Pattern Matching with Variables: Fast Algorithms and New Hardness Results

Henning Fernau ${ }^{1}$ Florin Manea ${ }^{2}$ Robert Mercaş ${ }^{2,3}$ Markus L. Schmid ${ }^{1}$

${ }^{1}$ Trier University, Germany
${ }^{2}$ Kiel University, Germany
${ }^{3}$ King's College, London, UK

STACS 2015

Patterns with Variables

Finite alphabet of terminals $\quad \Sigma=\{a, b, c, d\}$

Set of variables

Patterns

Words

Substitution
$X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\alpha \in(\Sigma \cup X)^{+}$
$w \in \Sigma^{+}$

$$
\begin{aligned}
& h: X \rightarrow \Sigma^{+} \\
& \alpha=y_{1} \ldots y_{n} \\
& h(\alpha)=h\left(y_{1}\right) \ldots h\left(y_{n}\right) \\
& \text { with } h(a)=a, a \in \Sigma
\end{aligned}
$$

Pattern Matching with Variables

\exists substitution $h: h(\alpha)=w$.

Pattern Matching with Variables

 pattern α matches word w $\Longleftrightarrow \quad \exists$ substitution $h: h(\alpha)=w$.$$
\begin{aligned}
\alpha & =x_{1} x_{2} x_{1} x_{3} x_{2} \\
w & =\mathrm{abb} \mathrm{~b} \mathrm{a} \mathrm{ab} \mathrm{~b} \mathrm{a} \mathrm{a} \mathrm{a} \mathrm{~b} \mathrm{a} \mathrm{~b} \mathrm{a}
\end{aligned}
$$

Pattern Matching with Variables

 pattern α matches word $w \quad \Longleftrightarrow \quad \exists$ substitution $h: h(\alpha)=w$.$$
\begin{aligned}
& \alpha=\mathrm{abb} x_{2} \mathrm{abb} x_{3} x_{2} \\
& w=\mathrm{abbba} \mathrm{abba} \mathrm{a} \mathrm{ababa}
\end{aligned}
$$

Pattern Matching with Variables

$$
\begin{aligned}
& \alpha=\mathrm{abbba} \mathrm{abb} x_{3} \mathrm{~b} \mathrm{a} \\
& w=\mathrm{abbba} \mathrm{abba} \mathrm{a} \mathrm{ababa}
\end{aligned}
$$

Pattern Matching with Variables

$$
\begin{aligned}
\alpha & =\mathrm{abbba} \mathrm{abba} \mathrm{a} \mathrm{~b} \mathrm{ab} \mathrm{a} \\
w & =\mathrm{abbba} \mathrm{abba} \mathrm{a} \mathrm{~b} \mathrm{ab} \mathrm{a}
\end{aligned}
$$

Pattern Matching with Variables

 pattern α matches word $w \quad \Longleftrightarrow \quad \exists$ substitution $h: h(\alpha)=w$.$$
\begin{aligned}
& \alpha=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{2} x_{1} x_{2} \\
& w=\mathrm{b} \mathrm{ac} \mathrm{~b} \mathrm{acbc} \mathrm{~b} \mathrm{ac} \mathrm{~b} \mathrm{c}
\end{aligned}
$$

Pattern Matching with Variables

 pattern α matches word w $\Longleftrightarrow \quad \exists$ substitution $h: h(\alpha)=w$.$$
\begin{aligned}
\alpha & =\mathrm{b} \mathrm{acba} x_{2} \mathrm{~b} x_{2} \mathrm{bacb} x_{2} \\
w & =\mathrm{bacbacbcbacbc}
\end{aligned}
$$

Pattern Matching with Variables

 pattern α matches word w $\Longleftrightarrow \quad \exists$ substitution $h: h(\alpha)=w$.$$
\begin{aligned}
& \alpha=\mathrm{bacbacbcbacbc} \\
& w=\mathrm{bacbacbcbacbc}
\end{aligned}
$$

Motivation

- Learning theory (inductive inference, PAC learning),
- language theory (pattern languages),
- combinatorics on words (word equations, unavoidable patterns, ambiguity of morphisms, equality sets),
- pattern matching (parameterised matching, (generalised) function matching),
- matchtest for regular expressions with backreferences (text editors (grep, emacs), programming language (Perl, Java, Python)),
- database theory.

Complexity

Matching Problem (MATCH)

Given a pattern α, a word w. Does α match w (i. e., $\exists h: h(\alpha)=w$)?

- Match is (in general) NP-complete.

Complexity

Matching Problem (MATCH)

Given a pattern α, a word w. Does α match w (i. e., $\exists h: h(\alpha)=w$)?

- Match is (in general) NP-complete.
- Bad news: Match remains hard if numerical parameters are restricted (few exceptions):
- Match $\in P$ if number of variables or word length bounded (trivial).
- Match still hard if
* alphabet size 2,
\star each variable has at most 2 occurrences,
$\star|h(x)| \leq 3$ for every x.

Complexity

Matching Problem (MATCH)

Given a pattern α, a word w. Does α match w (i. e., $\exists h: h(\alpha)=w$)?

- Match is (in general) NP-complete.
- Bad news: Match remains hard if numerical parameters are restricted (few exceptions):
- Match $\in P$ if number of variables or word length bounded (trivial).
- Match still hard if
* alphabet size 2,
\star each variable has at most 2 occurrences,
$\star|h(x)| \leq 3$ for every x.
- Good news: Tractable if structure of patterns is restricted.

Notation

$\operatorname{var}(\alpha)$ Set of variables occurring in pattern α.
$|\alpha|_{x}$ Number of occurrences of variable x in pattern α.

Structural Restrictions of Patterns

- Regular Patterns:
$|\alpha|_{x}=1, x \in \operatorname{var}(\alpha)$.
E.g., $\alpha=\mathrm{ab} x_{1} x_{2} \mathrm{~b} x_{3}$ aaa $x_{4} \mathrm{~b}$.

Structural Restrictions of Patterns

- Regular Patterns:
$|\alpha|_{x}=1, x \in \operatorname{var}(\alpha)$.
E. g., $\alpha=\mathrm{ab} x_{1} x_{2} \mathrm{~b} x_{3}$ aaa $x_{4} \mathrm{~b}$.
- Non-Cross Patterns:
$\alpha=\ldots x \ldots y \ldots x \ldots$ is not possible.
E.g., $\alpha=x_{1}$ aba $x_{1} \mathbf{a} x_{1} x_{2} x_{2}$ ba $x_{2} x_{3} x_{3} \mathrm{bb} x_{3} \mathbf{a} x_{3}$

Structural Restrictions of Patterns

- k-Repeated-Variable Patterns:
$\left|\left\{x \in \operatorname{var}(\alpha)\left||\alpha|_{x} \geq 2\right\} \mid \leq k\right.\right.$.
E. g., $\alpha=x_{1} \mathrm{ab} x_{2} \mathrm{a} x_{2} \mathrm{a} x_{3} \mathrm{ba} x_{2} \mathrm{bb} x_{4} x_{2} x_{5}$ is a 1-repeated-variable pattern.

Structural Restrictions of Patterns

- k-Repeated-Variable Patterns:
$\left|\left\{x \in \operatorname{var}(\alpha)\left||\alpha|_{x} \geq 2\right\} \mid \leq k\right.\right.$.
E.g., $\alpha=x_{1} \mathrm{ab} x_{2} \mathrm{a} x_{2} \mathrm{a} x_{3} \mathrm{ba} x_{2} \mathrm{bb} x_{4} x_{2} x_{5}$ is a 1-repeated-variable pattern.
- Pattern with Bounded Scope Coincidence Degree: Scope (of x): shortest factor containing all occ. of x, Scope coincidence degree: maximum number of coinciding scopes.

Structural Restrictions of Patterns - Complexity

Known results: Match is in P for

- regular patterns
- non-cross patterns
- patterns with scd $\leq k$

$$
\begin{array}{r}
\mathcal{O}(|\alpha|+|w|), \\
\mathcal{O}\left(|\alpha||w|^{4}\right), \\
\mathcal{O}\left(|\alpha||w|^{2(k+3)}(k+2)^{2}\right),
\end{array}
$$

Structural Restrictions of Patterns - Complexity

Known results: Match is in P for

- regular patterns
- non-cross patterns
- patterns with scd $\leq k$

$$
\begin{array}{r}
\mathcal{O}(|\alpha|+|w|), \\
\mathcal{O}\left(|\alpha||w|^{4}\right), \\
\mathcal{O}\left(|\alpha||w|^{2(k+3)}(k+2)^{2}\right),
\end{array}
$$

Our contribution:

- Find (efficient) algorithms for these cases.
- Can we extend our algorithms to the injective case (i.e., different variables are replaced by different words)?

k-Repeated Variable Patterns

Lemma

Match for 1-repeated-variable patterns is solvable in $\mathcal{O}\left(|w|^{2}\right)$.

Theorem

MATCH for k-repeated-variable patterns is solvable in $\mathcal{O}\left(\frac{|w|^{2 k}}{((k-1)!)^{2}}\right)$.

Non-Cross Patterns

Dynamic programming approach!

```
\alpha non-cross }
\alpha= w
```

$$
\operatorname{var}\left(\alpha_{i}\right)=\left\{x_{i}\right\}, w_{i} \in \Sigma^{*}
$$

Non-Cross Patterns

Dynamic programming approach!

α non-cross \Rightarrow
$\alpha=w_{0} \alpha_{1} w_{1} \alpha_{2} \ldots \alpha_{\ell} w_{\ell}$.

$$
\operatorname{var}\left(\alpha_{i}\right)=\left\{x_{i}\right\}, w_{i} \in \Sigma^{*}
$$

Compute all sub-problems:
Does $w_{0} \alpha_{1} w_{1} \ldots w_{i-1} \alpha_{i}$ match $w[1 . . j] ?$

$$
1 \leq i \leq \ell, 1 \leq j \leq|w|
$$

Non-Cross Patterns

Case 1: $\alpha_{i}=x_{i}$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} \alpha_{i} \\
& \downarrow \\
& w[1 \ldots j]
\end{aligned}
$$

Non-Cross Patterns

Case 1: $\alpha_{i}=x_{i}$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} \\
& \downarrow \\
& w[1 . . j]
\end{aligned}
$$

Non-Cross Patterns

Case 1: $\alpha_{i}=x_{i}$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} \\
& \downarrow \\
& w[1 . . j]
\end{aligned}
$$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} \\
& \downarrow \\
& w\left[1 . . j^{\prime}\right]
\end{aligned}
$$

Non-Cross Patterns

Case 1: $\alpha_{i}=x_{i}$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} \\
& \downarrow \\
& w[1 . . j]
\end{aligned}
$$

$$
\begin{array}{lc}
w_{0} \alpha_{1} w_{1} \ldots w_{i-1} & x_{i} \\
\downarrow & \downarrow \\
w\left[1 \ldots j^{\prime}\right] & w\left[j^{\prime}+1 \ldots j\right]
\end{array}
$$

Non-Cross Patterns

Case 2a: $\alpha_{i}=\left(x_{i}\right)^{k}$ (x_{i} is mapped to primitive word t)

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} \alpha_{i} \\
& \downarrow \\
& w[1 \ldots j]
\end{aligned}
$$

Non-Cross Patterns

Case 2a: $\alpha_{i}=\left(x_{i}\right)^{k}$ (x_{i} is mapped to primitive word t)

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} x_{i} \ldots x_{i} \\
& \downarrow \\
& w[1 \ldots j]
\end{aligned}
$$

Non-Cross Patterns

Case 2a: $\alpha_{i}=\left(x_{i}\right)^{k}$ (x_{i} is mapped to primitive word t)

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} x_{i} \ldots x_{i} \\
& \downarrow \\
& w[1 \ldots j]
\end{aligned}
$$

\exists primitive word t with t^{k} suffix of $w[1 . . j]$ and

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} \\
& \downarrow \\
& w[1 . . j-(k|t|)]
\end{aligned}
$$

Non-Cross Patterns

Case 2a: $\alpha_{i}=\left(x_{i}\right)^{k}$
(x_{i} is mapped to primitive word t)

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} x_{i} \ldots x_{i} \\
& \downarrow \\
& w[1 \ldots j]
\end{aligned}
$$

\exists primitive word t with t^{k} suffix of $w[1 . . j]$ and

$$
\begin{array}{cc}
w_{0} \alpha_{1} w_{1} \ldots w_{i-1} & x_{i} x_{i} \ldots x_{i} \\
\downarrow & \downarrow \\
w[1 \ldots j-(k|t|)] & t t \ldots t
\end{array}
$$

Non-Cross Patterns

Case 2a: Find all primitive t such that $w[1 . . j]$ has t^{2} as a suffix!

Lemma (Crochemore, 1981)
Primitive $u_{1}, u_{2}, u_{3},\left|u_{1}\right|<\left|u_{2}\right|<\left|u_{3}\right|, w=w_{i} u_{i} u_{i}, 1 \leq i \leq 3 \Rightarrow$ $2\left|u_{1}\right|<\left|u_{3}\right|$.
$\Rightarrow w$ has at most $2 \log |w|$ primitively rooted squares as suffix.

Non-Cross Patterns

Case 2a: Find all primitive t such that $w[1 . . j]$ has t^{2} as a suffix!

Lemma (Crochemore, 1981)

Primitive $u_{1}, u_{2}, u_{3},\left|u_{1}\right|<\left|u_{2}\right|<\left|u_{3}\right|, w=w_{i} u_{i} u_{i}, 1 \leq i \leq 3 \Rightarrow$ $2\left|u_{1}\right|<\left|u_{3}\right|$.
$\Rightarrow w$ has at most $2 \log |w|$ primitively rooted squares as suffix.

Lemma

We can compute in $\mathcal{O}(n \log n)$ time all the sets
$P_{i}=\left\{u \mid u\right.$ primitive, u^{2} suffix of $\left.w[1 . . i]\right\}, 1 \leq i \leq|w|$.
\Rightarrow Case $2 a$ can be done efficiently.

Non-Cross Patterns

Case 2b: $\alpha_{i}=\left(x_{i}\right)^{k}$ (x_{i} is mapped to some word $t=v^{h+1}$)

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} x_{i} \ldots x_{i} \\
& \downarrow \\
& w[1 . . j]
\end{aligned}
$$

Non-Cross Patterns

Case 2b: $\alpha_{i}=\left(x_{i}\right)^{k} \quad\left(x_{i}\right.$ is mapped to some word $\left.t=v^{h+1}\right)$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} x_{i} \ldots x_{i} \\
& \downarrow \\
& w[1 \ldots j]
\end{aligned}
$$

\exists primitive word v with v^{k} suffix of $w[1 . . j]$ and

$$
\begin{array}{ll}
w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i} x_{i} \ldots x_{i} & \text { with } h\left(x_{i}\right)=v^{h} \\
\downarrow & \\
w[1 . . j-k|v|)] &
\end{array}
$$

Non-Cross Patterns

Case 3: $\alpha_{i}=x_{i}^{\ell_{0}} u_{1} x_{i}^{\ell_{1}} u_{2} \ldots x_{i}^{\ell_{p-1}} u_{p} x_{i}^{\ell_{p}}$ $u_{k} \in \Sigma^{+}$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} \alpha_{i} \\
& \downarrow \\
& w[1 \ldots j]
\end{aligned}
$$

Non-Cross Patterns

Case 3: $\alpha_{i}=x_{i}^{\ell_{0}} u_{1} x_{i}^{\ell_{1}} u_{2} \ldots x_{i}^{\ell_{p-1}} u_{p} x_{i}^{\ell_{p}}$ $u_{k} \in \Sigma^{+}$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i}^{\ell_{0}} u_{1} x_{i}^{\ell_{1}} u_{2} \ldots x_{i}^{\ell_{p-1}} u_{p} x_{i}^{\ell_{p}} \\
& \downarrow \\
& w[1 . . j]
\end{aligned}
$$

Non-Cross Patterns

Case 3: $\alpha_{i}=x_{i}^{\ell_{0}} u_{1} x_{i}^{\ell_{1}} u_{2} \ldots x_{i}^{\ell_{p-1}} u_{p} x_{i}^{\ell_{p}}$

$$
u_{k} \in \Sigma^{+}
$$

$$
\begin{aligned}
& w_{0} \alpha_{1} w_{1} \ldots w_{i-1} x_{i}^{\ell_{0}} u_{1} x_{i}^{\ell_{1}} u_{2} \ldots x_{i}^{\ell_{p-1}} u_{p} x_{i}^{\ell_{p}} \\
& \downarrow \\
& w[1 . . j]
\end{aligned}
$$

- $\ell_{p} \geq 2$: proceed similar to Case 2 (more involved, details omitted).
- $\ell_{p}=1$: find all primitive $u_{p} t$ such that $t u_{p} t$ is a suffix of $w[1 . . j]$.

Non-Cross Patterns

Generalisation of Crochemore's result:

Lemma

For a fixed v, w has $\mathcal{O}(\log |w|)$ factors uvu with uv primitive as suffixes.

Lemma

For fixed v, w, we can compute in $\mathcal{O}(n \log n)$ time all the sets $R_{i}^{v}=\{u \mid u v$ primitive, uvu suffix of $w[1 . . i]\}, 1 \leq i \leq|w|$.
\Rightarrow Case 3 can be done efficiently.

Non-Cross Patterns

Theorem

Матch for non-cross patterns is solvable in $\mathcal{O}(|w| m \log |w|)$, where m is the number of one-variable blocks of the pattern.

Theorem

Match for patterns with scope coincidence degree of at most k is solvable in $\mathcal{O}\left(\frac{|w|^{2 k} m}{((k-1)!)^{2}}\right)$, where m is the number of one-variable blocks of the pattern.

Injective MATCH

InjMatch: Like Match, but we are looking for an injective substitution h, i. e., $x \neq y \Rightarrow h(x) \neq h(y)$.

Can we use our (or other) Match-algorithms also for InJMatch?

InjMatch remains NP-complete for patterns for which Match is (trivially) in P.

Injective MATCH

Theorem

InJMatch is $N P$-complete even for patterns $x_{1} x_{2} \ldots x_{n}, n \geq 1$.

We prove NP-completeness of the equivalent problem

```
UNFACT
Instance: A word \(w\) and an integer \(k \geq 1\).
Question: \(w=u_{1} u_{2} \ldots u_{k^{\prime}}\) with \(k^{\prime} \geq k\) and \(u_{i} \neq u_{j}, 1 \leq i<j \leq k\) ?
```


Corollary

InJMATCH is NP-complete for regular, non-cross, k-repeated-variable, bounded scd patterns.

Hardness of InjMatch - Proof Idea

3D-MATCH

Instance: An integer $\ell \in \mathbb{N}$ and a set $S \subseteq\{(p, q, r) \mid 1 \leq p<\ell+1 \leq q<2 \ell+1 \leq r \leq 3 \ell\}$.
Question: Does there exist a subset S^{\prime} of S with cardinality ℓ such that, for each two elements $(p, q, r),\left(p^{\prime}, q^{\prime}, r^{\prime}\right) \in S^{\prime}, p \neq p^{\prime}, q \neq q^{\prime}$ and $r \neq r^{\prime}$?

Hardness of InJMatch - Proof Idea

3D-MATch instance $(S, \ell): S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$
Transform every $s_{i}=\left(p_{i}, q_{i}, r_{i}\right), 1 \leq i \leq k$, into

$$
v_{i}=\begin{array}{llllllllllll}
\star_{i} & p_{i} & \mathrm{a} & \mathrm{~b}_{i, 1} & \mathrm{~b}_{i, 2} & q_{i} & \mathrm{a} & \mathrm{~b}_{i, 3} & \mathrm{~b}_{i, 4} & r_{i} & \mathrm{a} & \diamond_{i}
\end{array}
$$

$\star_{i}, \diamond_{i}, \mathrm{~b}_{i, j}$ have only one occurrence!

Hardness of InjMatch - Proof Idea

3D-Match instance $(S, \ell): S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$
Transform every $s_{i}=\left(p_{i}, q_{i}, r_{i}\right), 1 \leq i \leq k$, into

$$
\begin{array}{llllllllllll}
v_{i}= & \star_{i} & p_{i} & \mathrm{a} & \mathrm{~b}_{i, 1} & \mathrm{~b}_{i, 2} & q_{i} & \mathrm{a} & \mathrm{~b}_{i, 3} & \mathrm{~b}_{i, 4} & r_{i} & \mathrm{a}
\end{array} \diamond_{i}
$$

$\star_{i}, \diamond_{i}, \mathrm{~b}_{i, j}$ have only one occurrence!
Let $S^{\prime} \subseteq S$.

$$
\begin{array}{llllllll}
\left(p_{i}, q_{i}, r_{i}\right) \notin S^{\prime} & \Leftrightarrow \star_{i} p_{i} & \mathrm{ab}_{i, 1} & \mathrm{~b}_{i, 2} q_{i} & \mathrm{ab}_{i, 3} & \mathrm{~b}_{i, 4} r_{i} & \mathrm{a} \diamond_{i} \\
\left(p_{i}, q_{i}, r_{i}\right) \in S^{\prime} & \Leftrightarrow & \star_{i} & p_{i} \mathrm{a} & \mathrm{~b}_{i, 1} \mathrm{~b}_{i, 2} & q_{i} \mathrm{a} & \mathrm{~b}_{i, 3} \mathrm{~b}_{i, 4} & r_{i} \mathrm{a}
\end{array} \diamond_{i} .
$$

Hardness of InjMatch - Proof Idea

3D-MATch instance $(S, \ell): S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$
Transform every $s_{i}=\left(p_{i}, q_{i}, r_{i}\right), 1 \leq i \leq k$, into

$$
\begin{array}{llllllllllll}
v_{i}= & \star_{i} & p_{i} & \mathrm{a} & \mathrm{~b}_{i, 1} & \mathrm{~b}_{i, 2} & q_{i} & \mathrm{a} & \mathrm{~b}_{i, 3} & \mathrm{~b}_{i, 4} & r_{i} & \mathrm{a}
\end{array} \diamond_{i}
$$

$\star_{i}, \diamond_{i}, \mathrm{~b}_{i, j}$ have only one occurrence!
Let $S^{\prime} \subseteq S$.

$$
\left(p_{i}, q_{i}, r_{i}\right) \notin S^{\prime} \quad \Leftrightarrow \star_{i} p_{i} \quad \mathrm{ab}_{i, 1} \quad \mathrm{~b}_{i, 2} q_{i} \quad \mathrm{ab}_{i, 3} \quad \mathrm{~b}_{i, 4} r_{i} \quad \mathrm{a}_{i}
$$

$$
\left(p_{i}, q_{i}, r_{i}\right) \in S^{\prime} \quad \Leftrightarrow \quad \star_{i} \quad p_{i} \mathrm{a} \quad \mathrm{~b}_{i, 1} \mathrm{~b}_{i, 2} \quad q_{i} \mathrm{a} \quad \mathrm{~b}_{i, 3} \mathrm{~b}_{i, 4} \quad r_{i} \mathrm{a} \quad \diamond_{i}
$$

$v=u_{1} u_{2} \ldots u_{n}$ with $n=7 \ell+6(k-\ell)$ and $u_{i} \neq u_{j}, 1 \leq i<j \leq n$
S^{\prime} is a solution of (S, ℓ).

Alphabet Size

Our Reduction needs an unbounded alphabet!
Hardness of InjMatch for fixed alphabets is open, but...

Theorem
InJMATCH (with constant alphabet) is NP-complete for regular, non-cross, k-repeated-variable, bounded scd patterns.

Thank you very much for your attention.

