Computing Equality-Free String Factorisations

Markus L. Schmid

Trier University, Germany

 $\mathrm{CiE}\ 2015$

Basic Concepts

A finite alphabet
$$\Sigma = \{a, b, c, d\}$$
 strings $w = \text{daabaccabd}$ string factorisations $(\text{daa}, b, \text{acca}, \text{bd})$ $\text{daa} \cdot b \cdot \text{acca} \cdot \text{bd}$

String factorisations

Let $p = (u_1, u_2, \dots, u_k)$ be a factorisation.

- $sf(p) = \{u_1, u_2, \dots, u_k\}$
- $\bullet \ \mathsf{c}(p) = |\operatorname{sf}(p)|$
- $\bullet \ \mathbf{w}(p) = \max\{|u_i| \mid 1 \le i \le k\}$

set of factors,

 $size, \\ cardinality, \\ width.$

String factorisations

Let $p = (u_1, u_2, \dots, u_k)$ be a factorisation.

- $sf(p) = \{u_1, u_2, \dots, u_k\}$
- \bullet $\mathbf{s}(p) = k$
- $\mathbf{w}(p) = \max\{|u_i| \mid 1 \le i \le k\}$

set of factors,

size.

cardinality, width.

Central notion of this talk

A factorisation p is equality-free if s(p) = c(p). $(p \text{ is } repetitive \Leftrightarrow p \text{ is not equality-free}).$

String factorisations

Let $p = (u_1, u_2, \dots, u_k)$ be a factorisation.

 $\bullet \ \mathsf{sf}(p) = \{u_1, u_2, \dots, u_k\}$ set of factors,

size.

width

cardinality,

- \bullet $\mathbf{s}(p) = k$
- $\bullet \ \mathbf{c}(p) = |\operatorname{sf}(p)|$
- $\bullet \ \mathbf{w}(p) = \max\{|u_i| \mid 1 \le i \le k\}$

Central notion of this talk

A factorisation p is equality-free if s(p) = c(p). (p is repetitive $\Leftrightarrow p$ is not equality-free).

Example

- $p = \mathtt{aab} \cdot \mathtt{ba} \cdot \mathtt{cba} \cdot \mathtt{aab} \cdot \mathtt{ba} \cdot \mathtt{aab}.$
 - $\bullet \ \mathsf{sf}(p) = \{\mathtt{aab}, \mathtt{ba}, \mathtt{cba}\}, \, \mathsf{s}(p) = 6, \, \mathsf{c}(p) = 3 \ \mathrm{and} \ \mathsf{w}(p) = 3,$
 - \bullet p is not equality-free (i. e., p is repetitive).

Find equality-free factorisation with large size

Find equality-free factorisation with large size

abbcbaabbc

Find equality-free factorisation with large size

 $\mathtt{abbc} \cdot \mathtt{ba} \cdot \mathtt{abbc}$

Find equality-free factorisation with large size

 $ab \cdot bc \cdot ba \cdot ab \cdot bc$

Find equality-free factorisation with large size

 $ab \cdot bc \cdot ba \cdot abb \cdot c$

Find equality-free factorisation with large size

 $ab \cdot bc \cdot ba \cdot a \cdot bb \cdot c$

Find equality-free factorisation with large size Can we do better than 6?

 $ab \cdot bc \cdot ba \cdot a \cdot bb \cdot c$

Find equality-free factorisation with large size Can we do better than 6? We need a, b and c as single factors!

abbcbaabbc

Find equality-free factorisation with large size Can we do better than 6? We need a, b and c as single factors!

 $a \cdot b \cdot bcbaabb \cdot c$

Find equality-free factorisation with large size Can we do better than 6? We need a, b and c as single factors!

 $a \cdot b \cdot bc \cdot ba \cdot abb \cdot c$

Find equality-free factorisation with large size Can we do better than 6? No! We need a, b and c as single factors!

 $a \cdot b \cdot bc \cdot ba \cdot abb \cdot c$

Find equality-free factorisation with small width

aabbccaabbcc

Find equality-free factorisation with small width

 ${\tt a} \cdot {\tt abbccaabbcc}$

Find equality-free factorisation with small width

 $\mathtt{a} \cdot \mathtt{ab} \cdot \mathtt{bccaabbcc}$

Find equality-free factorisation with small width

 $\mathtt{a} \cdot \mathtt{ab} \cdot \mathtt{b} \cdot \mathtt{ccaabbcc}$

Find equality-free factorisation with small width

 $\mathtt{a} \cdot \mathtt{ab} \cdot \mathtt{b} \cdot \mathtt{c} \cdot \mathtt{caabbcc}$

Find equality-free factorisation with small width

 $\texttt{a} \cdot \texttt{ab} \cdot \texttt{b} \cdot \texttt{c} \cdot \texttt{ca} \cdot \texttt{abbcc}$

Find equality-free factorisation with small width

 $\texttt{a} \cdot \texttt{ab} \cdot \texttt{b} \cdot \texttt{c} \cdot \texttt{ca} \cdot \texttt{abb} \cdot \texttt{cc}$

Find equality-free factorisation with small width Can we do better than 3?

 $a \cdot ab \cdot b \cdot c \cdot ca \cdot abb \cdot cc$

Find equality-free factorisation with small width Can we do better than 3? Yes!

 $aa \cdot b \cdot bc \cdot ca \cdot a \cdot bb \cdot cc$

Find equality-free factorisation with small width

aabbccaabbccaabbcc

Find equality-free factorisation with small width

 $\mathtt{aab} \cdot \mathtt{bcc} \cdot \mathtt{aa} \cdot \mathtt{bbc} \cdot \mathtt{caa} \cdot \mathtt{bb} \cdot \mathtt{cc}$

Find equality-free factorisation with small width

 $aab \cdot bcc \cdot aa \cdot bbc \cdot caa \cdot bb \cdot cc$

Computing equality-free factorisations

Given a string w and $m \in \mathbb{N}$

- \exists equality-free factorisation p of w with s(p) > m?
- \bullet \exists equality-free factorisation p of w with $s(p) \geq m$.
- \exists equality-free factorisation p of w with $w(p) \leq m$?

EF-s

 $\mathrm{EF} ext{-w}$

What is a good measure of repetitiveness?

What is a good measure of repetitiveness? The cardinality c(p)!

What is a good measure of repetitiveness? The cardinality c(p)!

$$c(p) = s(p) \Rightarrow \text{equality-free} \Rightarrow \text{not repetitive at all},$$

 $c(p) = 1 \Rightarrow p = u \cdot u \cdots u \Rightarrow \text{very repetitive}.$

What is a good measure of repetitiveness? The cardinality c(p)!

$$c(p) = s(p) \Rightarrow \text{ equality-free} \Rightarrow \text{ not repetitive at all,}$$

 $c(p) = 1 \Rightarrow p = u \cdot u \cdots u \Rightarrow \text{ very repetitive.}$

$$\mathsf{c}(p) \leq 3, \mathsf{s}(p) \geq 5$$

aabcacaaabaab

What is a good measure of repetitiveness? The cardinality c(p)!

$$c(p) = s(p) \Rightarrow \text{ equality-free} \Rightarrow \text{ not repetitive at all,}$$

 $c(p) = 1 \Rightarrow p = u \cdot u \cdots u \Rightarrow \text{ very repetitive.}$

$$\mathsf{c}(p) \leq 3, \mathsf{s}(p) \geq 5$$

$$a \cdot a \cdot b \cdot c \cdot a \cdot c \cdot a \cdot a \cdot a \cdot a \cdot b \cdot a \cdot a \cdot b$$

What is a good measure of repetitiveness? The cardinality c(p)! $c(p) = s(p) \Rightarrow$ equality-free \Rightarrow not repetitive at all, $c(p) = 1 \Rightarrow p = u \cdot u \cdots u \Rightarrow$ very repetitive.

$$\mathsf{c}(p) \le \mathbf{2}, \mathsf{s}(p) \ge 5$$

 $a \cdot a \cdot b \cdot c \cdot a \cdot c \cdot a \cdot a \cdot a \cdot b \cdot a \cdot a \cdot b$

What is a good measure of repetitiveness? The cardinality c(p)!

$$c(p) = s(p) \Rightarrow \text{ equality-free} \Rightarrow \text{ not repetitive at all,}$$

 $c(p) = 1 \Rightarrow p = u \cdot u \cdots u \Rightarrow \text{ very repetitive.}$

$$\mathsf{c}(p) \le \mathbf{2}, \mathsf{s}(p) \ge 5$$

 $aab \cdot ca \cdot ca \cdot aab \cdot aab$

What is a good measure of repetitiveness? The cardinality c(p)!

$$c(p) = s(p) \Rightarrow \text{ equality-free} \Rightarrow \text{ not repetitive at all,}$$

 $c(p) = 1 \Rightarrow p = u \cdot u \cdots u \Rightarrow \text{ very repetitive.}$

$$c(p) \le 2, s(p) > 5$$
?

 $aab \cdot ca \cdot ca \cdot aab \cdot aab$

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

$$c(p) = s(p) \Rightarrow \text{ equality-free} \Rightarrow \text{ not repetitive at all,}$$

 $c(p) = 1 \Rightarrow p = u \cdot u \cdots u \Rightarrow \text{ very repetitive.}$

$$c(p) \le 2, w(p) \le 2 ?$$

 $aab \cdot ca \cdot ca \cdot aab \cdot aab$

Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

$$c(p) = s(p) \Rightarrow \text{ equality-free} \Rightarrow \text{ not repetitive at all,}$$

 $c(p) = 1 \Rightarrow p = u \cdot u \cdots u \Rightarrow \text{ very repetitive.}$

$$c(p) \le 2, w(p) \le 2 ?$$

aab · ca · ca · aab · aab

Computing repetitive factorisations

Given a string w and $m, k \in \mathbb{N}$

- \exists factorisation p of w with $c(p) \leq k$, $s(p) \geq m$?
- \exists factorisation p of w with $c(p) \leq k$, $w(p) \leq m$?

 $\operatorname{RF-s}$

RF-w

Motivation: equality-free factorisations with small width

Collision-aware oligo design for gene synthesis

Goal: Construct long DNA strands.

Problem: Only very short pieces of DNA can be reliably constructed. Solution: Find short pieces of DNA that will self-assemble.

Motivation: equality-free factorisations with small width

Collision-aware oligo design for gene synthesis

Goal: Construct long DNA strands.

Problem: Only very short pieces of DNA can be reliably constructed.

Solution: Find short pieces of DNA that will self-assemble.

Find a factorisation p of the DNA strand with

- w(p) is small,
- no factor is the complement of another,
- ...
- . . .

Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w?

If α is "simple enough", then this can be decided in poly-time.

Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w?

If α is "simple enough", then this can be decided in poly-time.

Injective pattern matching with variables

Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w and different variables must be replaced by different strings?

Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w?

If α is "simple enough", then this can be decided in poly-time.

Injective pattern matching with variables

Given a string α with variables and a string w, can we uniformly replace the variables in α such that we obtain w and different variables must be replaced by different strings?

For the "simple" patterns $x_1x_2...x_n$ this is equivalent to finding equality-free factorisations with size n.

Motivation: repetitive factorisations

Let *p* be a factorisation with $sf(p) = \{u_1, u_2, ..., u_k\}$, i. e., $p = u_{j_1} \cdot u_{j_2} \cdot ... \cdot u_{j_n}, 1 \le j_i \le k, 1 \le i \le k.$

Motivation: repetitive factorisations

Let *p* be a factorisation with
$$sf(p) = \{u_1, u_2, ..., u_k\}$$
, i. e., $p = u_{j_1} \cdot u_{j_2} \cdot ... \cdot u_{j_n}, 1 \le j_i \le k, 1 \le i \le k.$

The corresponding word can be represented by $j_1 j_2 \dots j_n$ and sf(p)

Complexity

Theorem (Condon, Maňuch, Thachuk, 2008)

Computing EF-w is NP-complete (even if $m \leq 2$ or $|\Sigma| \leq 2$).

Theorem (Fernau, Manea, Mercaş, S., 2015)

EF-s is NP-complete.

Complexity

Theorem (Condon, Maňuch, Thachuk, 2008)

Computing EF-w is NP-complete (even if $m \le 2$ or $|\Sigma| \le 2$).

Theorem (Fernau, Manea, Mercaş, S., 2015)

EF-s is NP-complete.

Contribution of this paper

Revisit the complexity of these problems (and RF-s, RF-w), also from the parameterised point of view.

Parameterised Complexity

Parameterised problem K: instances are of the form (x, k), where k is the parameter

Parameterised Complexity

Parameterised problem K: instances are of the form (x, k), where k is the parameter

K is fixed-parameter tractable (in FPT) \iff K can be solved in $\mathcal{O}(f(k) \times p(|x|))$ (for recursive f and polynomial p).

Parameterised Complexity

Parameterised problem K: instances are of the form (x, k), where k is the parameter

K is fixed-parameter tractable (in FPT) \iff K can be solved in $\mathcal{O}(f(k) \times p(|x|))$ (for recursive f and polynomial p).

A can be solved in $\mathcal{O}(f(\kappa) \times p(|x|))$ (for recursive f and polynomial p)

K is NP-hard even if $k \leq c$ for constant $c \Rightarrow K \notin \text{FPT}$ (unless P = NP).

Equality-free factor cover

Given a string w and a set F of strings,

 \exists equality-free factorisation p of w with $\mathsf{sf}(p) \subseteq F$?

EFFC

Equality-free factor cover

Given a string w and a set F of strings, \exists equality-free factorisation p of w with $sf(p) \subseteq F$?

EFFC

Theorem

EFFC is NP-complete (even for fixed Σ with $|\Sigma| = 2$).

Equality-free factor cover

Given a string w and a set F of strings,

Given a string w and a set F of strings, \exists equality-free factorisation p of w with $\mathsf{sf}(p) \subseteq F$?

EFFC

Theorem

EFFC is NP-complete (even for fixed Σ with $|\Sigma| = 2$).

Proof Sketch

Let $w \in \Sigma^*$, $F = \{v \mid w = uvu', |v| \le m\}$.

Equality-free factor cover

Given a string w and a set F of strings, \exists equality-free factorisation p of w with $\mathsf{sf}(p) \subseteq F$?

? EFFC

Theorem

EFFC is NP-complete (even for fixed Σ with $|\Sigma| = 2$).

Proof Sketch

Let $w \in \Sigma^*$, $F = \{v \mid w = uvu', |v| \le m\}$. w has equality-free factorisation p with $\mathsf{w}(p) \le m$

 \iff

w has equality-free factorisation p with $w(p) \le m$ w has equality-free factorisation p' with $sf(p') \subseteq F$.

Theorem

EFFC can be solved in time $\mathcal{O}(|w|^{|F|+1})$.

Theorem

EFFC can be solved in time $\mathcal{O}(|w|^{|F|+1})$.

Proof Sketch

Let $w \in \Sigma^*$ and let p be an equality-free factorisation for w with $\mathsf{sf}(p) \subseteq F$.

Theorem

EFFC can be solved in time $\mathcal{O}(|w|^{|F|+1})$.

Proof Sketch

Let $w \in \Sigma^*$ and let p be an equality-free factorisation for w with $sf(p) \subseteq F$.

- $s(p) \leq |w|$
- $s(p) \leq |F|$

Theorem

EFFC can be solved in time $\mathcal{O}(|w|^{|F|+1})$.

Proof Sketch

Let $w \in \Sigma^*$ and let p be an equality-free factorisation for w with $sf(p) \subseteq F$.

- $s(p) \leq |w|$
- $s(p) \leq |F|$

Enumerate all equality-free factorisations with $sf(p) \subseteq F$ and $s(p) \le \min\{|w|, |F|\}$.

Theorem

The Problem EFFC can be solved in time $\mathcal{O}(|w| \times (2^{|F|} - 1) \times |F|!)$.

Theorem

The Problem EFFC can be solved in time $\mathcal{O}(|w| \times (2^{|F|} - 1) \times |F|!)$.

Proof Sketch

$$w \in \Sigma^*, F = \{u_1, u_2, \dots, u_\ell\}$$

 $\Gamma = \{1, 2, \dots, \ell\}, h : \Gamma^* \to \Sigma^*, h(i) = u_i, i \in \Gamma$

$$\Gamma = \{1, 2, \dots, \ell\}, h : \Gamma^* \to \Sigma^*, h(i) = u_i, i \in$$

Theorem

The Problem EFFC can be solved in time $\mathcal{O}(|w| \times (2^{|F|} - 1) \times |F|!)$.

Proof Sketch

 $w \in \Sigma^*, F = \{u_1, u_2, \dots, u_{\ell}\}\$

$$\Gamma = \{1, 2, \dots, \ell\}, h : \Gamma^* \to \Sigma^*, h(i) = u_i, i \in \Gamma$$

w has equality-free factorisation p with $\mathsf{sf}(p) \subseteq F \iff \exists v \in \Gamma^* \text{ with } |v|_i \leq 1, i \in \Gamma, \ h(v) = w.$

Theorem

The Problem EFFC can be solved in time $\mathcal{O}(|w| \times (2^{|F|} - 1) \times |F|!)$.

Proof Sketch

$$w \in \Sigma^*, F = \{u_1, u_2, \dots, u_\ell\}$$

 $\Gamma = \{1, 2, \dots, \ell\}, h : \Gamma^* \to \Sigma^*, h(i) = u_i, i \in \Gamma$

w has equality-free factorisation p with $\mathsf{sf}(p) \subseteq F \iff \exists v \in \Gamma^* \text{ with } |v|_i \leq 1, i \in \Gamma, \ h(v) = w.$

 $\exists c \in \Gamma \quad \text{with } |c|_i \leq \Gamma, t \in \Gamma, h(c) = \alpha$

There are at most $(2^{|F|}-1) \times |F|!$ such words v.

FACTOR COVER (FC)

Theorem

FC can be solved in time $\mathcal{O}(|F| \times |w|^2)$.

FACTOR COVER (FC)

Theorem

FC can be solved in time $\mathcal{O}(|F| \times |w|^2)$.

Proof Sketch

Dynamic programming + KMP.

FACTOR COVER (FC)

Theorem

FC can be solved in time $\mathcal{O}(|F| \times |w|^2)$.

Proof Sketch

Dynamic programming + KMP.

Remark: We shall need this algorithm later for computing repetitive factorisations with large size or small width.

Theorem (Condon, Maňuch, Thachuk, 2008)

EF-w is NP-complete (even if $m \le 2$ or $|\Sigma| \le 2$).

Theorem (Condon, Maňuch, Thachuk, 2008)

EF-w is NP-complete (even if $m \le 2$ or $|\Sigma| \le 2$).

Theorem

EF-w can be solved in time $\mathcal{O}(m^{m^2 \times |\Sigma|^m + 2} \times |\Sigma|^m)$.

Theorem (Condon, Maňuch, Thachuk, 2008)

 $\mbox{EF-w is NP-} complete \ (even \ if \ m \leq 2 \ or \ |\Sigma| \leq 2).$

Theorem

EF-w can be solved in time $\mathcal{O}(m^{m^2 \times |\Sigma|^m + 2} \times |\Sigma|^m)$.

Proof Sketch

Let p be equality-free factorisation of w with $w(p) \leq m$.

Theorem (Condon, Maňuch, Thachuk, 2008)

EF-w is NP-complete (even if $m \le 2$ or $|\Sigma| \le 2$).

Theorem

EF-w can be solved in time $\mathcal{O}(m^{m^2 \times |\Sigma|^m + 2} \times |\Sigma|^m)$.

Proof Sketch

Let p be equality-free factorisation of w with $\mathsf{w}(p) \leq m$.

$$\Rightarrow \mathsf{s}(p) \le m \times |\Sigma|^m \Rightarrow |w| \le m^2 \times |\Sigma|^m.$$

Theorem (Condon, Maňuch, Thachuk, 2008)

EF-w is NP-complete (even if $m \le 2$ or $|\Sigma| \le 2$).

Theorem

EF-w can be solved in time $\mathcal{O}(m^{m^2 \times |\Sigma|^m + 2} \times |\Sigma|^m)$.

Proof Sketch

Let p be equality-free factorisation of w with $w(p) \leq m$.

$$\Rightarrow \mathsf{s}(p) \le m \times |\Sigma|^m \Rightarrow |w| \le m^2 \times |\Sigma|^m.$$

Check $|w| \leq m^2 \times |\Sigma|^m$, if yes, enumerate all factorisations with width of at most m.

Dichotomy for EF-w w.r.t. parameters m and $|\Sigma|$:

• $m \le c$ and $|\Sigma|$ unbounded: NP-complete if and only if $c \ge 2$.

Dichotomy for EF-w w.r.t. parameters m and $|\Sigma|$:

- $m \le c$ and $|\Sigma|$ unbounded: NP-complete if and only if $c \ge 2$.
- $|\Sigma| \leq c$ and m unbounded: NP-complete if and only if $c \geq 2$.

Dichotomy for EF-w w.r.t. parameters m and $|\Sigma|$:

- $m \le c$ and $|\Sigma|$ unbounded: NP-complete if and only if $c \ge 2$.
- $|\Sigma| \le c$ and m unbounded: NP-complete if and only if $c \ge 2$.
- $|\Sigma| \le c$ and $m \le c'$: poly-time.

Dichotomy for EF-w w.r.t. parameters m and $|\Sigma|$:

- $m \le c$ and $|\Sigma|$ unbounded: NP-complete if and only if $c \ge 2$.
- $|\Sigma| \le c$ and m unbounded: NP-complete if and only if $c \ge 2$.
- $|\Sigma| \le c$ and $m \le c'$: poly-time.

What about equality-free factorisations with large size (EF-s)??

Open Problem

Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

Open Problem

Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

At least, poly-time (fpt) if m is bounded:

Theorem

EF-s can be solved in time $\mathcal{O}((\frac{m^2+m}{2}-1)^m)$.

Open Problem

Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

At least, poly-time (fpt) if m is bounded:

Theorem

EF-s can be solved in time $\mathcal{O}((\frac{m^2+m}{2}-1)^m)$.

Proof Sketch

 $|w| \ge \sum_{i=1}^m i = \frac{m^2 + m}{2} \Rightarrow \text{split } w \text{ into factors of different lengths.}$

Open Problem

Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

At least, poly-time (fpt) if m is bounded:

Theorem

EF-s can be solved in time $\mathcal{O}((\frac{m^2+m}{2}-1)^m)$.

Proof Sketch

 $|w| \ge \sum_{i=1}^m i = \frac{m^2 + m}{2} \Rightarrow \text{split } w \text{ into factors of different lengths.}$

 $|w| \le \frac{m^2 + m}{2} - 1 \Rightarrow$ enumerate all factorisations of size m.

We have three parameters:

- \bullet $|\Sigma|$,
- m (size/width bound),
- k (bound on the cardinality).

We have three parameters:

- \bullet $|\Sigma|$,
- m (size/width bound),
- \bullet k (bound on the cardinality).

Open Problem

Is RF-s NP-complete?

We have three parameters:

- \bullet $|\Sigma|$,
- m (size/width bound),
- k (bound on the cardinality).

Open Problem

Is RF-s NP-complete?

However, if $|\Sigma|$, m or k is a constant, then we can solve it in poly-time.

Theorem

RF-s can be solved in time

- $\bullet \ \mathcal{O}(k^2 \times |w|^{2k+3}),$
- $\bullet \ \mathcal{O}(|\Sigma|^2 \times |w|^{2|\Sigma|+1}),$
- $\mathcal{O}(m^2 \times |w|^{2m+1})$.

Theorem

RF-s can be solved in time

- $\bullet \ \mathcal{O}(k^2 \times |w|^{2k+3}),$
- $\bullet \mathcal{O}(|\Sigma|^2 \times |w|^{2|\Sigma|+1}),$
- $\bullet \mathcal{O}(m^2 \times |w|^{2m+1}).$

Proof Sketch

Let $F_w = \{u \mid u \text{ is a factor of } w\}.$

Theorem

RF-s can be solved in time

- $\mathcal{O}(k^2 \times |w|^{2k+3})$.
- $\mathcal{O}(|\Sigma|^2 \times |w|^{2|\Sigma|+1})$,
- $\mathcal{O}(m^2 \times |w|^{2m+1})$.

Proof Sketch

Let $F_w = \{u \mid u \text{ is a factor of } w\}.$

Problem FC: Does w have a factorisation p with $sf(p) \subseteq F$ for given F? Solve FC on every $F \subseteq F_w$ with |F| < k.

Theorem

RF-s can be solved in time

- $\mathcal{O}(k^2 \times |w|^{2k+3})$,
- $\mathcal{O}(|\Sigma|^2 \times |w|^{2|\Sigma|+1}),$
- $\mathcal{O}(m^2 \times |w|^{2m+1})$.

Proof Sketch

Let $F_w = \{u \mid u \text{ is a factor of } w\}.$

Problem FC: Does w have a factorisation p with $sf(p) \subseteq F$ for given F?

Solve FC on every $F \subseteq F_w$ with $|F| \le k$.

 $k \ge |\Sigma| \Rightarrow \text{split } w \text{ into factors of size } 1.$

 $k \ge m \Rightarrow$ any factorisation of size m is fine.

We know more about computing repetitive factorisations with small width (RF-w)!

We know more about computing repetitive factorisations with small width (RF-w)!

If $|\Sigma|$ or k is a constant, then we can solve it in poly-time.

Theorem

RF-w can be solved in time

- \bullet $\mathcal{O}(k^2 \times m^k \times |w|^{k+3}),$
- $\mathcal{O}(|\Sigma|^2 \times m^{(|\Sigma|-1)} \times |w|^{|\Sigma|+2})$.

We know more about computing repetitive factorisations with small width (RF-w)!

If $|\Sigma|$ or k is a constant, then we can solve it in poly-time.

Theorem

RF-w can be solved in time

- $\bullet \mathcal{O}(k^2 \times m^k \times |w|^{k+3}),$
- $\mathcal{O}(|\Sigma|^2 \times m^{(|\Sigma|-1)} \times |w|^{|\Sigma|+2}).$

Proof Sketch

Analogous to the proofs for RF-s.

We know more about computing repetitive factorisations with small width (RF-w)!

If $|\Sigma|$ or k is a constant, then we can solve it in poly-time.

Theorem

RF-w can be solved in time

- $\mathcal{O}(k^2 \times m^k \times |w|^{k+3})$,
- $\mathcal{O}(|\Sigma|^2 \times m^{(|\Sigma|-1)} \times |w|^{|\Sigma|+2}).$

Proof Sketch

Analogous to the proofs for RF-s.

However, k cannot be bounded by m (the width bound), only by $\lceil \frac{|w|}{m} \rceil$.

Theorem

RF-w is NP-complete even if $m \leq 2$.

Theorem

RF-w is NP-complete even if $m \leq 2$.

HITTING SET (HS)

Instance: $U = \{x_1, \dots, x_\ell\}, S_1, \dots, S_n \subseteq U \text{ and } q \in \mathbb{N}.$

Question: $\exists T \subseteq U \text{ with } |T| \leq q \text{ and } T \cap S_i \neq \emptyset, 1 \leq i \leq n$?

Theorem

RF-w is NP-complete even if $m \leq 2$.

HITTING SET (HS)

Instance: $U = \{x_1, \dots, x_\ell\}, S_1, \dots, S_n \subseteq U \text{ and } q \in \mathbb{N}.$

Question: $\exists T \subseteq U \text{ with } |T| \leq q \text{ and } T \cap S_i \neq \emptyset, 1 \leq i \leq n$?

HS instance: $(U, S_1, ..., S_n, q)$ with $S_i = \{y_{i,1}, y_{i,2}, ..., y_{i,r}\}, 1 \le i \le n$.

Theorem

RF-w is NP-complete even if $m \leq 2$.

HITTING SET (HS)

Instance: $U = \{x_1, \dots, x_\ell\}, S_1, \dots, S_n \subseteq U \text{ and } q \in \mathbb{N}.$

Question: $\exists T \subseteq U \text{ with } |T| \leq q \text{ and } T \cap S_i \neq \emptyset, 1 \leq i \leq n$?

HS instance: $(U, S_1, ..., S_n, q)$ with $S_i = \{y_{i,1}, y_{i,2}, ..., y_{i,r}\}, 1 \le i \le n$.

RF-w instance:

$$\Sigma = U \cup \{\$_{i,j} \mid 1 \le i \le n, 1 \le j \le r - 1\} \cup \{\$\},\$$

Theorem

RF-w is NP-complete even if $m \leq 2$.

HITTING SET (HS)

Instance: $U = \{x_1, \dots, x_\ell\}, S_1, \dots, S_n \subseteq U \text{ and } q \in \mathbb{N}.$

Question: $\exists T \subseteq U \text{ with } |T| \leq q \text{ and } T \cap S_i \neq \emptyset, 1 \leq i \leq n$?

HS instance: $(U, S_1, ..., S_n, q)$ with $S_i = \{y_{i,1}, y_{i,2}, ..., y_{i,r}\}, 1 \le i \le n$.

RF-w instance:

$$\begin{split} \Sigma &= U \cup \{\$_{i,j} \mid 1 \leq i \leq n, 1 \leq j \leq r-1\} \cup \{ \mathfrak{c} \}, \\ w &= \mathfrak{cc} \ v_1 \mathfrak{c} \ v_2 \mathfrak{c} \dots \mathfrak{c} \ v_n \mathfrak{c}, \end{split}$$

Theorem

RF-w is NP-complete even if $m \leq 2$.

HITTING SET (HS)

Instance: $U = \{x_1, \dots, x_\ell\}, S_1, \dots, S_n \subseteq U \text{ and } q \in \mathbb{N}.$

Question: $\exists T \subseteq U \text{ with } |T| \leq q \text{ and } T \cap S_i \neq \emptyset, 1 \leq i \leq n$?

HS instance: $(U, S_1, ..., S_n, q)$ with $S_i = \{y_{i,1}, y_{i,2}, ..., y_{i,r}\}, 1 \le i \le n$.

RF-w instance:

$$\Sigma = U \cup \{\$_{i,j} \mid 1 \le i \le n, 1 \le j \le r - 1\} \cup \{\$\},$$

$$w = \Leftrightarrow v_1 \Leftrightarrow v_2 \Leftrightarrow \dots \Leftrightarrow v_n \Leftrightarrow,$$

$$v_i = v_{i-1} \$_{i-1} v_{i-2} \$_{i-2} \qquad \$_{i-n-1}$$

$$v_i = y_{i,1} \$_{i,1} y_{i,2} \$_{i,2} \dots \$_{i,r-1} y_{i,r}, 1 \le i \le n.$$

$$T \subseteq U$$
 with $|T| \leq q$ and $T \cap S_i \neq \emptyset$, $1 \leq i \leq n \Rightarrow$

$$T \subseteq U$$
 with $|T| \le q$ and $T \cap S_i \ne \emptyset$, $1 \le i \le n \Rightarrow w = \mathbf{c} \cdot \mathbf{c} \cdot v_1 \cdot \mathbf{c} \cdot v_2 \cdot \mathbf{c} \cdot \dots \cdot \mathbf{c} \cdot v_n \cdot \mathbf{c}$,

$$T \subseteq U$$
 with $|T| \leq q$ and $T \cap S_i \neq \emptyset$, $1 \leq i \leq n \Rightarrow$

$$w = {\bf c} \cdot {\bf c} \cdot v_1 \cdot {\bf c} \cdot v_2 \cdot {\bf c} \cdot \dots \cdot {\bf c} \cdot v_n \cdot {\bf c},$$

$$v_i = y_{i,1} {\bf s}_{i,1} \cdot y_{i,2} {\bf s}_{i,2} \cdot \dots \cdot y_{i,j_i-1} {\bf s}_{i,j_i-1} \cdot y_{i,j_i} \cdot {\bf s}_{i,j_i} y_{i,j_i+1} \cdot \dots \cdot {\bf s}_{i,r-1} y_{i,r},$$

$$i, 1 \le i \le n, \ y_{i,j_i} \in T,$$

$$T \subseteq U$$
 with $|T| \le q$ and $T \cap S_i \ne \emptyset$, $1 \le i \le n \Rightarrow$

$$w = \underset{\mathbf{v}_{i}}{\mathbf{c}} \cdot \underset{\mathbf{c}_{i}}{\mathbf{c}} \cdot v_{1} \cdot \underset{\mathbf{c}_{i}}{\mathbf{c}} \cdot v_{2} \cdot \underset{\mathbf{c}_{i}}{\mathbf{c}} \cdot \dots \cdot \underset{\mathbf{c}_{i}}{\mathbf{c}} \cdot v_{n} \cdot \underset{\mathbf{c}_{i}}{\mathbf{c}},$$

$$v_{i} = y_{i,1} \underset{\mathbf{s}_{i,1}}{\mathbf{s}} \cdot y_{i,2} \underset{\mathbf{s}_{i,2}}{\mathbf{s}} \cdot \dots \cdot y_{i,j_{i-1}} \underset{\mathbf{s}_{i,j_{i}-1}}{\mathbf{s}} \cdot y_{i,j_{i}} \cdot \underset{\mathbf{s}_{i,j_{i}}}{\mathbf{s}} y_{i,j_{i}+1} \cdot \dots \cdot \underset{\mathbf{s}_{i,r-1}}{\mathbf{s}} y_{i,r},$$

$$i, 1 \leq i \leq n, y_{i,j_{i}} \in T,$$

has width 2 and $c(p) \le 1 + q + n(r-1)$.

Let p be a factorisation of w with $\mathsf{w}(p) \leq 2$ and $\mathsf{c}(p) \leq 1 + q + n(r-1)$.

Let p be a factorisation of w with $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$.

Split every $x \in A$ and $A \in X$, $x \in U \cup \{ \in \}$, into $x \cdot A$ and $A \cdot X$, respectively.

$$\Rightarrow w = \mathbf{c} \cdot \mathbf{c} \cdot v_1 \cdot \mathbf{c} \cdot v_2 \cdot \mathbf{c} \cdot \dots \cdot \mathbf{c} \cdot v_n \cdot \mathbf{c},$$

 $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$ is maintained.

Let p be a factorisation of w with $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$.

Split every $x \in A$ and $A \in X$, $x \in U \cup \{ \in \}$, into $x \cdot A$ and $A \cdot X$, respectively.

$$\Rightarrow w = \mathbf{c} \cdot \mathbf{c} \cdot v_1 \cdot \mathbf{c} \cdot v_2 \cdot \mathbf{c} \cdot \dots \cdot \mathbf{c} \cdot v_n \cdot \mathbf{c},$$

 $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$ is maintained.

$$v_i = y_{i,1} \$_{i,1} y_{i,2} \$_{i,2} y_{i,3} \$_{i,3} \dots \$_{i,r-1} y_{i,r}$$
 has odd length \Rightarrow

Let p be a factorisation of w with $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$.

Split every $x \in A$ and $A \in X$, $x \in U \cup \{A \in A\}$, into $x \cdot A$ and $A \cdot X$, respectively.

$$\Rightarrow w = \mathbf{c} \cdot \mathbf{c} \cdot v_1 \cdot \mathbf{c} \cdot v_2 \cdot \mathbf{c} \cdot \dots \cdot \mathbf{c} \cdot v_n \cdot \mathbf{c},$$

$$w(p) \le 2$$
 and $c(p) \le 1 + q + n(r-1)$ is maintained.

$$v_i = y_{i,1} \$_{i,1} y_{i,2} \$_{i,2} y_{i,3} \$_{i,3} \dots \$_{i,r-1} y_{i,r}$$
 has odd length \Rightarrow

$$v_i = \dots \cdot \$_{i,j-1} \cdot y_{i,j} \cdot \$_{i,j} \dots \text{ (call } y_{i,j} \text{ isolated)}$$

Let p be a factorisation of w with $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$.

Split every $x \in A$ and $A \in X$, $x \in U \cup \{A \in A\}$, into $x \cdot A$ and $A \cdot X$, respectively.

$$\Rightarrow w = \mathfrak{c} \cdot \mathfrak{c} \cdot v_1 \cdot \mathfrak{c} \cdot v_2 \cdot \mathfrak{c} \cdot \dots \cdot \mathfrak{c} \cdot v_n \cdot \mathfrak{c},$$

$$w(p) \le 2$$
 and $c(p) \le 1 + q + n(r-1)$ is maintained.

$$v_i = y_{i,1} \$_{i,1} y_{i,2} \$_{i,2} y_{i,3} \$_{i,3} \dots \$_{i,r-1} y_{i,r}$$
 has odd length $\Rightarrow v_i = \dots *_{i,j-1} \cdot y_{i,j} \cdot \$_{i,j} \dots$ (call $y_{i,j}$ isolated)

Let p be a factorisation of w with $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$.

Split every $x \in A$ and $A \in X$, $x \in U \cup \{A \in A\}$, into $x \cdot A$ and $A \cdot X$, respectively.

$$\Rightarrow w = \mathfrak{c} \cdot \mathfrak{c} \cdot v_1 \cdot \mathfrak{c} \cdot v_2 \cdot \mathfrak{c} \cdot \dots \cdot \mathfrak{c} \cdot v_n \cdot \mathfrak{c},$$

$$w(p) \le 2$$
 and $c(p) \le 1 + q + n(r-1)$ is maintained.

$$v_{i} = y_{i,1} \$_{i,1} y_{i,2} \$_{i,2} y_{i,3} \$_{i,3} \dots \$_{i,r-1} y_{i,r} \text{ has odd length} \Rightarrow v_{i} = \dots *_{i,j-1} \cdot y_{i,j} \cdot \$_{i,j} \dots \text{ (call } y_{i,j} \text{ isolated)}$$

$$T \cap S_i \neq \emptyset, \ 1 \leq i \leq n.$$

Let p be a factorisation of w with $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$.

Split every $x \in A$ and $A \in A$, $x \in U \cup \{A \in A\}$, into $x \cdot A$ and $A \cdot A$, respectively.

$$\Rightarrow w = \mathfrak{c} \cdot \mathfrak{c} \cdot v_1 \cdot \mathfrak{c} \cdot v_2 \cdot \mathfrak{c} \cdot \ldots \cdot \mathfrak{c} \cdot v_n \cdot \mathfrak{c},$$

$$w(p) \le 2$$
 and $c(p) \le 1 + q + n(r - 1)$ is maintained.

$$v_i = y_{i,1} \$_{i,1} y_{i,2} \$_{i,2} y_{i,3} \$_{i,3} \dots \$_{i,r-1} y_{i,r}$$
 has odd length $\Rightarrow v_i = \dots *_{i,j-1} \cdot y_{i,j} \cdot \$_{i,j} \dots$ (call $y_{i,j}$ isolated)

$$T \cap S_i \neq \emptyset, \ 1 \leq i \leq n.$$

$$\mathsf{sf}(p) = \{\mathfrak{c}\} \cup \{\text{all } n(r-1) \text{ factors with } \$_{i,j}\} \cup T.$$

Let p be a factorisation of w with $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$.

Split every $x \in A$ and $x \in U \cup \{c\}$, into $x \cdot c$ and $x \cdot c$, respectively.

$$\Rightarrow w = \mathfrak{c} \cdot \mathfrak{c} \cdot v_1 \cdot \mathfrak{c} \cdot v_2 \cdot \mathfrak{c} \cdot \ldots \cdot \mathfrak{c} \cdot v_n \cdot \mathfrak{c},$$

$$w(p) \le 2$$
 and $c(p) \le 1 + q + n(r-1)$ is maintained.

$$v_{i} = y_{i,1} \$_{i,1} y_{i,2} \$_{i,2} y_{i,3} \$_{i,3} \dots \$_{i,r-1} y_{i,r} \text{ has odd length} \Rightarrow v_{i} = \dots *_{i,j-1} \cdot y_{i,j} \cdot \$_{i,j} \dots \text{ (call } y_{i,j} \text{ isolated)}$$

$$T \cap S_i \neq \emptyset, \ 1 \leq i \leq n.$$

$$sf(p) = \{c\} \cup \{all \ n(r-1) \ factors with \ \$_{i,j}\} \cup T.$$

 $c(p) = |sf(p)| = 1 + n(r-1) + |T| \le 1 + n(r-1) + q \Rightarrow$

Let p be a factorisation of w with $w(p) \le 2$ and $c(p) \le 1 + q + n(r-1)$.

Split every $x \in A$ and $x \in U \cup \{c\}$, into $x \cdot c$ and $x \cdot c$, respectively.

$$\Rightarrow w = \mathbf{c} \cdot \mathbf{c} \cdot v_1 \cdot \mathbf{c} \cdot v_2 \cdot \mathbf{c} \cdot \dots \cdot \mathbf{c} \cdot v_n \cdot \mathbf{c},$$

$$w(p) \le 2$$
 and $c(p) \le 1 + q + n(r-1)$ is maintained.

$$v_{i} = y_{i,1} \$_{i,1} y_{i,2} \$_{i,2} y_{i,3} \$_{i,3} \dots \$_{i,r-1} y_{i,r} \text{ has odd length} \Rightarrow v_{i} = \dots *_{i,j-1} \cdot y_{i,j} \cdot \$_{i,j} \dots \text{ (call } y_{i,j} \text{ isolated)}$$

$$T \cap S_i \neq \emptyset, \ 1 \leq i \leq n.$$

$$sf(p) = \{c\} \cup \{all \ n(r-1) \ factors with \ \$_{i,j}\} \cup T.$$
 $c(p) = |sf(p)| = 1 + n(r-1) + |T| \le 1 + n(r-1) + q \Rightarrow |T| \le q.$

Thank you very much for your attention.