
Characterising REGEX Languages by Regular Languages
Equipped with Factor-Referencing

Markus L. Schmid

Trier University, Germany

DLT 2014

The Problems of Context-Freeness

�The world� is not context-free.

Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

We often need language classes with some �non-context-free features�,
while at the same time weaker than context-sensitive.

regulated rewriting (add control mechanisms to context-free grammars)

mildly context-sensitive (allow only a little bit of context-sensitivity).

The Problems of Context-Freeness

�The world� is not context-free.

Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

We often need language classes with some �non-context-free features�,
while at the same time weaker than context-sensitive.

regulated rewriting (add control mechanisms to context-free grammars)

mildly context-sensitive (allow only a little bit of context-sensitivity).

The Problems of Context-Freeness

�The world� is not context-free.

Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

We often need language classes with some �non-context-free features�,
while at the same time weaker than context-sensitive.

regulated rewriting (add control mechanisms to context-free grammars)

mildly context-sensitive (allow only a little bit of context-sensitivity).

The Problems of Context-Freeness

�The world� is not context-free.

Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

We often need language classes with some �non-context-free features�,
while at the same time weaker than context-sensitive.

regulated rewriting (add control mechanisms to context-free grammars)

mildly context-sensitive (allow only a little bit of context-sensitivity).

Typical Non-Context-Free Features

Reduplication {ww | w ∈ Σ∗}
Multiple agreements {anbncn | n ≥ 1}
Crossed agreements {anbmcndm | n,m ≥ 1}

We solely focus on reduplication.

Language descriptor/grammars models tailored to reduplication:

L systems,

pattern languages,

H-systems,

Wijngaarden grammars, macro grammars, Indian parallel grammars,
deterministic iteration grammars,

pattern expressions, synchronized regular expressions, EH-expressions,
extended regular expressions with backreferences (REGEX).

Typical Non-Context-Free Features

Reduplication {ww | w ∈ Σ∗}
Multiple agreements {anbncn | n ≥ 1}
Crossed agreements {anbmcndm | n,m ≥ 1}

We solely focus on reduplication.

Language descriptor/grammars models tailored to reduplication:

L systems,

pattern languages,

H-systems,

Wijngaarden grammars, macro grammars, Indian parallel grammars,
deterministic iteration grammars,

pattern expressions, synchronized regular expressions, EH-expressions,
extended regular expressions with backreferences (REGEX).

Reference-Words - Idea

a b a c b c x c b z y a

x

y z

Reference-Words - Idea

a b a c b c x c b z y a

x

y z

Reference-Words - Idea

a b a c b c b a c c b z y a

x

y z

Reference-Words - Idea

a b a c b c b a c c b z y a

y z

Reference-Words - Idea

a b a c b c b a c c b z y a

y z

Reference-Words - Idea

a b a c b c b a c c b z c b a

y z

Reference-Words - Idea

a b a c b c b a c c b z c b a

z

Reference-Words - Idea

a b a c b c b a c c b z c b a

z

Reference-Words - Idea

a b a c b c b a c c b b a c c b c b a

z

Reference-Words - Idea

a b a c b c b a c c b b a c c b c b a

Reference-Words - Formal De�nition

Σ is a �nite alphabet.

Γ = {[xi
,]xi

, xi | i ∈ N}.
[xi

and]xi
are called parentheses, xi is called variable.

A ref-word over Σ is a word w ∈ (Σ ∪ Γ)∗.

A ref-word is valid if, for every i ∈ N,
I only well-formed, non-nested pairs of parentheses [xi

,]xi
,

I no xi inside of [xi
. . .]xi

.

Σ[∗] is the set of valid ref-words (over Σ).

Reference-Words - Formal De�nition

Σ is a �nite alphabet.

Γ = {[xi
,]xi

, xi | i ∈ N}.

[xi
and]xi

are called parentheses, xi is called variable.

A ref-word over Σ is a word w ∈ (Σ ∪ Γ)∗.

A ref-word is valid if, for every i ∈ N,
I only well-formed, non-nested pairs of parentheses [xi

,]xi
,

I no xi inside of [xi
. . .]xi

.

Σ[∗] is the set of valid ref-words (over Σ).

Reference-Words - Formal De�nition

Σ is a �nite alphabet.

Γ = {[xi
,]xi

, xi | i ∈ N}.
[xi

and]xi
are called parentheses, xi is called variable.

A ref-word over Σ is a word w ∈ (Σ ∪ Γ)∗.

A ref-word is valid if, for every i ∈ N,
I only well-formed, non-nested pairs of parentheses [xi

,]xi
,

I no xi inside of [xi
. . .]xi

.

Σ[∗] is the set of valid ref-words (over Σ).

Reference-Words - Formal De�nition

Σ is a �nite alphabet.

Γ = {[xi
,]xi

, xi | i ∈ N}.
[xi

and]xi
are called parentheses, xi is called variable.

A ref-word over Σ is a word w ∈ (Σ ∪ Γ)∗.

A ref-word is valid if, for every i ∈ N,
I only well-formed, non-nested pairs of parentheses [xi

,]xi
,

I no xi inside of [xi
. . .]xi

.

Σ[∗] is the set of valid ref-words (over Σ).

Reference-Words - Formal De�nition

Σ is a �nite alphabet.

Γ = {[xi
,]xi

, xi | i ∈ N}.
[xi

and]xi
are called parentheses, xi is called variable.

A ref-word over Σ is a word w ∈ (Σ ∪ Γ)∗.

A ref-word is valid if, for every i ∈ N,
I only well-formed, non-nested pairs of parentheses [xi

,]xi
,

I no xi inside of [xi
. . .]xi

.

Σ[∗] is the set of valid ref-words (over Σ).

Reference-Words - Formal De�nition

Σ is a �nite alphabet.

Γ = {[xi
,]xi

, xi | i ∈ N}.
[xi

and]xi
are called parentheses, xi is called variable.

A ref-word over Σ is a word w ∈ (Σ ∪ Γ)∗.

A ref-word is valid if, for every i ∈ N,
I only well-formed, non-nested pairs of parentheses [xi

,]xi
,

I no xi inside of [xi
. . .]xi

.

Σ[∗] is the set of valid ref-words (over Σ).

Reference-Words - Examples

[x [y b]x cx [x b]y zyb [y cz]y z [z cc]x]z ,

[x a [y b [z bba]z c]y byb]x xy .

References for x with a value u: [xu]x .

An Occurrence of variable x refers to the reference for x , which precedes it.

Unde�ned variables: x not preceded by a reference for x .

Nested references: [x . . . [y . . .]y . . .]x .

Overlapping references: [x . . . [y . . .]x . . .]y .

Reference-Words - Examples

[x [y b]x cx [x b]y zyb [y cz]y z [z cc]x]z ,

[x a [y b [z bba]z c]y byb]x xy .

References for x with a value u: [xu]x .

An Occurrence of variable x refers to the reference for x , which precedes it.

Unde�ned variables: x not preceded by a reference for x .

Nested references: [x . . . [y . . .]y . . .]x .

Overlapping references: [x . . . [y . . .]x . . .]y .

Reference-Words - Examples

[x [y b]x cx [x b]y zyb [y cz]y z [z cc]x]z ,

[x a [y b [z bba]z c]y byb]x xy .

References for x with a value u: [xu]x .

An Occurrence of variable x refers to the reference for x , which precedes it.

Unde�ned variables: x not preceded by a reference for x .

Nested references: [x . . . [y . . .]y . . .]x .

Overlapping references: [x . . . [y . . .]x . . .]y .

Reference-Words - Examples

[x [y b]x cx [x b]y zyb [y cz]y z [z cc]x]z ,

[x a [y b [z bba]z c]y byb]x xy .

References for x with a value u: [xu]x .

An Occurrence of variable x refers to the reference for x , which precedes it.

Unde�ned variables: x not preceded by a reference for x .

Nested references: [x . . . [y . . .]y . . .]x .

Overlapping references: [x . . . [y . . .]x . . .]y .

Reference-Words - Examples

[x [y b]x cx [x b]y zyb [y cz]y z [z cc]x]z ,

[x a [y b [z bba]z c]y byb]x xy .

References for x with a value u: [xu]x .

An Occurrence of variable x refers to the reference for x , which precedes it.

Unde�ned variables: x not preceded by a reference for x .

Nested references: [x . . . [y . . .]y . . .]x .

Overlapping references: [x . . . [y . . .]x . . .]y .

Reference-Words - Examples

[x [y b]x cx [x b]y zyb [y cz]y z [z cc]x]z ,

[x a [y b [z bba]z c]y byb]x xy .

References for x with a value u: [xu]x .

An Occurrence of variable x refers to the reference for x , which precedes it.

Unde�ned variables: x not preceded by a reference for x .

Nested references: [x . . . [y . . .]y . . .]x .

Overlapping references: [x . . . [y . . .]x . . .]y .

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

za[zx [xyb[yc]xbx [xc]yb]xyc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

za[zx [xyb[yc]xbx [xc]yb]xyc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[z [xb[yc]xbx [xc]yb]xyc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[z [xb[yc]xbx [xc]yb]xyc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[z [xb[yc]xbbc[xc]yb]xyc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zb[ycbbc[xc]yb]xyc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zb[ycbbc[xc]yb]xyc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zb[ycbbc[xc]yb]xcbbccc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zbcbbc[xcb]xcbbccc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zbcbbc[xcb]xcbbccc]zxcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zbcbbc[xcb]xcbbccc]zcbcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zbcbbccbcbbccc]zcbcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zbcbbccbcbbccc]zcbcz

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

a[zbcbbccbcbbccc]zcbcbcbbccbcbbccc

Reference-Words - Dereference Function

D : Σ[∗] → Σ∗

Example:

abcbbccbcbbccccbcbcbbccbcbbccc

Ref-Languages and Ref-Regular Languages

L is a ref-language (over Σ) if

L ⊆ Σ[∗] and

L ⊆ (Σ ∪ {[xi
,]xi

, xi | i ≤ k})∗, for some k ∈ N.

ref-lang. REG
regular
ref-lang.

ref-REG

D

Ref-Languages and Ref-Regular Languages

L is a ref-language (over Σ) if

L ⊆ Σ[∗] and

L ⊆ (Σ ∪ {[xi
,]xi

, xi | i ≤ k})∗, for some k ∈ N.

ref-lang.
regular
ref-lang.

ref-REG

D

REG

Ref-Languages and Ref-Regular Languages

L is a ref-language (over Σ) if

L ⊆ Σ[∗] and

L ⊆ (Σ ∪ {[xi
,]xi

, xi | i ≤ k})∗, for some k ∈ N.

regular
ref-lang.

ref-REG

D

ref-lang. REG

Ref-Languages and Ref-Regular Languages

L is a ref-language (over Σ) if

L ⊆ Σ[∗] and

L ⊆ (Σ ∪ {[xi
,]xi

, xi | i ≤ k})∗, for some k ∈ N.

ref-REG

D

ref-lang. REG
regular
ref-lang.

Ref-Languages and Ref-Regular Languages

L is a ref-language (over Σ) if

L ⊆ Σ[∗] and

L ⊆ (Σ ∪ {[xi
,]xi

, xi | i ≤ k})∗, for some k ∈ N.

ref-lang. REG
regular
ref-lang.

ref-REG

D

Ref-Languages and Ref-Regular Languages

REG ⊂ ref-REG ⊂ CS,

Lc = {[x w]x x | w ∈ Σ∗} is a regular ref-languages.
D(Lc) = {ww | w ∈ Σ∗} (copy language).

{anbn | n ∈ N} /∈ ref-REG.

Ref-Languages and Ref-Regular Languages

REG ⊂ ref-REG ⊂ CS,

Lc = {[x w]x x | w ∈ Σ∗} is a regular ref-languages.
D(Lc) = {ww | w ∈ Σ∗} (copy language).

{anbn | n ∈ N} /∈ ref-REG.

Ref-Languages and Ref-Regular Languages

REG ⊂ ref-REG ⊂ CS,

Lc = {[x w]x x | w ∈ Σ∗} is a regular ref-languages.
D(Lc) = {ww | w ∈ Σ∗} (copy language).

{anbn | n ∈ N} /∈ ref-REG.

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a

M1

M2

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1

M2

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1

M2

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1

M2

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: open M1

a c a b c c b a b c c b c c a b c c b c c a b c c

M1

M2

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a

M2

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: open M2

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a

M2

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b

M2 b

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: close M1

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: close M2

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: consult M1

a c a b c c b a b c c b c c a b c c b c c a b c ca b c

M1 a b c

M2 b c c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: open M3

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: consult M2

a c a b c c b a b c c b c c a b c c b c c a b c cb c c

M1 a b c

M2 b c c

M3

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c c

M3 b c c

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: consult M1

a c a b c c b a b c c b c c a b c c b c c a b c ca b c

M1 a b c

M2 b c c

M3 b c c

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

a c a b c c b a b c c b c c a b c c b c c a b c c

M1 a b c

M2 b c c

M3 b c c a b c

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: open M1

aa c a b c c b a b c c b c c a b c c b c c a b c c

M1

M2 b c c

M3 b c c a b c

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

aa c a b c c b a b c c b c c a b c c b c c a b c c

M1 c

M2 b c c

M3 b c c a b c c

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: close M3

aa c a b c c b a b c c b c c a b c c b c c a b c c

M1 c

M2 b c c

M3 b c c a b c c

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: consult M3

aa c a b c c b a b c c b c c a b c c b c c a b c cb c c a b c c

M1 c

M2 b c c

M3 b c c a b c c

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions:

aa c a b c c b a b c c b c c a b c c b c c a b c c

M1 c b c c a b c c

M2 b c c

M3 b c c a b c c

Memory Automata (MFA)

�nite state control
k (= 3) memories

memory instructions: close M1

aa c a b c c b a b c c b c c a b c c b c c a b c c

M1 c b c c a b c c

M2 b c c

M3 b c c a b c c

Determinism of MFA

Pseudo deterministic: For every state, symbol b and memory i , at most
one move that reads b and at most one move that consults memory i .

Deterministic: ε-free and for every state at most one possible move.

L(MFA) = L(pseudo-det-MFA) (extended subset construction).

L(DMFA) ⊂ L(MFA) ({ww | w ∈ {a, b}∗} /∈ L(DMFA)).

Determinism of MFA

Pseudo deterministic: For every state, symbol b and memory i , at most
one move that reads b and at most one move that consults memory i .

Deterministic: ε-free and for every state at most one possible move.

L(MFA) = L(pseudo-det-MFA) (extended subset construction).

L(DMFA) ⊂ L(MFA) ({ww | w ∈ {a, b}∗} /∈ L(DMFA)).

Determinism of MFA

Pseudo deterministic: For every state, symbol b and memory i , at most
one move that reads b and at most one move that consults memory i .

Deterministic: ε-free and for every state at most one possible move.

L(MFA) = L(pseudo-det-MFA) (extended subset construction).

L(DMFA) ⊂ L(MFA) ({ww | w ∈ {a, b}∗} /∈ L(DMFA)).

Determinism of MFA

Pseudo deterministic: For every state, symbol b and memory i , at most
one move that reads b and at most one move that consults memory i .

Deterministic: ε-free and for every state at most one possible move.

L(MFA) = L(pseudo-det-MFA) (extended subset construction).

L(DMFA) ⊂ L(MFA) ({ww | w ∈ {a, b}∗} /∈ L(DMFA)).

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping,
i. e.,

a b a c b a c b a b c c b

memory 1

memory 2

is not possible.

Theorem

Every MFA(k) can be transformed into a equivalent MFA(k2) that is

pseudo-deterministic and nested.

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping,
i. e.,

a b a c b a c b a b c c b

memory 1

memory 2

is not possible.

Theorem

Every MFA(k) can be transformed into a equivalent MFA(k2) that is

pseudo-deterministic and nested.

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping,
i. e.,

a b a c b a c b a b c c b

memory 1

memory 2

is not possible.

Theorem

Every MFA(k) can be transformed into a equivalent MFA(k2) that is

pseudo-deterministic and nested.

Equivalence of L(MFA) and ref-REG

Theorem

ref-REG = L(MFA).

De�ne ψD : {M ∈ NFA | L(M) ⊆ Σ[∗]} → MFA by

NFA reads a ∈ Σ ⇒ MFA reads a ∈ Σ

NFA reads [xi
⇒ MFA opens memory i

NFA reads]xi
⇒ MFA closes memory i

NFA reads xi ⇒ MFA consults memory i

Lemma

Let M ∈ NFA with L(M) ⊆ Σ[∗]. Then D(L(M)) = L(ψD(M)).

Lemma

Let M ∈ MFA. Then L(M) = D(L(ψ−1D (M))).

Equivalence of L(MFA) and ref-REG

Theorem

ref-REG = L(MFA).

De�ne ψD : {M ∈ NFA | L(M) ⊆ Σ[∗]} → MFA by

NFA reads a ∈ Σ ⇒ MFA reads a ∈ Σ

NFA reads [xi
⇒ MFA opens memory i

NFA reads]xi
⇒ MFA closes memory i

NFA reads xi ⇒ MFA consults memory i

Lemma

Let M ∈ NFA with L(M) ⊆ Σ[∗]. Then D(L(M)) = L(ψD(M)).

Lemma

Let M ∈ MFA. Then L(M) = D(L(ψ−1D (M))).

Equivalence of L(MFA) and ref-REG

Theorem

ref-REG = L(MFA).

De�ne ψD : {M ∈ NFA | L(M) ⊆ Σ[∗]} → MFA by

NFA reads a ∈ Σ ⇒ MFA reads a ∈ Σ

NFA reads [xi
⇒ MFA opens memory i

NFA reads]xi
⇒ MFA closes memory i

NFA reads xi ⇒ MFA consults memory i

Lemma

Let M ∈ NFA with L(M) ⊆ Σ[∗]. Then D(L(M)) = L(ψD(M)).

Lemma

Let M ∈ MFA. Then L(M) = D(L(ψ−1D (M))).

Equivalence of L(MFA) and ref-REG

Theorem

ref-REG = L(MFA).

De�ne ψD : {M ∈ NFA | L(M) ⊆ Σ[∗]} → MFA by

NFA reads a ∈ Σ ⇒ MFA reads a ∈ Σ

NFA reads [xi
⇒ MFA opens memory i

NFA reads]xi
⇒ MFA closes memory i

NFA reads xi ⇒ MFA consults memory i

Lemma

Let M ∈ NFA with L(M) ⊆ Σ[∗]. Then D(L(M)) = L(ψD(M)).

Lemma

Let M ∈ MFA. Then L(M) = D(L(ψ−1D (M))).

Equivalence of L(MFA) and ref-REG

Theorem

ref-REG = L(MFA).

De�ne ψD : {M ∈ NFA | L(M) ⊆ Σ[∗]} → MFA by

NFA reads a ∈ Σ ⇒ MFA reads a ∈ Σ

NFA reads [xi
⇒ MFA opens memory i

NFA reads]xi
⇒ MFA closes memory i

NFA reads xi ⇒ MFA consults memory i

Lemma

Let M ∈ NFA with L(M) ⊆ Σ[∗]. Then D(L(M)) = L(ψD(M)).

Lemma

Let M ∈ MFA. Then L(M) = D(L(ψ−1D (M))).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2)

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := ((a | b)∗) (c∗ | (a∗b))

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2)

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

Some background information about REGEX:

invented entirely on the level of software implementation,

applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

NP-complete membership problem, undecidable inclusion problem,

language theoretical investigation started 10 years ago (Câmpeanu,
K. Salomaa, Yu).

Equivalence of ref-REG and L(REGEX)

Theorem

L(REGEX) ⊆ ref-REG.

Proof sketch:

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

r ′ := [x1 (a | b)∗]x1 (c∗ | [x2 a
∗b]x2) (x2 | b∗) (x1)∗

L(r) = D(L(r ′))

Equivalence of ref-REG and L(REGEX)

Theorem

L(REGEX) ⊆ ref-REG.

Proof sketch:

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

r ′ := [x1 (a | b)∗]x1 (c∗ | [x2 a
∗b]x2) (x2 | b∗) (x1)∗

L(r) = D(L(r ′))

Equivalence of ref-REG and L(REGEX)

Theorem

L(REGEX) ⊆ ref-REG.

Proof sketch:

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

r ′ := [x1 (a | b)∗]x1 (c∗ | [x2 a
∗b]x2) (x2 | b∗) (x1)∗

L(r) = D(L(r ′))

Equivalence of ref-REG and L(REGEX)

Theorem

L(REGEX) ⊆ ref-REG.

Proof sketch:

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

r ′ := [x1 (a | b)∗]x1 (c∗ | [x2 a
∗b]x2) (x2 | b∗) (x1)∗

L(r) = D(L(r ′))

Equivalence of ref-REG and L(REGEX)

Theorem

L(REGEX) ⊆ ref-REG.

Proof sketch:

r := (1 (a | b)∗)1 (c∗ | (2 a
∗b)2) (\2 | b∗) (\1)∗

r ′ := [x1 (a | b)∗]x1 (c∗ | [x2 a
∗b]x2) (x2 | b∗) (x1)∗

L(r) = D(L(r ′))

Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . .]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

(([x1a
∗) | ([x1 (a | b)∗)) ((ca]x1x1) |]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).

Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . .]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

(([x1a
∗) | ([x1 (a | b)∗)) ((ca]x1x1) |]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).

Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . .]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

(([x1a
∗) | ([x1 (a | b)∗)) ((ca]x1x1) |]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).

Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . .]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1

⇒ (2(1(a | b)∗)1c
∗\1)2a\2\1

(([x1a
∗) | ([x1 (a | b)∗)) ((ca]x1x1) |]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).

Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . .]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

(([x1a
∗) | ([x1 (a | b)∗)) ((ca]x1x1) |]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).

Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . .]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

(([x1a
∗) | ([x1 (a | b)∗)) ((ca]x1x1) |]x1) x1

⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).

Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . .]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

(([x1a
∗) | ([x1 (a | b)∗)) ((ca]x1x1) |]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).

Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . .]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

(([x1a
∗) | ([x1 (a | b)∗)) ((ca]x1x1) |]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG = L(MFA) = L(REGEX).

ref-regular languages are characterised by

regular ref-languages,
I �nite automata accepting ref-languages,
I regular expressions generating ref-languages,
I . . .

MFA

REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the �regular�-part from the �reduplication�-part.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG = L(MFA) = L(REGEX).

ref-regular languages are characterised by

regular ref-languages,
I �nite automata accepting ref-languages,
I regular expressions generating ref-languages,
I . . .

MFA

REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the �regular�-part from the �reduplication�-part.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG = L(MFA) = L(REGEX).

ref-regular languages are characterised by

regular ref-languages,
I �nite automata accepting ref-languages,
I regular expressions generating ref-languages,
I . . .

MFA

REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the �regular�-part from the �reduplication�-part.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG = L(MFA) = L(REGEX).

ref-regular languages are characterised by

regular ref-languages,
I �nite automata accepting ref-languages,
I regular expressions generating ref-languages,
I . . .

MFA

REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the �regular�-part from the �reduplication�-part.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG = L(MFA) = L(REGEX).

ref-regular languages are characterised by

regular ref-languages,
I �nite automata accepting ref-languages,
I regular expressions generating ref-languages,
I . . .

MFA

REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the �regular�-part from the �reduplication�-part.

Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG = L(MFA) = L(REGEX).

ref-regular languages are characterised by

regular ref-languages,
I �nite automata accepting ref-languages,
I regular expressions generating ref-languages,
I . . .

MFA

REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the �regular�-part from the �reduplication�-part.

Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.

Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.

Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.

Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.

Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.

Further Research Ideas

Implementations of REGEX-engines based on MFA (or DMFA).

Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

Decision problems for ref-REG.

Investigate ref-L for other language classes L, e. g., ref-CF.

Further Research Ideas

Implementations of REGEX-engines based on MFA (or DMFA).

Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

Decision problems for ref-REG.

Investigate ref-L for other language classes L, e. g., ref-CF.

Further Research Ideas

Implementations of REGEX-engines based on MFA (or DMFA).

Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

Decision problems for ref-REG.

Investigate ref-L for other language classes L, e. g., ref-CF.

Further Research Ideas

Implementations of REGEX-engines based on MFA (or DMFA).

Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

Decision problems for ref-REG.

Investigate ref-L for other language classes L, e. g., ref-CF.

Thank you very much for your attention.

