
Pattern Matching with Variables:

Fast Algorithms and New Hardness Results

Henning Fernau1 Florin Manea2 Robert Merca³2,3 Markus L. Schmid
1

1Trier University, Germany
2Kiel University, Germany

3King's College, London, UK

STACS 2015

Patterns with Variables

Finite alphabet of terminals Σ = {a, b, c, d}

Set of variables X = {x1, x2, x3, . . .}

Patterns α ∈ (Σ ∪X)+

Words w ∈ Σ+

Substitution h : X → Σ+

α = y1 . . . yn,
h(α) = h(y1) . . . h(yn),
with h(a) = a, a ∈ Σ.

Pattern Matching with Variables

pattern α matches word w ⇐⇒ ∃ substitution h : h(α) = w.

α =

w = a b b b a a b b a a a b a b a

Pattern Matching with Variables

pattern α matches word w ⇐⇒ ∃ substitution h : h(α) = w.

α = x1 x2 x1 x3 x2

w = a b b b a a b b a a a b a b a

Pattern Matching with Variables

pattern α matches word w ⇐⇒ ∃ substitution h : h(α) = w.

α = a b bx2 a b bx3 x2

w = a b b b a a b b a a a b a b a

Pattern Matching with Variables

pattern α matches word w ⇐⇒ ∃ substitution h : h(α) = w.

α = a b b b a a b bx3 b a

w = a b b b a a b b a a a b a b a

Pattern Matching with Variables

pattern α matches word w ⇐⇒ ∃ substitution h : h(α) = w.

α = a b b b a a b b a a a b a b a

w = a b b b a a b b a a a b a b a

Pattern Matching with Variables

pattern α matches word w ⇐⇒ ∃ substitution h : h(α) = w.

α = x1 ax2bx2x1 x2

w = b a c b a c b c b a c b c

Pattern Matching with Variables

pattern α matches word w ⇐⇒ ∃ substitution h : h(α) = w.

α = b a c b ax2bx2b a c bx2

w = b a c b a c b c b a c b c

Pattern Matching with Variables

pattern α matches word w ⇐⇒ ∃ substitution h : h(α) = w.

α = b a c b a c b c b a c b c

w = b a c b a c b c b a c b c

Motivation

Learning theory (inductive inference, PAC learning),

language theory (pattern languages),

combinatorics on words (word equations, unavoidable patterns,

ambiguity of morphisms, equality sets),

pattern matching (parameterised matching, (generalised) function

matching),

matchtest for regular expressions with backreferences (text editors

(grep, emacs), programming language (Perl, Java, Python)),

database theory.

Complexity

Matching Problem (Match)

Given a pattern α, a word w. Does α match w (i. e., ∃h : h(α) = w)?

Match is (in general) NP-complete.

Bad news: Match remains hard if numerical parameters are
restricted (few exceptions):

I Match ∈ P if number of variables or word length bounded (trivial).
I Match still hard if

F alphabet size 2,
F each variable has at most 2 occurrences,
F |h(x)| ≤ 3 for every x.

Good news: Tractable if structure of patterns is restricted.

Complexity

Matching Problem (Match)

Given a pattern α, a word w. Does α match w (i. e., ∃h : h(α) = w)?

Match is (in general) NP-complete.

Bad news: Match remains hard if numerical parameters are
restricted (few exceptions):

I Match ∈ P if number of variables or word length bounded (trivial).
I Match still hard if

F alphabet size 2,
F each variable has at most 2 occurrences,
F |h(x)| ≤ 3 for every x.

Good news: Tractable if structure of patterns is restricted.

Complexity

Matching Problem (Match)

Given a pattern α, a word w. Does α match w (i. e., ∃h : h(α) = w)?

Match is (in general) NP-complete.

Bad news: Match remains hard if numerical parameters are
restricted (few exceptions):

I Match ∈ P if number of variables or word length bounded (trivial).
I Match still hard if

F alphabet size 2,
F each variable has at most 2 occurrences,
F |h(x)| ≤ 3 for every x.

Good news: Tractable if structure of patterns is restricted.

Notation

var(α) Set of variables occurring in pattern α.

|α|x Number of occurrences of variable x in pattern α.

Structural Restrictions of Patterns

Regular Patterns:

|α|x = 1, x ∈ var(α).
E. g., α = abx1x2bx3aaax4b.

Non-Cross Patterns:

α = . . . x . . . y . . . x . . . is not possible.
E. g., α = x1abax1ax1x2x2bax2x3x3bbx3ax3

Structural Restrictions of Patterns

Regular Patterns:

|α|x = 1, x ∈ var(α).
E. g., α = abx1x2bx3aaax4b.

Non-Cross Patterns:

α = . . . x . . . y . . . x . . . is not possible.
E. g., α = x1abax1ax1x2x2bax2x3x3bbx3ax3

Structural Restrictions of Patterns

k-Repeated-Variable Patterns:
|{x ∈ var(α) | |α|x ≥ 2}| ≤ k.
E. g., α = x1abx2ax2ax3bax2bbx4x2x5 is a 1-repeated-variable
pattern.

Pattern with Bounded Scope Coincidence Degree:

Scope (of x): shortest factor containing all occ. of x,
Scope coincidence degree: maximum number of coinciding scopes.

α1 = x1 x2 x1 x3 x2 x3 x1 x2 x3 scd(α1) = 3

α2 = x1 x2 x1 x1 x2 x3 x2 x3 x3 scd(α2) = 2

Structural Restrictions of Patterns

k-Repeated-Variable Patterns:
|{x ∈ var(α) | |α|x ≥ 2}| ≤ k.
E. g., α = x1abx2ax2ax3bax2bbx4x2x5 is a 1-repeated-variable
pattern.

Pattern with Bounded Scope Coincidence Degree:

Scope (of x): shortest factor containing all occ. of x,
Scope coincidence degree: maximum number of coinciding scopes.

α1 = x1 x2 x1 x3 x2 x3 x1 x2 x3 scd(α1) = 3

α2 = x1 x2 x1 x1 x2 x3 x2 x3 x3 scd(α2) = 2

Structural Restrictions of Patterns - Complexity

Known results: Match is in P for

regular patterns O(|α|+ |w|),
non-cross patterns O(|α||w|4),
patterns with scd ≤ k O(|α||w|2(k+3)(k + 2)2).

Our contribution:

Find (e�cient) algorithms for these cases.

Can we extend our algorithms to the injective case (i. e., di�erent

variables are replaced by di�erent words)?

Structural Restrictions of Patterns - Complexity

Known results: Match is in P for

regular patterns O(|α|+ |w|),
non-cross patterns O(|α||w|4),
patterns with scd ≤ k O(|α||w|2(k+3)(k + 2)2).

Our contribution:

Find (e�cient) algorithms for these cases.

Can we extend our algorithms to the injective case (i. e., di�erent

variables are replaced by di�erent words)?

k-Repeated Variable Patterns

Lemma

Match for 1-repeated-variable patterns is solvable in O(|w|2).

Theorem

Match for k-repeated-variable patterns is solvable in O
(
|w|2k

((k−1)!)2

)
.

Non-Cross Patterns

Dynamic programming approach!

α non-cross ⇒

α = w0α1w1α2 . . . α`w`. var(αi) = {xi}, wi ∈ Σ∗

Compute all sub-problems:

Does w0α1w1 . . . wi−1αi match w[1..j]? 1 ≤ i ≤ `, 1 ≤ j ≤ |w|

Non-Cross Patterns

Dynamic programming approach!

α non-cross ⇒

α = w0α1w1α2 . . . α`w`. var(αi) = {xi}, wi ∈ Σ∗

Compute all sub-problems:

Does w0α1w1 . . . wi−1αi match w[1..j]? 1 ≤ i ≤ `, 1 ≤ j ≤ |w|

Non-Cross Patterns

Case 1: αi = xi

w0α1w1 . . . wi−1 αi

↓
w[1..j]

⇐⇒

w0α1w1 . . . wi−1

xi

↓

↓

w[1..j′]

w[j′ + 1..j]

Non-Cross Patterns

Case 1: αi = xi

w0α1w1 . . . wi−1 xi

↓
w[1..j]

⇐⇒

w0α1w1 . . . wi−1

xi

↓

↓

w[1..j′]

w[j′ + 1..j]

Non-Cross Patterns

Case 1: αi = xi

w0α1w1 . . . wi−1 xi

↓
w[1..j]

⇐⇒

w0α1w1 . . . wi−1

xi

↓

↓

w[1..j′]

w[j′ + 1..j]

Non-Cross Patterns

Case 1: αi = xi

w0α1w1 . . . wi−1 xi

↓
w[1..j]

⇐⇒

w0α1w1 . . . wi−1 xi

↓ ↓
w[1..j′] w[j′ + 1..j]

Non-Cross Patterns

Case 2a: αi = (xi)
k (xi is mapped to primitive word t)

w0α1w1 . . . wi−1 αi

↓
w[1..j]

⇐⇒

∃ primitive word t with tk su�x of w[1..j] and

w0α1w1 . . . wi−1

xixi . . . xi

↓

↓

w[1..j − (k|t|)]

tt . . . t

Non-Cross Patterns

Case 2a: αi = (xi)
k (xi is mapped to primitive word t)

w0α1w1 . . . wi−1 xixi . . . xi

↓
w[1..j]

⇐⇒

∃ primitive word t with tk su�x of w[1..j] and

w0α1w1 . . . wi−1

xixi . . . xi

↓

↓

w[1..j − (k|t|)]

tt . . . t

Non-Cross Patterns

Case 2a: αi = (xi)
k (xi is mapped to primitive word t)

w0α1w1 . . . wi−1 xixi . . . xi

↓
w[1..j]

⇐⇒

∃ primitive word t with tk su�x of w[1..j] and

w0α1w1 . . . wi−1

xixi . . . xi

↓

↓

w[1..j − (k|t|)]

tt . . . t

Non-Cross Patterns

Case 2a: αi = (xi)
k (xi is mapped to primitive word t)

w0α1w1 . . . wi−1 xixi . . . xi

↓
w[1..j]

⇐⇒

∃ primitive word t with tk su�x of w[1..j] and

w0α1w1 . . . wi−1 xixi . . . xi

↓ ↓
w[1..j − (k|t|)] tt . . . t

Non-Cross Patterns

Case 2a: Find all primitive t such that w[1..j] has t2 as a su�x!

Lemma (Crochemore, 1981)

Primitive u1, u2, u3, |u1| < |u2| < |u3|, w = wiuiui, 1 ≤ i ≤ 3⇒
2|u1| < |u3|.

⇒ w has at most 2 log |w| primitively rooted squares as su�x.

Lemma

We can compute in O(n log n) time all the sets

Pi = {u | u primitive, u2 su�x of w[1..i]}, 1 ≤ i ≤ |w|.

⇒ Case 2a can be done e�ciently.

Non-Cross Patterns

Case 2a: Find all primitive t such that w[1..j] has t2 as a su�x!

Lemma (Crochemore, 1981)

Primitive u1, u2, u3, |u1| < |u2| < |u3|, w = wiuiui, 1 ≤ i ≤ 3⇒
2|u1| < |u3|.

⇒ w has at most 2 log |w| primitively rooted squares as su�x.

Lemma

We can compute in O(n log n) time all the sets

Pi = {u | u primitive, u2 su�x of w[1..i]}, 1 ≤ i ≤ |w|.

⇒ Case 2a can be done e�ciently.

Non-Cross Patterns

Case 2b: αi = (xi)
k (xi is mapped to some word t = vh+1)

w0α1w1 . . . wi−1 xixi . . . xi

↓
w[1..j]

⇐⇒

∃ primitive word v with vk su�x of w[1..j] and

w0α1w1 . . . wi−1xixi . . . xi with h(xi) = vh

↓
w[1..j − k|v|)]

Non-Cross Patterns

Case 2b: αi = (xi)
k (xi is mapped to some word t = vh+1)

w0α1w1 . . . wi−1 xixi . . . xi

↓
w[1..j]

⇐⇒

∃ primitive word v with vk su�x of w[1..j] and

w0α1w1 . . . wi−1xixi . . . xi with h(xi) = vh

↓
w[1..j − k|v|)]

Non-Cross Patterns

Case 3: αi = x`0i u1x
`1
i u2 . . . x

`p−1

i upx
`p
i uk ∈ Σ+

w0α1w1 . . . wi−1 αi

↓
w[1..j]

`p ≥ 2: proceed similar to Case 2 (more involved, details omitted).

`p = 1: �nd all primitive upt such that tupt is a su�x of w[1..j].

Non-Cross Patterns

Case 3: αi = x`0i u1x
`1
i u2 . . . x

`p−1

i upx
`p
i uk ∈ Σ+

w0α1w1 . . . wi−1 x
`0
i u1x

`1
i u2 . . . x

`p−1

i upx
`p
i

↓
w[1..j]

`p ≥ 2: proceed similar to Case 2 (more involved, details omitted).

`p = 1: �nd all primitive upt such that tupt is a su�x of w[1..j].

Non-Cross Patterns

Case 3: αi = x`0i u1x
`1
i u2 . . . x

`p−1

i upx
`p
i uk ∈ Σ+

w0α1w1 . . . wi−1 x
`0
i u1x

`1
i u2 . . . x

`p−1

i upx
`p
i

↓
w[1..j]

`p ≥ 2: proceed similar to Case 2 (more involved, details omitted).

`p = 1: �nd all primitive upt such that tupt is a su�x of w[1..j].

Non-Cross Patterns

Generalisation of Crochemore's result:

Lemma

For a �xed v, w has O(log |w|) factors uvu with uv primitive as su�xes.

Lemma

For �xed v, w, we can compute in O(n log n) time all the sets

Rv
i = {u | uv primitive, uvu su�x of w[1..i]}, 1 ≤ i ≤ |w|.

⇒ Case 3 can be done e�ciently.

Non-Cross Patterns

Theorem

Match for non-cross patterns is solvable in O(|w|m log |w|), where m
is the number of one-variable blocks of the pattern.

Theorem

Match for patterns with scope coincidence degree of at most k is

solvable in O
(
|w|2km

((k−1)!)2

)
, where m is the number of one-variable blocks

of the pattern.

Injective Match

InjMatch: Like Match, but we are looking for an injective

substitution h, i. e., x 6= y ⇒ h(x) 6= h(y).

Can we use our (or other) Match-algorithms also for InjMatch?

InjMatch remains NP-complete for patterns for which Match is

(trivially) in P.

Injective Match

Theorem

InjMatch is NP-complete even for patterns x1x2 . . . xn, n ≥ 1.

We prove NP-completeness of the equivalent problem

UnFact

Instance: A word w and an integer k ≥ 1.
Question: w = u1u2 . . . uk′ with k

′ ≥ k and ui 6= uj , 1 ≤ i < j ≤ k?

Corollary

InjMatch is NP-complete for regular, non-cross, k-repeated-variable,
bounded scd patterns.

Hardness of InjMatch - Proof Idea

3D-Match

Instance: An integer ` ∈ N and a set

S ⊆ {(p, q, r) | 1 ≤ p < `+ 1 ≤ q < 2`+ 1 ≤ r ≤ 3`}.
Question: Does there exist a subset S′ of S with cardinality ` such that,

for each two elements (p, q, r), (p′, q′, r′) ∈ S′, p 6= p′, q 6= q′ and r 6= r′?

Hardness of InjMatch - Proof Idea

3D-Match instance (S, `): S = {s1, s2, . . . , sk}
Transform every si = (pi, qi, ri), 1 ≤ i ≤ k, into

vi = ?i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a �i

?i, �i, bi,j have only one occurrence!

Let S′ ⊆ S.

(pi, qi, ri) /∈ S′ ⇔ ?ipi abi,1 bi,2qi abi,3 bi,4ri a�i

(pi, qi, ri) ∈ S′ ⇔ ?i pia bi,1bi,2 qia bi,3bi,4 ria �i

v = u1u2 . . . un with n = 7`+ 6(k − `) and ui 6= uj , 1 ≤ i < j ≤ n
⇐⇒
S′ is a solution of (S, `).

Hardness of InjMatch - Proof Idea

3D-Match instance (S, `): S = {s1, s2, . . . , sk}
Transform every si = (pi, qi, ri), 1 ≤ i ≤ k, into

vi = ?i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a �i

?i, �i, bi,j have only one occurrence!

Let S′ ⊆ S.

(pi, qi, ri) /∈ S′ ⇔ ?ipi abi,1 bi,2qi abi,3 bi,4ri a�i

(pi, qi, ri) ∈ S′ ⇔ ?i pia bi,1bi,2 qia bi,3bi,4 ria �i

v = u1u2 . . . un with n = 7`+ 6(k − `) and ui 6= uj , 1 ≤ i < j ≤ n
⇐⇒
S′ is a solution of (S, `).

Hardness of InjMatch - Proof Idea

3D-Match instance (S, `): S = {s1, s2, . . . , sk}
Transform every si = (pi, qi, ri), 1 ≤ i ≤ k, into

vi = ?i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a �i

?i, �i, bi,j have only one occurrence!

Let S′ ⊆ S.

(pi, qi, ri) /∈ S′ ⇔ ?ipi abi,1 bi,2qi abi,3 bi,4ri a�i

(pi, qi, ri) ∈ S′ ⇔ ?i pia bi,1bi,2 qia bi,3bi,4 ria �i

v = u1u2 . . . un with n = 7`+ 6(k − `) and ui 6= uj , 1 ≤ i < j ≤ n
⇐⇒
S′ is a solution of (S, `).

Alphabet Size

Our Reduction needs an unbounded alphabet!

Hardness of InjMatch for �xed alphabets is open, but...

Theorem

InjMatch (with constant alphabet) is NP-complete for regular,

non-cross, k-repeated-variable, bounded scd patterns.

Thank you very much for your attention.

