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Basic Concepts

A finite alphabet Σ = {a, b, c, d}

strings w = daabaccabd

string factorisations (daa, b, acca, bd)
daa · b · acca · bd



String factorisations
Let p = (u1, u2, . . . , uk) be a factorisation.

sf(p) = {u1, u2, . . . , uk} set of factors,
s(p) = k size,
c(p) = | sf(p)| cardinality,
w(p) = max{|ui| | 1 ≤ i ≤ k} width.

Central notion of this talk
A factorisation p is equality-free if s(p) = c(p).
(p is repetitive ⇔ p is not equality-free).

Example
p = aab · ba · cba · aab · ba · aab.

sf(p) = {aab, ba, cba}, s(p) = 6, c(p) = 3 and w(p) = 3,
p is not equality-free (i. e., p is repetitive).
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Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 6?
We need a, b and c as single factors!
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∃ equality-free factorisation p of w with w(p) ≤ m? EF-w
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Motivation: equality-free factorisations with small width

Collision-aware oligo design for gene synthesis
Goal: Construct long DNA strands.
Problem: Only very short pieces of DNA can be reliably constructed.
Solution: Find short pieces of DNA that will self-assemble.

⇒

Find a factorisation p of the DNA strand with
w(p) is small,
no factor is the complement of another,
. . .

. . .
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Motivation: equality-free factorisations with large size

Pattern matching with variables
Given a string α with variables and a string w, can we uniformly
replace the variables in α such that we obtain w?

If α is “simple enough”, then this can be decided in poly-time.

Injective pattern matching with variables
Given a string α with variables and a string w, can we uniformly
replace the variables in α such that we obtain w and different variables
must be replaced by different strings?

For the “simple” patterns x1x2 . . . xn this is equivalent to finding
equality-free factorisations with size n.
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p = uj1 · uj2 · . . . · ujn , 1 ≤ ji ≤ k, 1 ≤ i ≤ k.

The corresponding word can be represented by j1j2 . . . jn and sf(p)



Motivation: repetitive factorisations

Let p be a factorisation with sf(p) = {u1, u2, . . . , uk}, i. e.,
p = uj1 · uj2 · . . . · ujn , 1 ≤ ji ≤ k, 1 ≤ i ≤ k.

The corresponding word can be represented by j1j2 . . . jn and sf(p)



Complexity

Theorem (Condon, Maňuch, Thachuk, 2008)
Computing EF-w is NP-complete (even if m ≤ 2 or |Σ| ≤ 2).

Theorem (Fernau, Manea, Mercaş, S., 2015)
EF-s is NP-complete.

Contribution of this paper
Revisit the complexity of these problems (and RF-s, RF-w), also from
the parameterised point of view.
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Parameterised Complexity

Parameterised problem K:
instances are of the form (x, k), where k is the parameter

K is fixed-parameter tractable (in FPT) ⇐⇒
K can be solved in O(f(k)× p(|x|)) (for recursive f and polynomial p).

K is NP-hard even if k ≤ c for constant c⇒ K /∈ FPT (unless P = NP).
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Equality-Free Factor Cover (EFFC)

Equality-free factor cover
Given a string w and a set F of strings,
∃ equality-free factorisation p of w with sf(p) ⊆ F? EFFC

Theorem
EFFC is NP-complete (even for fixed Σ with |Σ| = 2).

Proof Sketch
Let w ∈ Σ∗, F = {v | w = uvu′, |v| ≤ m}.
w has equality-free factorisation p with w(p) ≤ m ⇐⇒
w has equality-free factorisation p′ with sf(p′) ⊆ F .
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Theorem
EFFC can be solved in time O(|w||F |+1).

Proof Sketch
Let w ∈ Σ∗ and let p be an equality-free factorisation for w with
sf(p) ⊆ F .

s(p) ≤ |w|
s(p) ≤ |F |

Enumerate all equality-free factorisations with sf(p) ⊆ F and
s(p) ≤ min{|w|, |F |}.
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Theorem
The Problem EFFC can be solved in time O(|w| × (2|F | − 1)× |F |!).

Proof Sketch
w ∈ Σ∗, F = {u1, u2, . . . , u`}
Γ = {1, 2, . . . , `}, h : Γ∗ → Σ∗, h(i) = ui, i ∈ Γ

w has equality-free factorisation p with sf(p) ⊆ F ⇐⇒
∃v ∈ Γ∗ with |v|i ≤ 1, i ∈ Γ, h(v) = w.

There are at most (2|F | − 1)× |F |! such words v.
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w has equality-free factorisation p with sf(p) ⊆ F ⇐⇒
∃v ∈ Γ∗ with |v|i ≤ 1, i ∈ Γ, h(v) = w.

There are at most (2|F | − 1)× |F |! such words v.
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Factor Cover (FC)

Theorem
FC can be solved in time O(|F | × |w|2).

Proof Sketch
Dynamic programming + KMP.

Remark: We shall need this algorithm later for computing repetitive
factorisations with large size or small width.
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Max/Min Equality-Free Fact. Size/Width

Theorem (Condon, Maňuch, Thachuk, 2008)
EF-w is NP-complete (even if m ≤ 2 or |Σ| ≤ 2).

Theorem
EF-w can be solved in time O(mm2×|Σ|m+2 × |Σ|m).

Proof Sketch
Let p be equality-free factorisation of w with w(p) ≤ m.

⇒ s(p) ≤ m× |Σ|m ⇒ |w| ≤ m2 × |Σ|m.

Check |w| ≤ m2 × |Σ|m, if yes, enumerate all factorisations with width
of at most m.
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Max/Min Equality-Free Fact. Size/Width

Dichotomy for EF-w w.r.t. parameters m and |Σ|:

m ≤ c and |Σ| unbounded: NP-complete if and only if c ≥ 2.

|Σ| ≤ c and m unbounded: NP-complete if and only if c ≥ 2.
|Σ| ≤ c and m ≤ c′: poly-time.

What about equality-free factorisations with large size (EF-s)??
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Max/Min Equality-Free Fact. Size/Width

Open Problem
Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

At least, poly-time (fpt) if m is bounded:

Theorem

EF-s can be solved in time O((m
2+m
2 − 1)m).

Proof Sketch

|w| ≥ Σm
i=1i = m2+m

2 ⇒ split w into factors of different lengths.
|w| ≤ m2+m

2 − 1⇒ enumerate all factorisations of size m.
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Max/Min Repetitive Factorisation Size/Width

We have three parameters:
|Σ|,
m (size/width bound),
k (bound on the cardinality).

Open Problem
Is RF-s NP-complete?

However, if |Σ|, m or k is a constant, then we can solve it in poly-time.
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Max/Min Repetitive Factorisation Size/Width

Theorem
RF-s can be solved in time

O(k2 × |w|2k+3),
O(|Σ|2 × |w|2|Σ|+1),
O(m2 × |w|2m+1).

Proof Sketch
Let Fw = {u | u is a factor of w}.
Problem FC: Does w have a factorisation p with sf(p) ⊆ F for given F?
Solve FC on every F ⊆ Fw with |F | ≤ k.
k ≥ |Σ| ⇒ split w into factors of size 1.
k ≥ m⇒ any factorisation of size m is fine.
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Max/Min Repetitive Factorisation Size/Width

We know more about computing repetitive factorisations with small
width (RF-w)!

If |Σ| or k is a constant, then we can solve it in poly-time.

Theorem
RF-w can be solved in time

O(k2 ×mk × |w|k+3),
O(|Σ|2 ×m(|Σ|−1) × |w||Σ|+2).

Proof Sketch
Analogous to the proofs for RF-s.

However, k cannot be bounded by m (the width bound), only by d |w|m e.
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Max/Min Repetitive Factorisation Size/Width

Theorem

RF-w is NP-complete even if m ≤ 2.

Hitting Set (HS)
Instance: U = {x1, . . . , x`}, S1, . . . , Sn ⊆ U and q ∈ N.
Question: ∃ T ⊆ U with |T | ≤ q and T ∩ Si 6= ∅, 1 ≤ i ≤ n?

HS instance: (U, S1, . . . , Sn, q) with Si = {yi,1, yi,2, . . . , yi,r}, 1 ≤ i ≤ n.

RF-w instance:
Σ = U ∪ {$i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ r − 1} ∪ {¢},
w = ¢¢ v1 ¢ v2 ¢ . . . ¢ vn ¢,
vi = yi,1$i,1yi,2$i,2 . . . $i,r−1yi,r, 1 ≤ i ≤ n.
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Max/Min Repetitive Factorisation Size/Width

T ⊆ U with |T | ≤ q and T ∩ Si 6= ∅, 1 ≤ i ≤ n⇒

w = ¢ · ¢ · v1 · ¢ · v2 · ¢ · . . . · ¢ · vn · ¢,
vi = yi,1$i,1 · yi,2$i,2 · . . . · yi,ji−1$i,ji−1 · yi,ji · $i,jiyi,ji+1 · . . . · $i,r−1yi,r,
i, 1 ≤ i ≤ n, yi,ji ∈ T ,

has width 2 and c(p) ≤ 1 + q + n(r − 1).
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Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with w(p) ≤ 2 and c(p) ≤ 1 + q + n(r − 1).

Split every x¢ and ¢x, x ∈ U ∪ {¢}, into x · ¢ and ¢ · x, respectively.
⇒ w = ¢ · ¢ · v1 · ¢ · v2 · ¢ · . . . · ¢ · vn · ¢,

w(p) ≤ 2 and c(p) ≤ 1 + q + n(r − 1) is maintained.

vi = yi,1$i,1yi,2$i,2yi,3$i,3 . . . $i,r−1yi,r has odd length ⇒
vi = . . . · $i,j−1 · yi,j · $i,j . . . (call yi,j isolated)

Let T be the set of all isolated elements.

T ∩ Si 6= ∅, 1 ≤ i ≤ n.

sf(p) = {¢} ∪ {all n(r − 1) factors with $i,j} ∪ T .
c(p) = | sf(p)| = 1 + n(r − 1) + |T | ≤ 1 + n(r − 1) + q ⇒
|T | ≤ q.
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Thank you very much for your attention.


