,3} \ldots w_{8}$

Dynamic Programming Algorithm

$k^{\text {th }}$	$A B \mathrm{aCbCBa}$	$w_{1} w_{2} \ldots w_{8}$
$(k+1)^{\mathrm{th}}$	$A B \mathrm{a} D \mathrm{~b} A \mathrm{~b} D \mathrm{~b} A B \mathrm{a}$	$w_{1} \ldots w_{4,1} w_{4,2} w_{4,3} \ldots w_{6,1} w_{6,2} w_{6,3} \ldots w_{8}$

Sufficient local information:
Size of smallest k-level grammar

$$
\begin{array}{llllll}
u & \ldots & v & \ldots & u & \ldots \\
\left(u_{1} \ldots u_{m}\right) & \ldots & \left(v_{1} \ldots v_{\ell}\right) & \ldots & \left(u_{1} \ldots u_{m}\right) & \ldots \\
\left(v_{1} \ldots v_{\ell}\right)
\end{array}
$$

Dynamic Programming Algorithm

$k^{\text {th }}$	$A B \mathrm{aCbCBa}$	$w_{1} w_{2} \ldots w_{8}$
$(k+1)^{\mathrm{th}}$	$A B \mathrm{a} D \mathrm{~b} A \mathrm{~b} D \mathrm{~b} A B \mathrm{a}$	$w_{1} \ldots w_{4,1} w_{4,2} w_{4,3} \ldots w_{6,1} w_{6,2} w_{6,3} \ldots w_{8}$

Sufficient local information:
Size of smallest k-level grammar

$$
\begin{array}{lllllll}
u & \ldots & v & \ldots & u & \ldots & v \\
\left(u_{1} \ldots u_{m}\right) & \ldots & \left(v_{1} \ldots v_{\ell}\right) & \ldots & \left(u_{1} \ldots u_{m}\right) & \ldots & \left(v_{1} \ldots v_{\ell}\right)
\end{array}
$$

Theorem

Smallest grammars can be computed in time $\mathcal{O}^{*}\left(3^{|w|}\right)$.

Thank you very much for your attention

