Computing Equality-Free String Factorisations

Markus L. Schmid

Trier University, Germany

CiE 2015

Basic Concepts

A finite alphabet
strings
string factorisations
(daa, b, acca, bd) daa $\cdot \mathrm{b} \cdot \mathrm{acca} \cdot \mathrm{bd}$

String factorisations
Let $p=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ be a factorisation.

- $\operatorname{sf}(p)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ set of factors,
- $\mathrm{s}(p)=k$
size,
- $\mathrm{c}(p)=|\mathrm{sf}(p)|$
cardinality,
- $\mathrm{w}(p)=\max \left\{\left|u_{i}\right| \mid 1 \leq i \leq k\right\}$ width.

String factorisations

Let $p=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ be a factorisation.

- $\operatorname{sf}(p)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ set of factors, size,
cardinality,
- $\mathrm{w}(p)=\max \left\{\left|u_{i}\right| \mid 1 \leq i \leq k\right\}$ width.

Central notion of this talk

A factorisation p is equality-free if $\mathrm{s}(p)=\mathrm{c}(p)$.
(p is repetitive $\Leftrightarrow p$ is not equality-free).

String factorisations
Let $p=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ be a factorisation.

- $\operatorname{sf}(p)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ set of factors,
- $\mathrm{s}(p)=k$ size,
- $\mathrm{c}(p)=|\mathrm{sf}(p)|$ cardinality,
- $\mathrm{w}(p)=\max \left\{\left|u_{i}\right| \mid 1 \leq i \leq k\right\}$ width.

Central notion of this talk

A factorisation p is equality-free if $\mathrm{s}(p)=\mathrm{c}(p)$. (p is repetitive $\Leftrightarrow p$ is not equality-free).

Example

$p=\mathrm{aab} \cdot \mathrm{ba} \cdot \mathrm{cba} \cdot \mathrm{aab} \cdot \mathrm{ba} \cdot \mathrm{a} \mathrm{ab}$.

- $\operatorname{sf}(p)=\{$ aab, $\mathrm{ba}, \mathrm{cba}\}, \mathrm{s}(p)=6, \mathrm{c}(p)=3$ and $\mathrm{w}(p)=3$,
- p is not equality-free (i. e., p is repetitive).

Computing equality-free factorisations

Find equality-free factorisation with large size

Computing equality-free factorisations

Find equality-free factorisation with large size
abbcbaabbc

Computing equality-free factorisations

Find equality-free factorisation with large size

abbc • ba • abbc

Computing equality-free factorisations

Find equality-free factorisation with large size

$$
\mathrm{ab} \cdot \mathrm{bc} \cdot \mathrm{ba} \cdot \mathrm{ab} \cdot \mathrm{bc}
$$

Computing equality-free factorisations

Find equality-free factorisation with large size

$$
\mathrm{ab} \cdot \mathrm{bc} \cdot \mathrm{ba} \cdot \mathrm{abb} \cdot \mathrm{c}
$$

Computing equality-free factorisations

Find equality-free factorisation with large size

$$
\mathrm{ab} \cdot \mathrm{bc} \cdot \mathrm{ba} \cdot \mathrm{a} \cdot \mathrm{bb} \cdot \mathrm{c}
$$

Computing equality-free factorisations

Find equality-free factorisation with large size Can we do better than 6 ?

$$
\mathrm{ab} \cdot \mathrm{bc} \cdot \mathrm{ba} \cdot \mathrm{a} \cdot \mathrm{bb} \cdot \mathrm{c}
$$

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 6 ?
We need a, b and c as single factors!
abbcbaabbc

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 6 ?
We need a, b and c as single factors!
$\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{bcbaabb} \cdot \mathrm{c}$

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 6 ?
We need a, b and c as single factors!

$$
\mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{bc} \cdot \mathrm{ba} \cdot \mathrm{abb} \cdot \mathrm{c}
$$

Computing equality-free factorisations

Find equality-free factorisation with large size
Can we do better than 6? No!
We need a, b and c as single factors!

$$
\mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{bc} \cdot \mathrm{ba} \cdot \mathrm{abb} \cdot \mathrm{c}
$$

Computing equality-free factorisations

Find equality-free factorisation with small width
aabbccaabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

a \cdot abbccaabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

$a \cdot a b \cdot b c c a a b b c c$

Computing equality-free factorisations

Find equality-free factorisation with small width

$$
\mathrm{a} \cdot \mathrm{ab} \cdot \mathrm{~b} \cdot \mathrm{ccaabbcc}
$$

Computing equality-free factorisations

Find equality-free factorisation with small width

$$
\mathrm{a} \cdot \mathrm{ab} \cdot \mathrm{~b} \cdot \mathrm{c} \cdot \mathrm{caabbcc}
$$

Computing equality-free factorisations

Find equality-free factorisation with small width

$$
\mathrm{a} \cdot \mathrm{ab} \cdot \mathrm{~b} \cdot \mathrm{c} \cdot \mathrm{ca} \cdot \mathrm{abbcc}
$$

Computing equality-free factorisations

Find equality-free factorisation with small width

$$
\mathrm{a} \cdot \mathrm{ab} \cdot \mathrm{~b} \cdot \mathrm{c} \cdot \mathrm{ca} \cdot \mathrm{abb} \cdot \mathrm{cc}
$$

Computing equality-free factorisations

Find equality-free factorisation with small width Can we do better than 3 ?

$$
\mathrm{a} \cdot \mathrm{ab} \cdot \mathrm{~b} \cdot \mathrm{c} \cdot \mathrm{ca} \cdot \mathrm{abb} \cdot \mathrm{cc}
$$

Computing equality-free factorisations

Find equality-free factorisation with small width Can we do better than 3? Yes!

$$
\mathrm{aa} \cdot \mathrm{~b} \cdot \mathrm{bc} \cdot \mathrm{ca} \cdot \mathrm{a} \cdot \mathrm{bb} \cdot \mathrm{cc}
$$

Computing equality-free factorisations

Find equality-free factorisation with small width
aabbccaabbccaabbcc

Computing equality-free factorisations

Find equality-free factorisation with small width

$$
\mathrm{aab} \cdot \mathrm{bcc} \cdot \mathrm{aa} \cdot \mathrm{bbc} \cdot \mathrm{caa} \cdot \mathrm{bb} \cdot \mathrm{cc}
$$

Computing equality-free factorisations

Find equality-free factorisation with small width

$$
\mathrm{aab} \cdot \mathrm{bcc} \cdot \mathrm{aa} \cdot \mathrm{bbc} \cdot \mathrm{caa} \cdot \mathrm{bb} \cdot \mathrm{cc}
$$

Computing equality-free factorisations

Given a string w and $m \in \mathbb{N}$

- \exists equality-free factorisation p of w with $\mathrm{s}(p) \geq m$?

EF-s

- \exists equality-free factorisation p of w with $\mathrm{w}(p) \leq m$?

Computing repetitive factorisations

What is a good measure of repetitiveness?

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!
$\mathrm{c}(p)=\mathbf{s}(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $\mathrm{c}(p)=1 \Rightarrow p=u \cdot u \cdots u \Rightarrow$ very repetitive.

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!
$\mathrm{c}(p)=\mathbf{s}(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $\mathrm{c}(p)=1 \Rightarrow p=u \cdot u \cdots u \Rightarrow$ very repetitive.
$\mathrm{c}(p) \leq 3, \mathrm{~s}(p) \geq 5$
aabcacaaabaab

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!
$\mathrm{c}(p)=\mathbf{s}(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $\mathrm{c}(p)=1 \Rightarrow p=u \cdot u \cdots u \Rightarrow$ very repetitive.
$\mathrm{c}(p) \leq 3, \mathrm{~s}(p) \geq 5$

$$
\mathrm{a} \cdot \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{c} \cdot \mathrm{a} \cdot \mathrm{c} \cdot \mathrm{a} \cdot \mathrm{a} \cdot \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{a} \cdot \mathrm{a} \cdot \mathrm{~b}
$$

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!
$\mathrm{c}(p)=\mathbf{s}(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $\mathrm{c}(p)=1 \Rightarrow p=u \cdot u \cdots u \Rightarrow$ very repetitive.
$\mathrm{c}(p) \leq 2, \mathrm{~s}(p) \geq 5$

$$
\mathrm{a} \cdot \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{c} \cdot \mathrm{a} \cdot \mathrm{c} \cdot \mathrm{a} \cdot \mathrm{a} \cdot \mathrm{a} \cdot \mathrm{~b} \cdot \mathrm{a} \cdot \mathrm{a} \cdot \mathrm{~b}
$$

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!
$\mathrm{c}(p)=\mathbf{s}(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $\mathrm{c}(p)=1 \Rightarrow p=u \cdot u \cdots u \Rightarrow$ very repetitive.
$\mathrm{c}(p) \leq 2, \mathrm{~s}(p) \geq 5$

$$
\mathrm{aab} \cdot \mathrm{ca} \cdot \mathrm{ca} \cdot \mathrm{aab} \cdot \mathrm{aab}
$$

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!
$\mathrm{c}(p)=\mathbf{s}(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $\mathrm{c}(p)=1 \Rightarrow p=u \cdot u \cdots u \Rightarrow$ very repetitive.
$\mathrm{c}(p) \leq 2, \mathrm{~s}(p)>5 ?$

$$
\mathrm{aab} \cdot \mathrm{ca} \cdot \mathrm{ca} \cdot \mathrm{aab} \cdot \mathrm{aab}
$$

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!
$\mathrm{c}(p)=\mathbf{s}(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $\mathrm{c}(p)=1 \Rightarrow p=u \cdot u \cdots u \Rightarrow$ very repetitive.
$\mathrm{c}(p) \leq 2, \mathrm{w}(p) \leq 2 ?$

$$
\mathrm{aab} \cdot \mathrm{ca} \cdot \mathrm{ca} \cdot \mathrm{aab} \cdot \mathrm{aab}
$$

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality $\mathrm{c}(p)$!
$\mathrm{c}(p)=\mathrm{s}(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $\mathrm{c}(p)=1 \Rightarrow p=u \cdot u \cdots u \Rightarrow$ very repetitive.
$\mathrm{c}(p) \leq 2, \mathrm{w}(p) \leq 2 ?$

$$
\mathrm{aab} \cdot \mathrm{ca} \cdot \mathrm{ca} \cdot \mathrm{aab} \cdot \mathrm{aab}
$$

Computing repetitive factorisations

Given a string w and $m, k \in \mathbb{N}$

- \exists factorisation p of w with $\mathrm{c}(p) \leq k, \mathrm{~s}(p) \geq m$?
- \exists factorisation p of w with $\mathrm{c}(p) \leq k, \mathrm{w}(p) \leq m$?

Motivation: equality-free factorisations with small width

Collision-aware oligo design for gene synthesis
Goal: Construct long DNA strands.
Problem: Only very short pieces of DNA can be reliably constructed. Solution: Find short pieces of DNA that will self-assemble.

Motivation: equality-free factorisations with small width

Collision-aware oligo design for gene synthesis
Goal: Construct long DNA strands.
Problem: Only very short pieces of DNA can be reliably constructed. Solution: Find short pieces of DNA that will self-assemble.
\Rightarrow
Find a factorisation p of the DNA strand with

- $\mathrm{w}(p)$ is small,
- no factor is the complement of another,
- ...
- ...

Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w ?

If α is "simple enough", then this can be decided in poly-time.

Motivation: equality-free factorisations with large size

Pattern matching with variables
Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w ?

If α is "simple enough", then this can be decided in poly-time.

Injective pattern matching with variables
Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w and different variables must be replaced by different strings?

Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w ?

If α is "simple enough", then this can be decided in poly-time.

Injective pattern matching with variables

Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w and different variables must be replaced by different strings?

For the "simple" patterns $x_{1} x_{2} \ldots x_{n}$ this is equivalent to finding equality-free factorisations with size n.

Motivation: repetitive factorisations

Let p be a factorisation with $\operatorname{sf}(p)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, i. e., $p=u_{j_{1}} \cdot u_{j_{2}} \cdot \ldots \cdot u_{j_{n}}, 1 \leq j_{i} \leq k, 1 \leq i \leq k$.

Motivation: repetitive factorisations

Let p be a factorisation with $\operatorname{sf}(p)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, i. e.,
$p=u_{j_{1}} \cdot u_{j_{2}} \cdot \ldots \cdot u_{j_{n}}, 1 \leq j_{i} \leq k, 1 \leq i \leq k$.
The corresponding word can be represented by $j_{1} j_{2} \ldots j_{n}$ and $\operatorname{sf}(p)$

Complexity

Theorem (Condon, Maňuch, Thachuk, 2008)
Computing EF-w is NP-complete (even if $m \leq 2$ or $|\Sigma| \leq 2$).

Theorem (Fernau, Manea, Mercaş, S., 2015)
EF-s is NP-complete.

Complexity

Theorem (Condon, Maňuch, Thachuk, 2008)
Computing EF-w is NP-complete (even if $m \leq 2$ or $|\Sigma| \leq 2$).

Theorem (Fernau, Manea, Mercaş, S., 2015) EF-s is NP-complete.

Contribution of this paper

Revisit the complexity of these problems (and RF-s, RF-w), also from the parameterised point of view.

Parameterised Complexity

Parameterised problem K :
instances are of the form (x, k), where k is the parameter

Parameterised Complexity

Parameterised problem K :
instances are of the form (x, k), where k is the parameter
K is fixed-parameter tractable (in FPT) \Longleftrightarrow
K can be solved in $\mathcal{O}(f(k) \times p(|x|))$ (for recursive f and polynomial p).

Parameterised Complexity

Parameterised problem K :
instances are of the form (x, k), where k is the parameter
K is fixed-parameter tractable (in FPT) \Longleftrightarrow
K can be solved in $\mathcal{O}(f(k) \times p(|x|))$ (for recursive f and polynomial p).
K is NP-hard even if $k \leq c$ for constant $c \Rightarrow K \notin \mathrm{FPT}$ (unless $\mathrm{P}=\mathrm{NP}$).

Equality-Free Factor Cover (EFFC)

Equality-free factor cover
Given a string w and a set F of strings,
\exists equality-free factorisation p of w with $\operatorname{sf}(p) \subseteq F$?

Equality-Free Factor Cover (EFFC)

Equality-free factor cover
Given a string w and a set F of strings,
\exists equality-free factorisation p of w with $\operatorname{sf}(p) \subseteq F$?
Theorem
EFFC is NP-complete (even for fixed Σ with $|\Sigma|=2$).

Equality-Free Factor Cover (EFFC)

Equality-free factor cover

Given a string w and a set F of strings,
\exists equality-free factorisation p of w with $\mathbf{s f}(p) \subseteq F$?

Theorem

EFFC is NP-complete (even for fixed Σ with $|\Sigma|=2$).

$$
\begin{aligned}
& \text { Proof Sketch } \\
& \text { Let } w \in \Sigma^{*}, F=\left\{v\left|w=u v u^{\prime},|v| \leq m\right\} .\right.
\end{aligned}
$$

Equality-Free Factor Cover (EFFC)

Equality-free factor cover
Given a string w and a set F of strings,
\exists equality-free factorisation p of w with $\operatorname{sf}(p) \subseteq F$?

Theorem

EFFC is NP-complete (even for fixed Σ with $|\Sigma|=2$).

Proof Sketch

Let $w \in \Sigma^{*}, F=\left\{v\left|w=u v u^{\prime},|v| \leq m\right\}\right.$.
w has equality-free factorisation p with $\mathrm{w}(p) \leq m$ w has equality-free factorisation p^{\prime} with $\operatorname{sf}\left(p^{\prime}\right) \subseteq F$.

Equality-Free Factor Cover (EFFC)

Theorem
EFFC can be solved in time $\mathcal{O}\left(|w|^{|F|+1}\right)$.

Equality-Free Factor Cover (EFFC)

Theorem

EFFC can be solved in time $\mathcal{O}\left(|w|^{|F|+1}\right)$.

Proof Sketch

Let $w \in \Sigma^{*}$ and let p be an equality-free factorisation for w with $\mathrm{sf}(p) \subseteq F$.

Equality-Free Factor Cover (EFFC)

Theorem

EFFC can be solved in time $\mathcal{O}\left(|w|^{|F|+1}\right)$.

Proof Sketch

Let $w \in \Sigma^{*}$ and let p be an equality-free factorisation for w with $\mathrm{sf}(p) \subseteq F$.

- $\mathbf{s}(p) \leq|w|$
- $\mathbf{s}(p) \leq|F|$

Equality-Free Factor Cover (EFFC)

Theorem

EFFC can be solved in time $\mathcal{O}\left(|w|^{|F|+1}\right)$.

Proof Sketch

Let $w \in \Sigma^{*}$ and let p be an equality-free factorisation for w with $\mathrm{sf}(p) \subseteq F$.

- $\mathbf{s}(p) \leq|w|$
- $\mathbf{s}(p) \leq|F|$

Enumerate all equality-free factorisations with $\operatorname{sf}(p) \subseteq F$ and $\mathbf{s}(p) \leq \min \{|w|,|F|\}$.

Equality-Free Factor Cover (EFFC)

Theorem
The Problem EFFC can be solved in time $\mathcal{O}\left(|w| \times\left(2^{|F|}-1\right) \times|F|!\right)$.

Equality-Free Factor Cover (EFFC)

Theorem

The Problem EFFC can be solved in time $\mathcal{O}\left(|w| \times\left(2^{|F|}-1\right) \times|F|!\right)$.

Proof Sketch

$$
\begin{aligned}
& w \in \Sigma^{*}, F=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\} \\
& \Gamma=\{1,2, \ldots, \ell\}, h: \Gamma^{*} \rightarrow \Sigma^{*}, h(i)=u_{i}, i \in \Gamma
\end{aligned}
$$

Equality-Free Factor Cover (EFFC)

Theorem

The Problem EFFC can be solved in time $\mathcal{O}\left(|w| \times\left(2^{|F|}-1\right) \times|F|!\right)$.

Proof Sketch

$$
\begin{aligned}
& w \in \Sigma^{*}, F=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\} \\
& \Gamma=\{1,2, \ldots, \ell\}, h: \Gamma^{*} \rightarrow \Sigma^{*}, h(i)=u_{i}, i \in \Gamma
\end{aligned}
$$

w has equality-free factorisation p with $\operatorname{sf}(p) \subseteq F \Longleftrightarrow$ $\exists v \in \Gamma^{*}$ with $|v|_{i} \leq 1, i \in \Gamma, h(v)=w$.

Equality-Free Factor Cover (EFFC)

Theorem

The Problem EFFC can be solved in time $\mathcal{O}\left(|w| \times\left(2^{|F|}-1\right) \times|F|!\right)$.

Proof Sketch

$$
\begin{aligned}
& w \in \Sigma^{*}, F=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\} \\
& \Gamma=\{1,2, \ldots, \ell\}, h: \Gamma^{*} \rightarrow \Sigma^{*}, h(i)=u_{i}, i \in \Gamma
\end{aligned}
$$

w has equality-free factorisation p with $\operatorname{sf}(p) \subseteq F \Longleftrightarrow$ $\exists v \in \Gamma^{*}$ with $|v|_{i} \leq 1, i \in \Gamma, h(v)=w$.
There are at most $\left(2^{|F|}-1\right) \times|F|$! such words v.

Factor Cover (FC)

Theorem
FC can be solved in time $\mathcal{O}\left(|F| \times|w|^{2}\right)$.

Factor Cover (FC)

Theorem

FC can be solved in time $\mathcal{O}\left(|F| \times|w|^{2}\right)$.

Proof Sketch

Dynamic programming + KMP.

Factor Cover (FC)

Theorem

FC can be solved in time $\mathcal{O}\left(|F| \times|w|^{2}\right)$.

Proof Sketch

Dynamic programming + KMP.

Remark: We shall need this algorithm later for computing repetitive factorisations with large size or small width.

Max/Min Equality-Free Fact. Size/Width

Theorem (Condon, Maňuch, Thachuk, 2008)
EF-w is NP-complete (even if $m \leq 2$ or $|\Sigma| \leq 2$).

Max/Min Equality-Free Fact. Size/Width

Theorem (Condon, Maňuch, Thachuk, 2008)
EF-w is NP-complete (even if $m \leq 2$ or $|\Sigma| \leq 2$).

Theorem

EF-w can be solved in time $\mathcal{O}\left(m^{m^{2} \times|\Sigma|^{m}+2} \times|\Sigma|^{m}\right)$.

Max/Min Equality-Free Fact. Size/Width

Theorem (Condon, Maňuch, Thachuk, 2008) EF-w is NP-complete (even if $m \leq 2$ or $|\Sigma| \leq 2$).

Theorem

EF-w can be solved in time $\mathcal{O}\left(m^{m^{2} \times|\Sigma|^{m}+2} \times|\Sigma|^{m}\right)$.

Proof Sketch

Let p be equality-free factorisation of w with $\mathrm{w}(p) \leq m$.

Max/Min Equality-Free Fact. Size/Width

Theorem (Condon, Maňuch, Thachuk, 2008) EF-w is NP-complete (even if $m \leq 2$ or $|\Sigma| \leq 2$).

Theorem

EF-w can be solved in time $\mathcal{O}\left(m^{m^{2} \times|\Sigma|^{m}+2} \times|\Sigma|^{m}\right)$.

Proof Sketch

Let p be equality-free factorisation of w with $\mathrm{w}(p) \leq m$.
$\Rightarrow \mathbf{s}(p) \leq m \times|\Sigma|^{m} \Rightarrow|w| \leq m^{2} \times|\Sigma|^{m}$.

Max/Min Equality-Free Fact. Size/Width

Theorem (Condon, Maňuch, Thachuk, 2008)
EF-w is NP-complete (even if $m \leq 2$ or $|\Sigma| \leq 2$).

Theorem

EF-w can be solved in time $\mathcal{O}\left(m^{m^{2} \times|\Sigma|^{m}+2} \times|\Sigma|^{m}\right)$.

Proof Sketch

Let p be equality-free factorisation of w with $\mathrm{w}(p) \leq m$.
$\Rightarrow \mathbf{s}(p) \leq m \times|\Sigma|^{m} \Rightarrow|w| \leq m^{2} \times|\Sigma|^{m}$.
Check $|w| \leq m^{2} \times|\Sigma|^{m}$, if yes, enumerate all factorisations with width of at most m.

Max/Min Equality-Free Fact. Size/Width

Dichotomy for EF-w w.r.t. parameters m and $|\Sigma|$:

- $m \leq c$ and $|\Sigma|$ unbounded: NP-complete if and only if $c \geq 2$.

Max/Min Equality-Free Fact. Size/Width

Dichotomy for EF-w w.r.t. parameters m and $|\Sigma|$:

- $m \leq c$ and $|\Sigma|$ unbounded: NP-complete if and only if $c \geq 2$.
- $|\Sigma| \leq c$ and m unbounded: NP-complete if and only if $c \geq 2$.

Max/Min Equality-Free Fact. Size/Width

Dichotomy for EF-w w.r.t. parameters m and $|\Sigma|$:

- $m \leq c$ and $|\Sigma|$ unbounded: NP-complete if and only if $c \geq 2$.
- $|\Sigma| \leq c$ and m unbounded: NP-complete if and only if $c \geq 2$.
- $|\Sigma| \leq c$ and $m \leq c^{\prime}$: poly-time.

Max/Min Equality-Free Fact. Size/Width

Dichotomy for EF-w w.r.t. parameters m and $|\Sigma|$:

- $m \leq c$ and $|\Sigma|$ unbounded: NP-complete if and only if $c \geq 2$.
- $|\Sigma| \leq c$ and m unbounded: NP-complete if and only if $c \geq 2$.
- $|\Sigma| \leq c$ and $m \leq c^{\prime}$: poly-time.

What about equality-free factorisations with large size (EF-s)??

Max/Min Equality-Free Fact. Size/Width

Open Problem
Is EF-s NP-complete for fixed alphabets?
Reminder: In the real world, there are only fixed alphabets!

Max/Min Equality-Free Fact. Size/Width

Open Problem

Is EF-s NP-complete for fixed alphabets?
Reminder: In the real world, there are only fixed alphabets!
At least, poly-time (fpt) if m is bounded:
Theorem
EF-s can be solved in time $\mathcal{O}\left(\left(\frac{m^{2}+m}{2}-1\right)^{m}\right)$.

Max/Min Equality-Free Fact. Size/Width

Open Problem

Is EF-s NP-complete for fixed alphabets?
Reminder: In the real world, there are only fixed alphabets!
At least, poly-time (fpt) if m is bounded:
Theorem
EF-s can be solved in time $\mathcal{O}\left(\left(\frac{m^{2}+m}{2}-1\right)^{m}\right)$.

Proof Sketch

$|w| \geq \Sigma_{i=1}^{m} i=\frac{m^{2}+m}{2} \Rightarrow$ split w into factors of different lengths.

Max/Min Equality-Free Fact. Size/Width

Open Problem

Is EF-s NP-complete for fixed alphabets?
Reminder: In the real world, there are only fixed alphabets!
At least, poly-time (fpt) if m is bounded:
Theorem
EF-s can be solved in time $\mathcal{O}\left(\left(\frac{m^{2}+m}{2}-1\right)^{m}\right)$.

Proof Sketch

$|w| \geq \Sigma_{i=1}^{m} i=\frac{m^{2}+m}{2} \Rightarrow$ split w into factors of different lengths.
$|w| \leq \frac{m^{2}+m}{2}-1 \Rightarrow$ enumerate all factorisations of size m.

Max/Min Repetitive Factorisation Size/Width

We have three parameters:

- | $\Sigma \mid$,
- m (size/width bound),
- k (bound on the cardinality).

Max/Min Repetitive Factorisation Size/Width

We have three parameters:

- | $\Sigma \mid$,
- m (size/width bound),
- k (bound on the cardinality).

Open Problem

 Is RF-s NP-complete?
Max/Min Repetitive Factorisation Size/Width

We have three parameters:

- | $\Sigma \mid$,
- m (size/width bound),
- k (bound on the cardinality).

Open Problem Is RF-s NP-complete?

However, if $|\Sigma|, m$ or k is a constant, then we can solve it in poly-time.

Max/Min Repetitive Factorisation Size/Width

Theorem

RF-s can be solved in time

- $\mathcal{O}\left(k^{2} \times|w|^{2 k+3}\right)$,
- $\mathcal{O}\left(|\Sigma|^{2} \times|w|^{2|\Sigma|+1}\right)$,
- $\mathcal{O}\left(m^{2} \times|w|^{2 m+1}\right)$.

Max/Min Repetitive Factorisation Size/Width

Theorem
RF-s can be solved in time

- $\mathcal{O}\left(k^{2} \times|w|^{2 k+3}\right)$,
- $\mathcal{O}\left(|\Sigma|^{2} \times|w|^{2|\Sigma|+1}\right)$,
- $\mathcal{O}\left(m^{2} \times|w|^{2 m+1}\right)$.

Proof Sketch

Let $F_{w}=\{u \mid u$ is a factor of $w\}$.

Max/Min Repetitive Factorisation Size/Width

Theorem
RF-s can be solved in time

- $\mathcal{O}\left(k^{2} \times|w|^{2 k+3}\right)$,
- $\mathcal{O}\left(|\Sigma|^{2} \times|w|^{2|\Sigma|+1}\right)$,
- $\mathcal{O}\left(m^{2} \times|w|^{2 m+1}\right)$.

Proof Sketch

Let $F_{w}=\{u \mid u$ is a factor of $w\}$.
Problem FC: Does w have a factorisation p with $\operatorname{sf}(p) \subseteq F$ for given F ? Solve FC on every $F \subseteq F_{w}$ with $|F| \leq k$.

Max/Min Repetitive Factorisation Size/Width

Theorem
RF-s can be solved in time

- $\mathcal{O}\left(k^{2} \times|w|^{2 k+3}\right)$,
- $\mathcal{O}\left(|\Sigma|^{2} \times|w|^{2|\Sigma|+1}\right)$,
- $\mathcal{O}\left(m^{2} \times|w|^{2 m+1}\right)$.

Proof Sketch

Let $F_{w}=\{u \mid u$ is a factor of $w\}$.
Problem FC: Does w have a factorisation p with $\operatorname{sf}(p) \subseteq F$ for given F ? Solve FC on every $F \subseteq F_{w}$ with $|F| \leq k$.
$k \geq|\Sigma| \Rightarrow$ split w into factors of size 1 .
$k \geq m \Rightarrow$ any factorisation of size m is fine.

Max/Min Repetitive Factorisation Size/Width

We know more about computing repetitive factorisations with small width (RF-w)!

Max/Min Repetitive Factorisation Size/Width

We know more about computing repetitive factorisations with small width (RF-w)!

If $|\Sigma|$ or k is a constant, then we can solve it in poly-time.

Theorem

RF-w can be solved in time

- $\mathcal{O}\left(k^{2} \times m^{k} \times|w|^{k+3}\right)$,
- $\mathcal{O}\left(|\Sigma|^{2} \times m^{(|\Sigma|-1)} \times|w|^{|\Sigma|+2}\right)$.

Max/Min Repetitive Factorisation Size/Width

We know more about computing repetitive factorisations with small width (RF-w)!

If $|\Sigma|$ or k is a constant, then we can solve it in poly-time.

Theorem

RF-w can be solved in time

- $\mathcal{O}\left(k^{2} \times m^{k} \times|w|^{k+3}\right)$,
- $\mathcal{O}\left(|\Sigma|^{2} \times m^{(|\Sigma|-1)} \times|w|^{|\Sigma|+2}\right)$.

Proof Sketch

Analogous to the proofs for RF-s.

Max/Min Repetitive Factorisation Size/Width

We know more about computing repetitive factorisations with small width (RF-w)!

If $|\Sigma|$ or k is a constant, then we can solve it in poly-time.

Theorem

RF-w can be solved in time

- $\mathcal{O}\left(k^{2} \times m^{k} \times|w|^{k+3}\right)$,
- $\mathcal{O}\left(|\Sigma|^{2} \times m^{(|\Sigma|-1)} \times|w|^{|\Sigma|+2}\right)$.

Proof Sketch

Analogous to the proofs for RF-s.

However, k cannot be bounded by m (the width bound), only by $\left\lceil\frac{|w|}{m}\right\rceil$.

Max/Min Repetitive Factorisation Size/Width

Theorem
RF-w is NP-complete even if $m \leq 2$.

Max/Min Repetitive Factorisation Size/Width

Theorem

RF-w is NP-complete even if $m \leq 2$.

Hitting Set (HS)
Instance: $U=\left\{x_{1}, \ldots, x_{\ell}\right\}, S_{1}, \ldots, S_{n} \subseteq U$ and $q \in \mathbb{N}$. Question: $\exists T \subseteq U$ with $|T| \leq q$ and $T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$?

Max/Min Repetitive Factorisation Size/Width

Theorem

RF-w is NP-complete even if $m \leq 2$.

Hitting Set (HS)
Instance: $U=\left\{x_{1}, \ldots, x_{\ell}\right\}, S_{1}, \ldots, S_{n} \subseteq U$ and $q \in \mathbb{N}$.
Question: $\exists T \subseteq U$ with $|T| \leq q$ and $T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$?
HS instance: $\left(U, S_{1}, \ldots, S_{n}, q\right)$ with $S_{i}=\left\{y_{i, 1}, y_{i, 2}, \ldots, y_{i, r}\right\}, 1 \leq i \leq n$.

Max/Min Repetitive Factorisation Size/Width

Theorem

RF-w is NP-complete even if $m \leq 2$.

Hitting Set (HS)
Instance: $U=\left\{x_{1}, \ldots, x_{\ell}\right\}, S_{1}, \ldots, S_{n} \subseteq U$ and $q \in \mathbb{N}$.
Question: $\exists T \subseteq U$ with $|T| \leq q$ and $T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$?
HS instance: $\left(U, S_{1}, \ldots, S_{n}, q\right)$ with $S_{i}=\left\{y_{i, 1}, y_{i, 2}, \ldots, y_{i, r}\right\}, 1 \leq i \leq n$.
RF-w instance:
$\Sigma=U \cup\left\{\$_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq r-1\right\} \cup\{\phi\}$,

Max/Min Repetitive Factorisation Size/Width

Theorem

RF-w is NP-complete even if $m \leq 2$.

Hitting Set (HS)
Instance: $U=\left\{x_{1}, \ldots, x_{\ell}\right\}, S_{1}, \ldots, S_{n} \subseteq U$ and $q \in \mathbb{N}$.
Question: $\exists T \subseteq U$ with $|T| \leq q$ and $T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$?
HS instance: $\left(U, S_{1}, \ldots, S_{n}, q\right)$ with $S_{i}=\left\{y_{i, 1}, y_{i, 2}, \ldots, y_{i, r}\right\}, 1 \leq i \leq n$.
RF-w instance:
$\Sigma=U \cup\left\{\$_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq r-1\right\} \cup\{\phi\}$,
$w=\phi \Phi v_{1} \phi v_{2} \Phi \ldots \phi v_{n} \Phi$,

Max/Min Repetitive Factorisation Size/Width

Theorem

RF-w is NP-complete even if $m \leq 2$.

Hitting Set (HS)
Instance: $U=\left\{x_{1}, \ldots, x_{\ell}\right\}, S_{1}, \ldots, S_{n} \subseteq U$ and $q \in \mathbb{N}$.
Question: $\exists T \subseteq U$ with $|T| \leq q$ and $T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$?
HS instance: $\left(U, S_{1}, \ldots, S_{n}, q\right)$ with $S_{i}=\left\{y_{i, 1}, y_{i, 2}, \ldots, y_{i, r}\right\}, 1 \leq i \leq n$.
RF-w instance:
$\Sigma=U \cup\left\{\$_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq r-1\right\} \cup\{\phi\}$,
$w=\Phi \subset v_{1} \oplus v_{2} \oplus \ldots \Phi v_{n} \Phi$,
$v_{i}=y_{i, 1} \$_{i, 1} y_{i, 2} \$_{i, 2} \ldots \$_{i, r-1} y_{i, r}, 1 \leq i \leq n$.

Max/Min Repetitive Factorisation Size/Width

$T \subseteq U$ with $|T| \leq q$ and $T \cap S_{i} \neq \emptyset, 1 \leq i \leq n \Rightarrow$

Max/Min Repetitive Factorisation Size/Width

$$
\begin{aligned}
& T \subseteq U \text { with }|T| \leq q \text { and } T \cap S_{i} \neq \emptyset, 1 \leq i \leq n \Rightarrow \\
& w=\phi \cdot \phi \cdot v_{1} \cdot \phi \cdot v_{2} \cdot \phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi,
\end{aligned}
$$

Max/Min Repetitive Factorisation Size/Width

$T \subseteq U$ with $|T| \leq q$ and $T \cap S_{i} \neq \emptyset, 1 \leq i \leq n \Rightarrow$
$w=\Phi \cdot \Phi \cdot v_{1} \cdot \Phi \cdot v_{2} \cdot \Phi \cdot \ldots \cdot \Phi \cdot v_{n} \cdot \Phi$,
$v_{i}=y_{i, 1} \$_{i, 1} \cdot y_{i, 2} \$_{i, 2} \cdot \ldots \cdot y_{i, j_{i}-1} \$_{i, j_{i}-1} \cdot y_{i, j_{i}} \cdot \$_{i, j_{i}} y_{i, j_{i}+1} \cdot \ldots \cdot \$_{i, r-1} y_{i, r}$,
$i, 1 \leq i \leq n, y_{i, j_{i}} \in T$,

Max/Min Repetitive Factorisation Size/Width

$T \subseteq U$ with $|T| \leq q$ and $T \cap S_{i} \neq \emptyset, 1 \leq i \leq n \Rightarrow$
$w=\Phi \cdot \Phi \cdot v_{1} \cdot \Phi \cdot v_{2} \cdot \Phi \cdot \ldots \cdot \Phi \cdot v_{n} \cdot \Phi$,
$v_{i}=y_{i, 1} \$_{i, 1} \cdot y_{i, 2} \$_{i, 2} \cdot \ldots \cdot y_{i, j_{i}-1} \$_{i, j_{i}-1} \cdot y_{i, j_{i}} \cdot \$_{i, j_{i}} y_{i, j_{i}+1} \cdot \ldots \cdot \$_{i, r-1} y_{i, r}$, $i, 1 \leq i \leq n, y_{i, j_{i}} \in T$,
has width 2 and $\mathrm{c}(p) \leq 1+q+n(r-1)$.

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$.

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\Phi \cdot \phi \cdot v_{1} \cdot \Phi \cdot v_{2} \cdot \Phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi$,

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\phi \cdot \phi \cdot v_{1} \cdot \phi \cdot v_{2} \cdot \phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi$, $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$ is maintained.

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\phi \cdot \phi \cdot v_{1} \cdot \phi \cdot v_{2} \cdot \phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi$, $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$ is maintained.
$v_{i}=y_{i, 1} \$_{i, 1} y_{i, 2} \$_{i, 2} y_{i, 3} \$_{i, 3} \ldots \$_{i, r-1} y_{i, r}$ has odd length \Rightarrow

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\phi \cdot \Phi \cdot v_{1} \cdot \phi \cdot v_{2} \cdot \phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi$, $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$ is maintained.
$v_{i}=y_{i, 1} \$_{i, 1} y_{i, 2} \$_{i, 2} y_{i, 3} \$_{i, 3} \ldots \$_{i, r-1} y_{i, r}$ has odd length \Rightarrow
$v_{i}=\ldots \cdot \$_{i, j-1} \cdot y_{i, j} \cdot \$_{i, j} \ldots\left(\right.$ call $y_{i, j}$ isolated $)$

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\phi \cdot \phi \cdot v_{1} \cdot \phi \cdot v_{2} \cdot \phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi$, $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$ is maintained.
$v_{i}=y_{i, 1} \$_{i, 1} y_{i, 2} \$_{i, 2} y_{i, 3} \$_{i, 3} \ldots \$_{i, r-1} y_{i, r}$ has odd length \Rightarrow
$v_{i}=\ldots \cdot \$_{i, j-1} \cdot y_{i, j} \cdot \$_{i, j} \ldots\left(\right.$ call $y_{i, j}$ isolated $)$
Let T be the set of all isolated elements.

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\Phi \cdot \Phi \cdot v_{1} \cdot \Phi \cdot v_{2} \cdot \Phi \cdot \ldots \cdot \Phi \cdot v_{n} \cdot \Phi$, $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$ is maintained.
$v_{i}=y_{i, 1} \$_{i, 1} y_{i, 2} \$_{i, 2} y_{i, 3} \$_{i, 3} \ldots \$_{i, r-1} y_{i, r}$ has odd length \Rightarrow
$v_{i}=\ldots \cdot \$_{i, j-1} \cdot y_{i, j} \cdot \$_{i, j} \ldots\left(\right.$ call $y_{i, j}$ isolated $)$
Let T be the set of all isolated elements.
$T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$.

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\phi \cdot \Phi \cdot v_{1} \cdot \phi \cdot v_{2} \cdot \phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi$, $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$ is maintained.
$v_{i}=y_{i, 1} \$_{i, 1} y_{i, 2} \$_{i, 2} y_{i, 3} \$_{i, 3} \ldots \$_{i, r-1} y_{i, r}$ has odd length \Rightarrow $v_{i}=\ldots \cdot \$_{i, j-1} \cdot y_{i, j} \cdot \$_{i, j} \ldots\left(\right.$ call $y_{i, j}$ isolated $)$

Let T be the set of all isolated elements.
$T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$.
$\operatorname{sf}(p)=\{\phi\} \cup\left\{\right.$ all $n(r-1)$ factors with $\left.\$_{i, j}\right\} \cup T$.

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\phi \cdot \Phi \cdot v_{1} \cdot \phi \cdot v_{2} \cdot \phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi$, $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$ is maintained.
$v_{i}=y_{i, 1} \$_{i, 1} y_{i, 2} \$_{i, 2} y_{i, 3} \$_{i, 3} \ldots \$_{i, r-1} y_{i, r}$ has odd length \Rightarrow $v_{i}=\ldots \cdot \$_{i, j-1} \cdot y_{i, j} \cdot \$_{i, j} \ldots\left(\right.$ call $y_{i, j}$ isolated $)$

Let T be the set of all isolated elements.
$T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$.
$\operatorname{sf}(p)=\{\phi\} \cup\left\{\right.$ all $n(r-1)$ factors with $\left.\$_{i, j}\right\} \cup T$.
$\mathrm{c}(p)=|\mathrm{sf}(p)|=1+n(r-1)+|T| \leq 1+n(r-1)+q \Rightarrow$

Max/Min Repetitive Factorisation Size/Width

Let p be a factorisation of w with $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$. Split every $x \Phi$ and $\phi x, x \in U \cup\{\phi\}$, into $x \cdot \Phi$ and $\Phi \cdot x$, respectively. $\Rightarrow w=\phi \cdot \Phi \cdot v_{1} \cdot \phi \cdot v_{2} \cdot \phi \cdot \ldots \cdot \phi \cdot v_{n} \cdot \phi$, $\mathrm{w}(p) \leq 2$ and $\mathrm{c}(p) \leq 1+q+n(r-1)$ is maintained.
$v_{i}=y_{i, 1} \$_{i, 1} y_{i, 2} \$_{i, 2} y_{i, 3} \$_{i, 3} \ldots \$_{i, r-1} y_{i, r}$ has odd length \Rightarrow $v_{i}=\ldots \cdot \$_{i, j-1} \cdot y_{i, j} \cdot \$_{i, j} \ldots\left(\right.$ call $y_{i, j}$ isolated $)$

Let T be the set of all isolated elements.
$T \cap S_{i} \neq \emptyset, 1 \leq i \leq n$.
$\operatorname{sf}(p)=\{\phi\} \cup\left\{\right.$ all $n(r-1)$ factors with $\left.\$_{i, j}\right\} \cup T$.
$\mathrm{c}(p)=|\mathrm{sf}(p)|=1+n(r-1)+|T| \leq 1+n(r-1)+q \Rightarrow$
$|T| \leq q$.

Thank you very much for your attention.

