Computing Equality-Free String Factorisations

Markus L. Schmid

Trier University, Germany

Cik 2015

Basic Concepts

A finite alphabet ¥ ={a,b,c,d}
strings w = daabaccabd

string factorisations (daa,b,acca,bd)
daa-b-acca-bd

String factorisations

Let p = (uy,ug,...,ux) be a factorisation.
o sf(p) = {u1,u2,...,ur} set of factors,
°s(p)=k size,
o c(p) = [sf(p)] cardinality,

o w(p) = max{|u;| | 1 <i <k} width.

String factorisations

Let p = (uy,ug,...,ux) be a factorisation.
o sf(p) = {uy, ug, ..., ug} set of factors,
°os(p)=k size,
o c(p) = [sf(p)] cardinality,
o w(p) = max{|u;| | 1 <i <k} width.

Central notion of this talk

A factorisation p is equality-free if s(p) = c(p).
(p is repetitive < p is not equality-free).

String factorisations

Let p = (uy,ug,...,ux) be a factorisation.
o sf(p) = {uy, ug, ..., ug} set of factors,
°s(p)=k size,
o c(p) = [sf(p)] cardinality,
o w(p) = max{|u;| | 1 <i <k} width.

Central notion of this talk

A factorisation p is equality-free if s(p) = c(p).
(p is repetitive < p is not equality-free).

Example
p = aab-ba-cba-aab-ba-aab.
e sf(p) = {aab, ba, cba}, s(p) = 6, c(p) = 3 and w(p) = 3,

@ p is not equality-free (i.e., p is repetitive).

Computing equality-free factorisations

Find equality-free factorisation with large size

Computing equality-free factorisations

Find equality-free factorisation with large size

abbcbaabbc

Computing equality-free factorisations

Find equality-free factorisation with large size

abbc - ba - abbc

Computing equality-free factorisations

Find equality-free factorisation with large size

ab-bc-ba-ab-bc

Computing equality-free factorisations

Find equality-free factorisation with large size

ab-bc-ba-abb-c

Computing equality-free factorisations

Find equality-free factorisation with large size

ab-bc-ba-a:-bb:-c

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 67

ab-bc-ba-a:-bb:-c

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 67

We need a, b and ¢ as single factors!

abbcbaabbc

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 67

We need a, b and ¢ as single factors!

a-b-bcbaabb:c

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 67

We need a, b and ¢ as single factors!

a‘b:-bc-ba-abb:c

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 67 No!

We need a, b and ¢ as single factors!

a‘b:-bc-ba-abb:c

Computing equality-free factorisations

Find equality-free factorisation with small width

aabbccaabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

a - abbccaabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

a - ab - bccaabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

a-ab:b:ccaabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

a-ab-b:c:caabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

a-ab:-b:c:ca-abbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

a-ab:-b:-c-ca-abb:cc

Computing equality-free factorisations

Find equality-free factorisation with small width
Can we do better than 37

a-ab:-b:-c-ca-abb:cc

Computing equality-free factorisations

Find equality-free factorisation with small width
Can we do better than 37 Yes!

aa-b-bc:-ca-a-bb:cc

Computing equality-free factorisations

Find equality-free factorisation with small width

aabbccaabbccaabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

aab-bcc-aa-bbc:-caa:-bb:cc

Computing equality-free factorisations

Find equality-free factorisation with small width

aab-bcc-aa-bbc:-caa:-bb:cc

Computing equality-free factorisations

Given a string w and m € N

EF-s
EF-w

e 3 equality-free factorisation p of w with s(p) > m?
e 3 equality-free factorisation p of w with w(p) < m?

Computing repetitive factorisations

What is a good measure of repetitiveness?

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p) =1=p=wu-u---u= very repetitive.

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p)=1=p=wu-u---u= very repetitive.

c(p) <3,s(p) > 5

aabcacaaabaab

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p)=1=p=wu-u---u= very repetitive.

c(p) <3,s(p) > 5

a-a‘b-c-a-c-ara-a-b-a-a-‘b

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p)=1=p=wu-u---u= very repetitive.

c(p) <2,s(p) > 5

a-a‘b-c-a-c-ara-a-b-a-a-‘b

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p)=1=p=wu-u---u= very repetitive.

c(p) <2,s(p) > 5

aab-ca-ca-aab-aab

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p)=1=p=wu-u---u= very repetitive.

c(p) <2,s(p) >57

aab-ca-ca-aab-aab

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p)=1=p=wu-u---u= very repetitive.

c(p) <2,w(p) <27

aab-ca-ca-aab-aab

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p)=1=p=wu-u---u= very repetitive.

c(p) <2,w(p) <27

aab-ca-ca-aab-aab

Computing repetitive factorisations
Given a string w and m,k € N

e d factorisation p of w with c(p) < k, s(p) RF-s
k,

< >m?
e 1 factorisation p of w with c(p) < k, w(p) < m? RF-w

Motivation: equality-free factorisations with small width

Collision-aware oligo design for gene synthesis

Goal: Construct long DNA strands.

Problem: Only very short pieces of DNA can be reliably constructed.
Solution: Find short pieces of DNA that will self-assemble.

Motivation: equality-free factorisations with small width

Collision-aware oligo design for gene synthesis

Goal: Construct long DNA strands.
Problem: Only very short pieces of DNA can be reliably constructed.
Solution: Find short pieces of DNA that will self-assemble.

=

Find a factorisation p of the DNA strand with
e w(p) is small,
e no factor is the complement of another,
° ...

Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string o with variables and a string w, can we uniformly
replace the variables in « such that we obtain w?

If « is “simple enough”, then this can be decided in poly-time.

Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string o with variables and a string w, can we uniformly
replace the variables in « such that we obtain w?

If « is “simple enough”, then this can be decided in poly-time.

Injective pattern matching with variables

Given a string « with variables and a string w, can we uniformly
replace the variables in « such that we obtain w and different variables
must be replaced by different strings?

Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string o with variables and a string w, can we uniformly
replace the variables in « such that we obtain w?

If « is “simple enough”, then this can be decided in poly-time.

Injective pattern matching with variables

Given a string « with variables and a string w, can we uniformly
replace the variables in « such that we obtain w and different variables
must be replaced by different strings?

For the “simple” patterns z1xs ..., this is equivalent to finding
equality-free factorisations with size n.

Motivation: repetitive factorisations

Let p be a factorisation with sf(p) = {ui,ue,...,ux}, i.e.,
p:ujl-ujz-...-ujn, 1§]1§k5, 1§Z§k

Motivation: repetitive factorisations

Let p be a factorisation with sf(p) = {ui,ue,...,ux}, i.e.,
p:ujl-ujz-...-ujn, 1§]1§k, 1§Z§k

The corresponding word can be represented by j17j2 ... jn and sf(p)

Complexity

Theorem (Condon, Manuch, Thachuk, 2008)
Computing EF-w is NP-complete (even if m <2 or |E| < 2).

Theorem (Fernau, Manea, Mercag, S., 2015)
EF-s is NP-complete.

Complexity

Theorem (Condon, Manuch, Thachuk, 2008)
Computing EF-w is NP-complete (even if m <2 or |E| < 2).

Theorem (Fernau, Manea, Mercag, S., 2015)
EF-s is NP-complete.

Contribution of this paper

Revisit the complexity of these problems (and RF-s, RF-w), also from
the parameterised point of view.

Parameterised Complexity

Parameterised problem K:
instances are of the form (z, k), where k is the parameter

Parameterised Complexity

Parameterised problem K:
instances are of the form (z, k), where k is the parameter

K is fized-parameter tractable (in FPT) <=
K can be solved in O(f(k) x p(|z|)) (for recursive f and polynomial p).

Parameterised Complexity

Parameterised problem K:
instances are of the form (z, k), where k is the parameter

K is fized-parameter tractable (in FPT) <=
K can be solved in O(f(k) x p(|z|)) (for recursive f and polynomial p).

K is NP-hard even if k < ¢ for constant ¢ = K ¢ FPT (unless P = NP).

EQUALITY-FREE FACTOR COVER (EFFC)

Equality-free factor cover

Given a string w and a set F' of strings,
3 equality-free factorisation p of w with sf(p) C F? EFFC

EQUALITY-FREE FACTOR COVER (EFFC)

Equality-free factor cover

Given a string w and a set F' of strings,
3 equality-free factorisation p of w with sf(p) C F? EFFC

Theorem
EFFC is NP-complete (even for fivred ¥ with |X| = 2).

EQUALITY-FREE FACTOR COVER (EFFC)

Equality-free factor cover

Given a string w and a set F' of strings,
3 equality-free factorisation p of w with sf(p) C F? EFFC

Theorem
EFFC is NP-complete (even for fivred ¥ with |X| = 2).

Proof Sketch
Let we X* F = {v | w=wvd, |v]| <m}.

EQUALITY-FREE FACTOR COVER (EFFC)

Equality-free factor cover

Given a string w and a set F' of strings,
3 equality-free factorisation p of w with sf(p) C F? EFFC

Theorem
EFFC is NP-complete (even for fivred ¥ with |X| = 2).

Proof Sketch
Let we X* F = {v | w=wvd, |v]| <m}.
w has equality-free factorisation p with w(p) < m —

w has equality-free factorisation p’ with sf(p’) C F.

EQUALITY-FREE FACTOR COVER (EFFC)

Theorem
EFFC can be solved in time O(|w|/F1+1).

EQUALITY-FREE FACTOR COVER (EFFC)

Theorem
EFFC can be solved in time O(|w|/F1+1).

Proof Sketch

Let w € ¥* and let p be an equality-free factorisation for w with
sf(p) C F.

EQUALITY-FREE FACTOR COVER (EFFC)

Theorem
EFFC can be solved in time O(|w|/F1+1).

Proof Sketch

Let w € ¥* and let p be an equality-free factorisation for w with
sf(p) C F.

o s(p) < |uw|
o s(p) < |F]|

EQUALITY-FREE FACTOR COVER (EFFC)

Theorem
EFFC can be solved in time O(|w|/F1+1).

Proof Sketch

Let w € ¥* and let p be an equality-free factorisation for w with
sf(p) C F.

o s(p) < |uw|
o s(p) < |F]|

Enumerate all equality-free factorisations with sf(p) C F' and
s(p) < min{lul, | F|}.

EQUALITY-FREE FACTOR COVER (EFFC)

Theorem
The Problem EFFC can be solved in time O(jw| x (2IFl — 1) x |F|!). J

EQUALITY-FREE FACTOR COVER (EFFC)

Theorem

The Problem EFFC can be solved in time O(jw| x (2IFl — 1) x |F|!).

Proof Sketch
w e X* F ={ui,ug,...,u}
T={1,2,...,0}, h:T* = * h(i) =u;, i €T

EQUALITY-FREE FACTOR COVER (EFFC)

Theorem

The Problem EFFC can be solved in time O(jw| x (2IFl — 1) x |F|!).

Proof Sketch
w e X* F ={ui,ug,...,u}
T={1,2,...,0}, h:T* = * h(i) =u;, i €T

w has equality-free factorisation p with sf(p) C F' «<—
Jv € T* with |v|; < 1,i €T, h(v) = w.

EQUALITY-FREE FACTOR COVER (EFFC)

Theorem

The Problem EFFC can be solved in time O(jw| x (2IFl — 1) x |F|!).

Proof Sketch
w e X* F ={ui,ug,...,u}
T={1,2,...,0}, h:T* = * h(i) =u;, i €T

w has equality-free factorisation p with sf(p) C F' «<—
Jv € T* with |v|; < 1,i €T, h(v) = w.

There are at most (2/F1 — 1) x |F|! such words v.

FACTOR COVER (FC)

Theorem
FC can be solved in time O(|F| x |w|?).

FACTOR COVER (FC)

Theorem
FC can be solved in time O(|F| x |w|?).

Proof Sketch
Dynamic programming + KMP.

FACTOR COVER (FC)

Theorem
FC can be solved in time O(|F| x |w|?).

Proof Sketch
Dynamic programming + KMP.

Remark: We shall need this algorithm later for computing repetitive
factorisations with large size or small width.

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Theorem (Condon, Manuch, Thachuk, 2008)
EF-w is NP-complete (even if m <2 or |X| < 2).

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Theorem (Condon, Manuch, Thachuk, 2008)
EF-w is NP-complete (even if m <2 or |X| < 2).

Theorem

EF-w can be solved in time O(m™ ¥IZI"+2 » |52jm).

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Theorem (Condon, Manuch, Thachuk, 2008)
EF-w is NP-complete (even if m <2 or |X| < 2).

Theorem

EF-w can be solved in time O(m™ ¥IZI"+2 » |52jm).

Proof Sketch
Let p be equality-free factorisation of w with w(p) < m.

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Theorem (Condon, Manuch, Thachuk, 2008)
EF-w is NP-complete (even if m <2 or |X| < 2).

Theorem

EF-w can be solved in time O(m™ ¥IZI"+2 » |52jm).

Proof Sketch
Let p be equality-free factorisation of w with w(p) < m.

= s(p) <m x |Z|" = |w| < m? x |B™.

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Theorem (Condon, Manuch, Thachuk, 2008)
EF-w is NP-complete (even if m <2 or |X| < 2).

Theorem

EF-w can be solved in time O(m™ ¥IZI"+2 » |52jm).

Proof Sketch
Let p be equality-free factorisation of w with w(p) < m.

= s(p) <m x |Z|" = |w| < m? x |B™.

Check |w| < m? x |S|™, if yes, enumerate all factorisations with width
of at most m.

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Dichotomy for EF-w w.r.t. parameters m and |X:

e m < ¢ and |X| unbounded: NP-complete if and only if ¢ > 2.

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Dichotomy for EF-w w.r.t. parameters m and |X:

e m < ¢ and |X| unbounded: NP-complete if and only if ¢ > 2.
e |X| < ¢ and m unbounded: NP-complete if and only if ¢ > 2.

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Dichotomy for EF-w w.r.t. parameters m and |X:

e m < ¢ and |X| unbounded: NP-complete if and only if ¢ > 2.
e |X| < ¢ and m unbounded: NP-complete if and only if ¢ > 2.
o |X| <cand m < ¢: poly-time.

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Dichotomy for EF-w w.r.t. parameters m and |X:

e m < ¢ and |X| unbounded: NP-complete if and only if ¢ > 2.
e |X| < ¢ and m unbounded: NP-complete if and only if ¢ > 2.
o |X| <cand m < ¢: poly-time.

What about equality-free factorisations with large size (EF-s)??

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Open Problem
Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Open Problem
Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

At least, poly-time (fpt) if m is bounded:
Theorem

EF-s can be solved in time (’)((7”2% —1Hm).

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Open Problem
Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

At least, poly-time (fpt) if m is bounded:
Theorem

EF-s can be solved in time (’)(("12% —1Hm).

Proof Sketch

lw| > X7 i = m22+ ™ = split w into factors of different lengths.

MAX/MIN EQUALITY-FREE FACT. SiZE/WIDTH

Open Problem
Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

At least, poly-time (fpt) if m is bounded:
Theorem

EF-s can be solved in time (9((7”2% —1Hm).

Proof Sketch

lw| > X7 i = m22+ ™ = split w into factors of different lengths.

2 o o .
|w| < 5™ — 1 = enumerate all factorisations of size m.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

We have three parameters:
o I3,
e m (size/width bound),
@ k (bound on the cardinality).

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

We have three parameters:
o I3,
e m (size/width bound),
@ k (bound on the cardinality).

Open Problem
Is RF-s NP-complete?

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

We have three parameters:
o I3,
e m (size/width bound),
@ k (bound on the cardinality).

Open Problem
Is RF-s NP-complete?

However, if |3|, m or k is a constant, then we can solve it in poly-time.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-s can be solved in time
o O(k? x |w|?k+3),
o O(IZ[x [w[2IH),

o O(m? x |w|*™+1).

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-s can be solved in time
o O(k? x |w|?k+3),
o O(IZ[x [w[2IH),

o O(m? x |w|*™+1).

Proof Sketch

Let F,, = {u | u is a factor of w}.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-s can be solved in time
o O(k? x |w|?k+3),
o O(IZ[x [w[2IH),

o O(m? x |w|*™+1).

Proof Sketch

Let F,, = {u | u is a factor of w}.
Problem FC: Does w have a factorisation p with sf(p) C F' for given F'?
Solve FC on every F' C F,, with |F| < k.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-s can be solved in time
o O(k? x |w|?k+3),
o O(IZ[x [w[2IH),

o O(m? x |w|*™+1).

Proof Sketch

Let F,, = {u | u is a factor of w}.
Problem FC: Does w have a factorisation p with sf(p) C F' for given F'?
Solve FC on every F' C F,, with |F| < k.

k > |¥| = split w into factors of size 1.
k > m = any factorisation of size m is fine.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

We know more about computing repetitive factorisations with small
width (RF-w)!

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

We know more about computing repetitive factorisations with small

width (RF-w)!

If |X] or k is a constant, then we can solve it in poly-time.

Theorem
RF-w can be solved in time
o O(k? x m* x |w|F*3),
o O(S? x mU=I-D) x []Z142).

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

We know more about computing repetitive factorisations with small
width (RF-w)!

If |X] or k is a constant, then we can solve it in poly-time.

Theorem
RF-w can be solved in time
o O(k? x m* x |w|F*3),
o O(S? x mU=I-D) x []Z142).

Proof Sketch
Analogous to the proofs for RF-s.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

We know more about computing repetitive factorisations with small
width (RF-w)!

If |X] or k is a constant, then we can solve it in poly-time.

Theorem
RF-w can be solved in time
o O(k? x m* x |w|F*3),
o O(S? x mU=I-D) x []Z142).

Proof Sketch
Analogous to the proofs for RF-s.

However, k cannot be bounded by m (the width bound), only by [|w|-|‘

m

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-w is NP-complete even if m < 2.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-w is NP-complete even if m < 2.

HirTiNnG SET (HS)

Instance: U = {x1,...,2¢}, S1,...,5, CU and q € N.
Question: 3T CU with |T|<qand TNS; #0,1<i<n?

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-w is NP-complete even if m < 2.

HirTiNnG SET (HS)

Instance: U = {x1,...,2¢}, S1,...,5, CU and q € N.
Question: 3T CU with |T|<qand TNS; #0,1<i<n?

HS instance: (U, S1,...,Sn,q) with S; = {vi1,vi2, ..., vir}, 1 <i<n.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-w is NP-complete even if m < 2.

HirTiNnG SET (HS)
Instance: U = {x1,...,2¢}, S1,...,5, CU and q € N.
Question: 3T CU with |T|<qand TNS; #0,1<i<n?

HS instance: (U, S1,...,Sn,q) with S; = {vi1,vi2, ..., vir}, 1 <i<n.

RF-w instance:
E:UU{&,J’]lgign,l <j<r-—1}u{ce},

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-w is NP-complete even if m < 2.

HirTiNnG SET (HS)
Instance: U = {x1,...,2¢}, S1,...,5, CU and q € N.
Question: 3T CU with |T|<qand TNS; #0,1<i<n?

HS instance: (U, S1,...,Sn,q) with S; = {vi1,vi2, ..., vir}, 1 <i<n.
RF-w instance:

N=UU{S,;[1<i<n1<j<r—1}u{c},
w=C¢¢tvr¢vaC...¢vy,

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Theorem

RF-w is NP-complete even if m < 2.

HirTiNnG SET (HS)
Instance: U = {x1,...,2¢}, S1,...,5, CU and q € N.
Question: 3T CU with |T|<qand TNS; #0,1<i<n?

HS instance: (U, S1,...,Sn,q) with S; = {vi1,vi2, ..., vir}, 1 <i<n.

RF-w instance:

S—UU{S, [1<i<nl<j<r—1}U{c}
W= ¢Ev Guad. .. vy,

vi = yi1Si1vieSio. . Sy, 1 <i<n.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

TCUwith [T|<gand TNS; #0,1<i<n=

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

TCUwith [T|<gand TNS; #0,1<i<n=
w:¢.¢.vl.¢.v2.¢._...¢.fvn.¢7

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

TCUwith [T|<gand TNS; #0,1<i<n=

w=¢‘¢"vl'¢"U2‘¢'...'¢"Un‘¢,

U = yi,1$i,1 'yi,2$i,2 Tl yi,jifl$i,ji71 *Yig - $i,j¢yi7.7}:+1 et $i,r71yi,7’a
i? 1 S { S n, l/lj, S T7

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

TCUwith [T|<gand TNS; #0,1<i<n=

w:¢‘¢"vl‘¢"02‘¢'...'¢"Un‘¢,

vi = Yi1$i1 - yi2Sio o igi—18igi—1 Vi SigiYigier o Sir—1Yir
i? 1 S { S n, Ulj, S T7

has width 2 and c(p) <14 q¢+n(r —1).

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢v1¢/l}2¢¢/vn¢7

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢vl¢/l}2¢¢/vn¢7

w(p) <2 and ¢(p) < 1+ ¢+ n(r— 1) is maintained.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢v1¢/l}2¢¢/vn¢7

w(p) <2 and ¢(p) < 1+ ¢+ n(r— 1) is maintained.

Vi = Ui 19192927 3% 3 ... $ir—17i, has odd length =

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) <2 and c(p) <14 ¢q+n(r—1)

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢v1¢/l}2¢¢/vn¢7

w(p) <2 and ¢(p) < 1+ ¢+ n(r— 1) is maintained.

Vi = Ui 19192927 3% 3 ... $ir—17i, has odd length =
Vi=...- $i,j*l “Yij - $i,j PN (call Yij isolated)

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢v1¢/l}2¢¢/vn¢7

w(p) <2 and ¢(p) < 1+ ¢+ n(r— 1) is maintained.

Vi = Ui 19192927 3% 3 ... $ir—17i, has odd length =
Vi=...- $i,j*l “Yij - $i,j PN (call Yij isolated)

Let T be the set of all isolated elements.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢v1¢vz¢¢vn¢7

w(p) <2 and ¢(p) < 1+ ¢+ n(r— 1) is maintained.

vi = Yi19i19i 28 20:.38:3 .- $ir—1vi has odd length =
Vi=...- $i,j71 “Yij - $i,j PN (call Yij isolated)

Let T be the set of all isolated elements.
TNS; #0,1<i<n.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢vl¢/l}2¢¢/vn¢7

w(p) <2 and ¢(p) < 1+ ¢+ n(r— 1) is maintained.

Vi = Ui 19192927 3% 3 ... $ir—17i, has odd length =
Vi=...- $i,j71 “Yij - $i,j PN (call Yij isolated)

Let T be the set of all isolated elements.
TNS; #0,1<i<n.
sf(p) = {¢} U {all n(r — 1) factors with $, ;} UT.

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢vl¢/l}2¢¢/vn¢7

w(p) <2 and ¢(p) < 1+ ¢+ n(r— 1) is maintained.

Vi = Ui 19192927 3% 3 ... $ir—17i, has odd length =
Vi=...- $i,j71 “Yij - $i,j PN (call Yij isolated)

Let T be the set of all isolated elements.
TNS; #0,1<i<n.

sf(p) = {¢} U {all n(r — 1) factors with $, ;} UT.
clp)=|sfp)|=1+n(r—-1)+|T|<1l+n(r—1)+qg=

MAX/MIN REPETITIVE FACTORISATION SIZE/WIDTH

Let p be a factorisation of w with w(p) < 2 and c(p) <1+ q+n(r —1).

Split every z¢ and ¢z, z € U U {¢}, into = - ¢ and ¢ - x, respectively.
:>w:¢¢vl¢/l}2¢¢/vn¢7

w(p) <2 and ¢(p) < 1+ ¢+ n(r— 1) is maintained.

Vi = Ui 19192927 3% 3 ... $ir—17i, has odd length =
Vi=...- $i,j71 “Yij - $i,j PN (call Yij isolated)

Let T be the set of all isolated elements.
TNS; #0,1<i<n.

sf(p) = {¢} U {all n(r — 1) factors with $, ;} UT.
clp)=|sfp)|=1+n(r—-1)+|T|<1l+n(r—1)+qg=
T < q.

Thank you very much for your attention.

