
On the Complexity of Grammar-Based Compression
over Fixed Alphabets

Katrin Casel1, Henning Fernau1, Serge Gaspers2, Benjamin Gras3,

Markus L. Schmid
1

1 Trier University, Germany
2 Data61, CSIRO, Australia

3 École Normale Superieure de Lyon, France

ICALP 2016

Context-Free Grammars

G = (N,Σ, R, S),

N set of nonterminals,

Σ terminal alphabet,

S ∈ N start symbol,

R ⊆ N × (N ∪ Σ)+ set of rules rules.

G �straight-line program� (or simply grammar) ⇔ |L(G)| = 1

|G| =
∑

A→α∈R |α|

Context-Free Grammars

G = (N,Σ, R, S),

N set of nonterminals,

Σ terminal alphabet,

S ∈ N start symbol,

R ⊆ N × (N ∪ Σ)+ set of rules rules.

G �straight-line program� (or simply grammar) ⇔ |L(G)| = 1

|G| =
∑

A→α∈R |α|

Context-Free Grammars

G = (N,Σ, R, S),

N set of nonterminals,

Σ terminal alphabet,

S ∈ N start symbol,

R ⊆ N × (N ∪ Σ)+ set of rules rules.

G �straight-line program� (or simply grammar) ⇔ |L(G)| = 1

|G| =
∑

A→α∈R |α|

Grammar-Based Compression

General idea

Input: word w,
Output: grammar for w.

We may ask for

a shortest grammar.

a short grammar (but computed fast).

a grammar that is shortest (short) among all grammars with
I only k non-terminals (i. e., only k rules),
I a derivations tree with at most k levels,
I rules that have right sides of size at most k,
I . . .

Grammar-Based Compression

General idea

Input: word w,
Output: grammar for w.

We may ask for

a shortest grammar.

a short grammar (but computed fast).

a grammar that is shortest (short) among all grammars with
I only k non-terminals (i. e., only k rules),
I a derivations tree with at most k levels,
I rules that have right sides of size at most k,
I . . .

Algorithmics on Compressed Strings

Requirement for compression schemes:

linear or near linear time compression and decompression,

suitability for solving problems directly on the compressed data.

⇒ Algorithmics on compressed strings

Grammars

cover many compression schemes from practice (e. g., Lempel-Ziv),

are mathematically easy to handle,

allow solving of basic problems (comparison, pattern matching,

membership in a regular language, retrieving subwords) e�ciently.

Grammar-based compression has

applications in combinatorial group theory, comput. topology,

been extended to more complicated objects, e. g., trees, 2D words.

Algorithmics on Compressed Strings

Requirement for compression schemes:

linear or near linear time compression and decompression,

suitability for solving problems directly on the compressed data.

⇒ Algorithmics on compressed strings

Grammars

cover many compression schemes from practice (e. g., Lempel-Ziv),

are mathematically easy to handle,

allow solving of basic problems (comparison, pattern matching,

membership in a regular language, retrieving subwords) e�ciently.

Grammar-based compression has

applications in combinatorial group theory, comput. topology,

been extended to more complicated objects, e. g., trees, 2D words.

Algorithmics on Compressed Strings

Requirement for compression schemes:

linear or near linear time compression and decompression,

suitability for solving problems directly on the compressed data.

⇒ Algorithmics on compressed strings

Grammars

cover many compression schemes from practice (e. g., Lempel-Ziv),

are mathematically easy to handle,

allow solving of basic problems (comparison, pattern matching,

membership in a regular language, retrieving subwords) e�ciently.

Grammar-based compression has

applications in combinatorial group theory, comput. topology,

been extended to more complicated objects, e. g., trees, 2D words.

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

10 100 1000 10000 100000 1000000 10000000 100000000 . . .

A1 → 10
A2 → A10
A3 → A20
A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

10 100 1000 10000 100000 1000000 10000000 100000000 . . .

A1 → 10
A2 → A10
A3 → A20
A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1 100 1000 10000 100000 1000000 10000000 100000000 . . .
A1 → 10

A2 → A10
A3 → A20
A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1 100 1000 10000 100000 1000000 10000000 100000000 . . .
A1 → 10

A2 → A10
A3 → A20
A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2 1000 10000 100000 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10

A3 → A20
A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2 1000 10000 100000 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10

A3 → A20
A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2A3 10000 100000 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10
A3 → A20

A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2A3 10000 100000 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10
A3 → A20

A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2A3A4 100000 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10
A3 → A20
A4 → A30

A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2A3A4 100000 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10
A3 → A20
A4 → A30

A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2A3A4A5 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10
A3 → A20
A4 → A30
A5 → A40

. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2A3A4A5 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10
A3 → A20
A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (1/2)

w =
∏n
i=1 10i, with n = 2k.

A1A2A3A4A5 1000000 10000000 100000000 . . .
A1 → 10
A2 → A10
A3 → A20
A4 → A30
A5 → A40
. . .

⇒ grammar G with |G| = 3n− 1

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

10 100 1000 10000 100000 1000000 10000000 100000000 . . .

A1 → 010
A2 → 0A10
A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

10 100 1000 10000 100000 1000000 10000000 100000000 . . .

A1 → 010
A2 → 0A10
A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

1A1A100 10000 100000 1000000 10000000 100000000 . . .
A1 → 010

A2 → 0A10
A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

1A1A100 10000 100000 1000000 10000000 100000000 . . .
A1 → 010

A2 → 0A10
A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

1A1A1A2A2000 1000000 10000000 100000000 . . .
A1 → 010
A2 → 0A10

A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

1A1A1A2A2000 1000000 10000000 100000000 . . .
A1 → 010
A2 → 0A10

A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

1A1A1A2A2A3A30000 100000000 . . .
A1 → 010
A2 → 0A10
A3 → 0A20

. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

1A1A1A2A2A3A30000 100000000 . . .
A1 → 010
A2 → 0A10
A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

1A1A1A2A2A3A30000 100000000 . . .
A1 → 010
A2 → 0A10
A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Examples (2/2)

w =
∏n
i=1 10i, with n = 2k.

1A1A1A2A2A3A30000 100000000 . . .
A1 → 010
A2 → 0A10
A3 → 0A20
. . .

⇒ grammar G with |G| = 5n
2 + 2k − 3

Best grammar we found: |G| = 9n
4 + 2k − 2

Derivation Trees

S → ABCAC ,

A→ Bb ,

B → aC ,

C → ab .

S

A AB C C

B b B ba C a b a b

a C a Ca b

a b a b

Derivation Trees

S → ABCAC ,

A→ Bb ,

B → aC ,

C → ab .

S

A AB C C

B b B ba C a b a b

a C a Ca b

a b a b

Derivation Trees

S → ABCAC ,

A→ Bb ,

B → aC ,

C → ab .

S

A AB C C

B b B ba C a b a b

a C a Ca b

a b a b

1-Level Grammars

S → ABCAC ,

A→ aabb ,

B → aab ,

C → ab .

A AB C C

aabb aabbaab ab ab

1-Level Grammars

S → ABCAC ,

A→ aabb ,

B → aab ,

C → ab .

A AB C C

aabb aabbaab ab ab

Shortest Grammar Problem

Shortest Grammar Problem SGP

Instance: A word w and a k ∈ N.
Question: ∃ grammar G with L(G) = {w} and |G| ≤ k?

Shortest Grammar Problem

Shortest (1-Level) Grammar Problem (1−)SGP
Instance: A word w and a k ∈ N.
Question: ∃ (1-level) grammar G with L(G) = {w} and |G| ≤ k?

Known Complexity Results

NP-complete (for unbounded alphabets).

Many simple and fast approximation algorithms exist.

Best known approximation ratio is O(log(|w|m∗)) (where m∗ is the
size of a smallest grammar).

No 8569
8568 ≈ 1.0001 approximation ratio (assuming P 6= NP and for

unbounded alphabets).

⇒
Solid theoretical foundation for approximations (or heuristics) missing.

Known Complexity Results

NP-complete (for unbounded alphabets).

Many simple and fast approximation algorithms exist.

Best known approximation ratio is O(log(|w|m∗)) (where m∗ is the
size of a smallest grammar).

No 8569
8568 ≈ 1.0001 approximation ratio (assuming P 6= NP and for

unbounded alphabets).

⇒
Solid theoretical foundation for approximations (or heuristics) missing.

Known Complexity Results

NP-complete (for unbounded alphabets).

Many simple and fast approximation algorithms exist.

Best known approximation ratio is O(log(|w|m∗)) (where m∗ is the
size of a smallest grammar).

No 8569
8568 ≈ 1.0001 approximation ratio (assuming P 6= NP and for

unbounded alphabets).

⇒
Solid theoretical foundation for approximations (or heuristics) missing.

Known Complexity Results

NP-complete (for unbounded alphabets).

Many simple and fast approximation algorithms exist.

Best known approximation ratio is O(log(|w|m∗)) (where m∗ is the
size of a smallest grammar).

No 8569
8568 ≈ 1.0001 approximation ratio (assuming P 6= NP and for

unbounded alphabets).

⇒
Solid theoretical foundation for approximations (or heuristics) missing.

Known Complexity Results

NP-complete (for unbounded alphabets).

Many simple and fast approximation algorithms exist.

Best known approximation ratio is O(log(|w|m∗)) (where m∗ is the
size of a smallest grammar).

No 8569
8568 ≈ 1.0001 approximation ratio (assuming P 6= NP and for

unbounded alphabets).

⇒
Solid theoretical foundation for approximations (or heuristics) missing.

NP-Completeness of the Shortest Grammar Problem

Theorem

1-SGP is NP-complete, even for alphabets of size 5.

Theorem

SGP is NP-complete, even for alphabets of size 24.

NP-Completeness of the Shortest Grammar Problem

Theorem

1-SGP is NP-complete, even for alphabets of size 5.

Theorem

SGP is NP-complete, even for alphabets of size 24.

Proof Ideas

Reduction from vertex cover (unbounded alphabets):
I represent edges (vi, vj) as factors #vi#vj#,
I make sure that only #vi, vi# or #vi# are compressed,
I grammar is smallest if every #vi#vj# is compressed by a
Ai → #vi# or Aj → #vj#.

Finite alphabet: Using symbols or constant size factors for

representing vertices (edges) or as separators is not possible (⇒
some encoding needed!).

1-level case: Using unary sequences as separators works!

(in 1-level case, separators fully determine the compressed factors.)

Multi-level case: We do not know how the encodings will be

compressed by a shortest grammar (recall introductory example

10100100010000 . . .).

Proof Ideas

Reduction from vertex cover (unbounded alphabets):
I represent edges (vi, vj) as factors #vi#vj#,
I make sure that only #vi, vi# or #vi# are compressed,
I grammar is smallest if every #vi#vj# is compressed by a
Ai → #vi# or Aj → #vj#.

Finite alphabet: Using symbols or constant size factors for

representing vertices (edges) or as separators is not possible (⇒
some encoding needed!).

1-level case: Using unary sequences as separators works!

(in 1-level case, separators fully determine the compressed factors.)

Multi-level case: We do not know how the encodings will be

compressed by a shortest grammar (recall introductory example

10100100010000 . . .).

Proof Ideas

Reduction from vertex cover (unbounded alphabets):
I represent edges (vi, vj) as factors #vi#vj#,
I make sure that only #vi, vi# or #vi# are compressed,
I grammar is smallest if every #vi#vj# is compressed by a
Ai → #vi# or Aj → #vj#.

Finite alphabet: Using symbols or constant size factors for

representing vertices (edges) or as separators is not possible (⇒
some encoding needed!).

1-level case: Using unary sequences as separators works!

(in 1-level case, separators fully determine the compressed factors.)

Multi-level case: We do not know how the encodings will be

compressed by a shortest grammar (recall introductory example

10100100010000 . . .).

Proof Ideas

Reduction from vertex cover (unbounded alphabets):
I represent edges (vi, vj) as factors #vi#vj#,
I make sure that only #vi, vi# or #vi# are compressed,
I grammar is smallest if every #vi#vj# is compressed by a
Ai → #vi# or Aj → #vj#.

Finite alphabet: Using symbols or constant size factors for

representing vertices (edges) or as separators is not possible (⇒
some encoding needed!).

1-level case: Using unary sequences as separators works!

(in 1-level case, separators fully determine the compressed factors.)

Multi-level case: We do not know how the encodings will be

compressed by a shortest grammar (recall introductory example

10100100010000 . . .).

Proof Ideas Multi-Level Case

palindromic codewords: u ? uR, ? ∈ Σ, u is 7-ary number.

Crucial properties:
I overlapping between neighbouring codewords are not repeated
⇒ codewords are compressed individually.

I codewords are produced best �from the middle�: A→ a ? a,
B → bAb, C → cBc,

Proof Ideas Multi-Level Case

palindromic codewords: u ? uR, ? ∈ Σ, u is 7-ary number.

Crucial properties:
I overlapping between neighbouring codewords are not repeated
⇒ codewords are compressed individually.

I codewords are produced best �from the middle�: A→ a ? a,
B → bAb, C → cBc,

Reduction
Graph G⇒ word uvw

u =
6∏

j=0

(
14n∏
i=1

(〈i〉� 〈M(i+ j,14n)〉v)
)

$1

v =
n∏

i=1

(# 〈7i+Cv(i)〉v ¢1 〈7i− 1〉�) $2

n∏
i=1

(# 〈7i+Cv(i)〉v ¢2 〈7i− 2〉�) $3

n∏
i=1

(〈7i+Cv(i)〉v # 〈7i− 2〉� ¢1) $4

n∏
i=1

(〈7i+Cv(i)〉v # 〈7i− 1〉� ¢2) $5

n∏
i=1

(# 〈7i+Cv(i)〉v # 〈7i〉�) $6

w =

m−1∏
i=1

(# 〈7j2i−1 +Cv(j2i−1)〉v # 〈7j2i +Cv(j2i)〉v # 〈7i+Ce(vj2i
,vj2i+1

)〉�)

〈7j2m−1 +Cv(j2m−1)〉v # 〈7j2m +Cv(j2m)〉v

Reduction
Graph G⇒ word uvw

u =
6∏

j=0

(
14n∏
i=1

(〈i〉� 〈M(i+ j,14n)〉v)
)

$1

v =
n∏

i=1

(# 〈7i+Cv(i)〉v ¢1 〈7i− 1〉�) $2

n∏
i=1

(# 〈7i+Cv(i)〉v ¢2 〈7i− 2〉�) $3

n∏
i=1

(〈7i+Cv(i)〉v # 〈7i− 2〉� ¢1) $4

n∏
i=1

(〈7i+Cv(i)〉v # 〈7i− 1〉� ¢2) $5

n∏
i=1

(# 〈7i+Cv(i)〉v # 〈7i〉�) $6

w =

m−1∏
i=1

(# 〈7j2i−1 +Cv(j2i−1)〉v # 〈7j2i +Cv(j2i)〉v # 〈7i+Ce(vj2i
,vj2i+1

)〉�)

〈7j2m−1 +Cv(j2m−1)〉v # 〈7j2m +Cv(j2m)〉v

Bounded Number of Non-Terminals

Theorem

Let w ∈ Σ∗ and k ∈ N,

a grammar that is minimal among all grammars with at most k
rules,

a 1-level grammar that is minimal among all 1-level grammars with

at most k rules

can be computed in polynomial time.

Bounded Number of Non-Terminals

General idea:

Transform word w into an undirected graph Gw, such that

independent dominating sets of Gw correspond to grammars for w.

�Compute minimal independent dominating sets of Gw�.

Bounded Number of Non-Terminals 1-Level Case

w = abbababab

Bounded Number of Non-Terminals 1-Level Case

w = abbababab

(1, 1) (2, 2) (3, 3) (9, 9)

(1, 2) (2, 3) (3, 4) . . . (8, 9)

(1, 3) (2, 4) . . . (7, 9)

...
...

Bounded Number of Non-Terminals 1-Level Case

w = abbababab

(1, 1) (2, 2) (3, 3) (9, 9)

(1, 2) (2, 3) (3, 4) . . . (8, 9)

(1, 3) (2, 4) . . . (7, 9)

...
...

ab ba bb abb bba . . .

Bounded Number of Non-Terminals 1-Level Case

w = abbababab

(1, 1) (2, 2) (3, 3) (9, 9)

(1, 2) (2, 3) (3, 4) . . . (8, 9)

(1, 3) (2, 4) . . . (7, 9)

...
...

ab ba bb abb bba . . .

. . .

Bounded Number of Non-Terminals 1-Level Case

w = abbababab

(1, 1) (2, 2) (3, 3) (9, 9)

(1, 2) (2, 3) (3, 4) . . . (8, 9)

(1, 3) (2, 4) . . . (7, 9)

...
...

ab ba bb abb bba . . .

. . .

Bounded Number of Non-Terminals 1-Level Case

w = abbababab

(1, 1) (2, 2) (3, 3) (9, 9)

(1, 2) (2, 3) (3, 4) . . . (8, 9)

(1, 3) (2, 4) . . . (7, 9)

...
...

ab ba bb abb bba . . .

. . .

Bounded Number of Non-Terminals 1-Level Case

w = abbababab

(1, 1) (2, 2) (3, 3) (9, 9)

(1, 2) (2, 3) (3, 4) . . . (8, 9)

(1, 3) (2, 4) . . . (7, 9)

...
...

ab ba bb abb bba . . .

. . .

Bounded Number of Non-Terminals Multi-Level Case

abbaaa (ab, 0)(ba, 0)(aa, 0)

(ab, 1, 1) (ab, 2, 2)(ba, 1, 1) (ba, 2, 2)(aa, 1, 1) (aa, 2, 2)

ababaaaab (aba, 0)(baa, 0)(aab, 0)

(aba, 1, 1) (aba, 2, 2) (aba, 3, 3)(baa, 1, 1) (baa, 2, 2) (baa, 3, 3)(aab, 1, 1) (aab, 2, 2) (aab, 3, 3)

(aba, 1, 2) (aba, 2, 3)(baa, 1, 2) (baa, 2, 3)(aab, 1, 2) (aab, 2, 3)

Bounded Number of Non-Terminals Multi-Level Case

Theorem

Let w ∈ Σ∗ and k ∈ N. A 1-level grammar for w with at most k rules

that is minimal among all 1-level grammars for w with at most k rules

can be computed in time O(|w|2k+4).

Theorem

Let w ∈ Σ∗ and k ∈ N. A grammar for w with at most k rules that is

minimal among all grammars for w with at most k rules can be

computed in time O(|w|2k+6).

Exact Exponential-Time Algorithms

Previous approach: O(2|w|
2
).

Enumerating all ordered trees with |w| leaves: O(8|w|).

Theorem

Smallest 1-level grammars can be computed in time O∗(1.8392|w|).

Proof sketch: Enumerate all factorisations of w without consecutive

factors of length 1.

Exact Exponential-Time Algorithms

Previous approach: O(2|w|
2
).

Enumerating all ordered trees with |w| leaves: O(8|w|).

Theorem

Smallest 1-level grammars can be computed in time O∗(1.8392|w|).

Proof sketch: Enumerate all factorisations of w without consecutive

factors of length 1.

Exact Exponential-Time Algorithms

Obvious dynamic programming approach for multi-level:

Compute size of best k-level grammar,

store �last level� (kth level??),

compute size of best k + 1-level grammar by somehow extending

the last level,

again store �last level�,

. . ..

Exact Exponential-Time Algorithms

a a a b b a b a a a a a a b b a b

Exact Exponential-Time Algorithms

a a a b b a b a a a a a a b b a b

Exact Exponential-Time Algorithms

A B A B

aaabb

aaa

ab aaabb ab

Exact Exponential-Time Algorithms

A B A B

aaabb

aaa

ab aaabb ab

Exact Exponential-Time Algorithms

C C

A B A B

aaabb

aaa

ab aaabb ab

Exact Exponential-Time Algorithms

C C

A B A B

aaabb

aaa

ab aaabb ab

Exact Exponential-Time Algorithms

C C

A B A B

a B b

aaa

ab a B b ab

ab ab

Exact Exponential-Time Algorithms

C C

A B A B

aaabb

aaa

ab aaabb ab

Exact Exponential-Time Algorithms

C C

A B A B

aaabb

aaa

ab aaabb ab

Exact Exponential-Time Algorithms

C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

Exact Exponential-Time Algorithms

Solution: More sophisticated de�nition of �levels�.

Ni = {A ∈ N | A yields terminal string in i steps}.

N1 = {B,D}, N2 = {A}, N3 = {C},

1st level: compressed string,

2nd level: derive all Nk in 1st level,
3rd level: derive all Nk−1 in 2nd level,

. . .

Exact Exponential-Time Algorithms

Solution: More sophisticated de�nition of �levels�.

Ni = {A ∈ N | A yields terminal string in i steps}.

C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

N1 = {B,D}, N2 = {A}, N3 = {C},

1st level: compressed string,

2nd level: derive all Nk in 1st level,
3rd level: derive all Nk−1 in 2nd level,

. . .

Exact Exponential-Time Algorithms

Solution: More sophisticated de�nition of �levels�.

Ni = {A ∈ N | A yields terminal string in i steps}.

C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

N1 = {B,D}, N2 = {A}, N3 = {C},

1st level: compressed string,

2nd level: derive all Nk in 1st level,
3rd level: derive all Nk−1 in 2nd level,

. . .

Exact Exponential-Time Algorithms

Solution: More sophisticated de�nition of �levels�.

Ni = {A ∈ N | A yields terminal string in i steps}.

C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

N1 = {B,D}, N2 = {A}, N3 = {C},

1st level: compressed string,

2nd level: derive all Nk in 1st level,
3rd level: derive all Nk−1 in 2nd level,

. . .

Exact Exponential-Time Algorithms

Solution: More sophisticated de�nition of �levels�.

Ni = {A ∈ N | A yields terminal string in i steps}.

C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

N1 = {B,D}, N2 = {A}, N3 = {C},

1st level: compressed string, CDC
2nd level: derive all Nk in 1st level,
3rd level: derive all Nk−1 in 2nd level,

. . .

Exact Exponential-Time Algorithms

Solution: More sophisticated de�nition of �levels�.

Ni = {A ∈ N | A yields terminal string in i steps}.

C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

N1 = {B,D}, N2 = {A}, N3 = {C},

1st level: compressed string, CDC
2nd level: derive all Nk in 1st level, ABDAB
3rd level: derive all Nk−1 in 2nd level,

. . .

Exact Exponential-Time Algorithms

Solution: More sophisticated de�nition of �levels�.

Ni = {A ∈ N | A yields terminal string in i steps}.

C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

N1 = {B,D}, N2 = {A}, N3 = {C},

1st level: compressed string, CDC
2nd level: derive all Nk in 1st level, ABDAB
3rd level: derive all Nk−1 in 2nd level, DbbBDDbbB
. . .

Exact Exponential-Time Algorithms

Solution: More sophisticated de�nition of �levels�.

Ni = {A ∈ N | A yields terminal string in i steps}.

C C

A B A B

D

D bb

aaa

aaa aaa

ab D bb ab

N1 = {B,D}, N2 = {A}, N3 = {C},

1st level: compressed string, CDC
2nd level: derive all Nk in 1st level, ABDAB
3rd level: derive all Nk−1 in 2nd level, DbbBDDbbB
. . . aaabbabaaaaaabbab

Dynamic Programming Algorithm

kth ABaCbCBa w1w2 . . . w8

(k + 1)th ABaDbAbDbABa w1 . . . w4,1w4,2w4,3 . . . w6,1w6,2w6,3 . . . w8

Su�cient local information:

Size of smallest k-level grammar

u . . . v . . . u . . . v

(u1 . . . um) . . . (v1 . . . v`) . . . (u1 . . . um) . . . (v1 . . . v`)

Theorem

Smallest grammars can be computed in time O∗(3|w|).

Dynamic Programming Algorithm

kth ABaCbCBa w1w2 . . . w8

(k + 1)th ABaDbAbDbABa w1 . . . w4,1w4,2w4,3 . . . w6,1w6,2w6,3 . . . w8

Su�cient local information:

Size of smallest k-level grammar

u . . . v . . . u . . . v

(u1 . . . um) . . . (v1 . . . v`) . . . (u1 . . . um) . . . (v1 . . . v`)

Theorem

Smallest grammars can be computed in time O∗(3|w|).

Dynamic Programming Algorithm

kth ABaCbCBa w1w2 . . . w8

(k + 1)th ABaDbAbDbABa w1 . . . w4,1w4,2w4,3 . . . w6,1w6,2w6,3 . . . w8

Su�cient local information:

Size of smallest k-level grammar

u . . . v . . . u . . . v

(u1 . . . um) . . . (v1 . . . v`) . . . (u1 . . . um) . . . (v1 . . . v`)

Theorem

Smallest grammars can be computed in time O∗(3|w|).

Dynamic Programming Algorithm

kth ABaCbCBa w1w2 . . . w8

(k + 1)th ABaDbAbDbABa w1 . . . w4,1w4,2w4,3 . . . w6,1w6,2w6,3 . . . w8

Su�cient local information:

Size of smallest k-level grammar

u . . . v . . . u . . . v

(u1 . . . um) . . . (v1 . . . v`) . . . (u1 . . . um) . . . (v1 . . . v`)

Theorem

Smallest grammars can be computed in time O∗(3|w|).

Dynamic Programming Algorithm

kth ABaCbCBa w1w2 . . . w8

(k + 1)th ABaDbAbDbABa w1 . . . w4,1w4,2w4,3 . . . w6,1w6,2w6,3 . . . w8

Su�cient local information:

Size of smallest k-level grammar

u . . . v . . . u . . . v

(u1 . . . um) . . . (v1 . . . v`) . . . (u1 . . . um) . . . (v1 . . . v`)

Theorem

Smallest grammars can be computed in time O∗(3|w|).

Thank you very much for your attention

