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Basic Concepts

A finite alphabet ¥ ={a,b,c,d}
strings w = daabaccabd

string factorisations (daa,b,acca,bd)
daa-b-acca-bd



String factorisations

Let p = (uy,ug,...,ux) be a factorisation.
o sf(p) = {u1,u2,...,ur} set of factors,
°s(p)=k size,
o c(p) = [sf(p)] cardinality,

o w(p) = max{|u;| | 1 <i <k} width.
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String factorisations

Let p = (uy,ug,...,ux) be a factorisation.
o sf(p) = {uy, ug, ..., ug} set of factors,
°s(p)=k size,
o c(p) = [sf(p)] cardinality,
o w(p) = max{|u;| | 1 <i <k} width.

Central notion of this talk

A factorisation p is equality-free if s(p) = c(p).
(p is repetitive < p is not equality-free).

Example
p = aab-ba-cba-aab-ba-aab.
e sf(p) = {aab, ba, cba}, s(p) = 6, c(p) = 3 and w(p) = 3,

@ p is not equality-free (i.e., p is repetitive).
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Find equality-free factorisation with large size
Can we do better than 67 No!

We need a, b and ¢ as single factors!

a‘b:-bc-ba-abb:c
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Computing equality-free factorisations

Find equality-free factorisation with small width

aab-bcc-aa-bbc:-caa:-bb:cc

Computing equality-free factorisations

Given a string w and m € N

EF-s
EF-w

e 3 equality-free factorisation p of w with s(p) > m?
e 3 equality-free factorisation p of w with w(p) < m?
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Computing repetitive factorisations

What is a good measure of repetitiveness? The cardinality c(p)!

c(p) = s(p) = equality-free = not repetitive at all,
c(p)=1=p=wu-u---u= very repetitive.

c(p) <2,w(p) <27

aab-ca-ca-aab-aab

Computing repetitive factorisations
Given a string w and m,k € N

e d factorisation p of w with c(p) < k, s(p) RF-s
k,

< >m?
e 1 factorisation p of w with c(p) < k, w(p) < m? RF-w
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Motivation: equality-free factorisations with small width

Collision-aware oligo design for gene synthesis

Goal: Construct long DNA strands.
Problem: Only very short pieces of DNA can be reliably constructed.
Solution: Find short pieces of DNA that will self-assemble.

=

Find a factorisation p of the DNA strand with
e w(p) is small,
e no factor is the complement of another,
° ...
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Motivation: equality-free factorisations with large size

Pattern matching with variables

Given a string o with variables and a string w, can we uniformly
replace the variables in « such that we obtain w?

If « is “simple enough”, then this can be decided in poly-time.

Injective pattern matching with variables

Given a string « with variables and a string w, can we uniformly
replace the variables in « such that we obtain w and different variables
must be replaced by different strings?

For the “simple” patterns z1xs ..., this is equivalent to finding
equality-free factorisations with size n.
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Motivation: repetitive factorisations

Let p be a factorisation with sf(p) = {ui,ue,...,ux}, i.e.,
p:ujl-ujz-...-ujn, 1§]1§k, 1§Z§k

The corresponding word can be represented by j17j2 ... jn and sf(p)



Complexity

Theorem (Condon, Manuch, Thachuk, 2008)
Computing EF-w is NP-complete (even if m <2 or |E| < 2).

Theorem (Fernau, Manea, Mercag, S., 2015)
EF-s is NP-complete.




Complexity

Theorem (Condon, Manuch, Thachuk, 2008)
Computing EF-w is NP-complete (even if m <2 or |E| < 2).

Theorem (Fernau, Manea, Mercag, S., 2015)
EF-s is NP-complete.

Contribution of this paper

Revisit the complexity of these problems (and RF-s, RF-w), also from
the parameterised point of view.
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Parameterised Complexity

Parameterised problem K:
instances are of the form (z, k), where k is the parameter

K is fized-parameter tractable (in FPT) <=
K can be solved in O(f(k) x p(|z|)) (for recursive f and polynomial p).

K is NP-hard even if k < ¢ for constant ¢ = K ¢ FPT (unless P = NP).
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Equality-free factor cover

Given a string w and a set F' of strings,
3 equality-free factorisation p of w with sf(p) C F? EFFC

Theorem
EFFC is NP-complete (even for fivred ¥ with |X| = 2).

Proof Sketch
Let we X* F = {v | w=wvd, |v]| <m}.
w has equality-free factorisation p with w(p) < m —

w has equality-free factorisation p’ with sf(p’) C F.
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EQUALITY-FREE FACTOR COVER (EFFC)

Theorem
EFFC can be solved in time O(|w|/F1+1).

Proof Sketch

Let w € ¥* and let p be an equality-free factorisation for w with
sf(p) C F.

o s(p) < |uw|
o s(p) < |F]|

Enumerate all equality-free factorisations with sf(p) C F' and
s(p) < min{lul, | F|}.
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EQUALITY-FREE FACTOR COVER (EFFC)

Theorem

The Problem EFFC can be solved in time O(jw| x (2IFl — 1) x |F|!).

Proof Sketch
w e X* F ={ui,ug,...,u}
T={1,2,...,0}, h:T* = * h(i) =u;, i €T

w has equality-free factorisation p with sf(p) C F' «<—
Jv € T* with |v|; < 1,i €T, h(v) = w.

There are at most (2/F1 — 1) x |F|! such words v.
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FACTOR COVER (FC)

Theorem
FC can be solved in time O(|F| x |w|?).

Proof Sketch
Dynamic programming + KMP.

Remark: We shall need this algorithm later for computing repetitive
factorisations with large size or small width.
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Theorem (Condon, Manuch, Thachuk, 2008)
EF-w is NP-complete (even if m <2 or |X| < 2).

Theorem

EF-w can be solved in time O(m™ ¥IZI"+2 » |52jm).

Proof Sketch
Let p be equality-free factorisation of w with w(p) < m.

= s(p) <m x |Z|" = |w| < m? x |B™.

Check |w| < m? x |S|™, if yes, enumerate all factorisations with width
of at most m.
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Dichotomy for EF-w w.r.t. parameters m and |X:

e m < ¢ and |X| unbounded: NP-complete if and only if ¢ > 2.
e |X| < ¢ and m unbounded: NP-complete if and only if ¢ > 2.
o |X| <cand m < ¢: poly-time.

What about equality-free factorisations with large size (EF-s)??
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Open Problem
Is EF-s NP-complete for fixed alphabets?

Reminder: In the real world, there are only fixed alphabets!

At least, poly-time (fpt) if m is bounded:
Theorem

EF-s can be solved in time (9((7”2% —1Hm).

Proof Sketch

lw| > X7 i = m22+ ™ = split w into factors of different lengths.

2 o o .
|w| < 5™ — 1 = enumerate all factorisations of size m.
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We have three parameters:
o I3,
e m (size/width bound),
@ k (bound on the cardinality).

Open Problem
Is RF-s NP-complete?

However, if |3|, m or k is a constant, then we can solve it in poly-time.
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Theorem

RF-s can be solved in time
o O(k? x |w|?k+3),
o O(IZ[ x [w[2IH),

o O(m? x |w|*™+1).

Proof Sketch

Let F,, = {u | u is a factor of w}.
Problem FC: Does w have a factorisation p with sf(p) C F' for given F'?
Solve FC on every F' C F,, with |F| < k.

k > |¥| = split w into factors of size 1.
k > m = any factorisation of size m is fine.
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We know more about computing repetitive factorisations with small
width (RF-w)!

If |X] or k is a constant, then we can solve it in poly-time.

Theorem
RF-w can be solved in time
o O(k? x m* x |w|F*3),
o O(S? x mU=I-D) x []Z142).

Proof Sketch
Analogous to the proofs for RF-s.

However, k cannot be bounded by m (the width bound), only by [|w|-|‘

m
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Theorem

RF-w is NP-complete even if m < 2.

HirTiNnG SET (HS)
Instance: U = {x1,...,2¢}, S1,...,5, CU and q € N.
Question: 3T CU with |T|<qand TNS; #0,1<i<n?

HS instance: (U, S1,...,Sn,q) with S; = {vi1,vi2, ..., vir}, 1 <i<n.

RF-w instance:

S—UU{S, [1<i<nl<j<r—1}U{c}
W= ¢Ev Guad. .. vy,

vi = yi1Si1vieSio. . Sy, 1 <i<n.
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TCUwith [T|<gand TNS; #0,1<i<n=

w:¢‘¢"vl‘¢"02‘¢'...'¢"Un‘¢,

vi = Yi1$i1 - yi2Sio o igi—18igi—1 Vi SigiYigier o Sir—1Yir
i? 1 S { S n, Ulj, S T7
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Thank you very much for your attention.



