Characterising REGEX Languages by Regular Languages Equipped with Factor-Referencing

Markus L. Schmid

Trier University, Germany

DLT 2014

• "The world" is not context-free.

- "The world" is not context-free.
- Context-sensitive languages are often too powerful (vast expressive power, parsing intractable, undecidability, etc.)

- "The world" is not context-free.
- Context-sensitive languages are often too powerful (vast expressive power, parsing intractable, undecidability, etc.)
- We often need language classes with some "non-context-free features", while at the same time weaker than context-sensitive.

- "The world" is not context-free.
- Context-sensitive languages are often too powerful (vast expressive power, parsing intractable, undecidability, etc.)
- We often need language classes with some "non-context-free features", while at the same time weaker than context-sensitive.

regulated rewriting (add control mechanisms to context-free grammars) mildly context-sensitive (allow only a little bit of context-sensitivity).

Typical Non-Context-Free Features

```
 \begin{array}{ll} & \text{Reduplication} & \{ww \mid w \in \Sigma^*\} \\ & \text{Multiple agreements} & \{\mathtt{a}^n\mathtt{b}^n\mathtt{c}^n \mid n \geq 1\} \\ & \text{Crossed agreements} & \{\mathtt{a}^n\mathtt{b}^m\mathtt{c}^n\mathtt{d}^m \mid n,m \geq 1\} \end{array}
```

We solely focus on reduplication.

Typical Non-Context-Free Features

```
 \begin{array}{ll} \text{Reduplication} & \{ww \mid w \in \Sigma^*\} \\ \\ \text{Multiple agreements} & \{\mathtt{a}^n\mathtt{b}^n\mathtt{c}^n \mid n \geq 1\} \\ \\ \text{Crossed agreements} & \{\mathtt{a}^n\mathtt{b}^m\mathtt{c}^n\mathtt{d}^m \mid n,m \geq 1\} \end{array}
```

We solely focus on reduplication.

Language descriptor/grammars models tailored to reduplication:

- L systems,
- pattern languages,
- H-systems,
- Wijngaarden grammars, macro grammars, Indian parallel grammars, deterministic iteration grammars,
- pattern expressions, synchronized regular expressions, EH-expressions, extended regular expressions with backreferences (REGEX).

abacbcbaccbbaccbcba

 \bullet Σ is a finite alphabet.

- \bullet Σ is a finite alphabet.
- $\bullet \ \Gamma = \{[x_i,]_{x_i}, x_i \mid i \in \mathbb{N}\}.$

- \bullet Σ is a finite alphabet.
- $\Gamma = \{ [x_i, x_i, x_i \mid i \in \mathbb{N} \} \}$.
- $[x_i]$ and $]x_i$ are called parentheses, x_i is called variable.

- Σ is a finite alphabet.
- $\Gamma = \{ [x_i, x_i, x_i \mid i \in \mathbb{N} \} \}$.
- $[x_i \text{ and }]_{x_i}$ are called parentheses, x_i is called variable.
- A ref-word over Σ is a word $w \in (\Sigma \cup \Gamma)^*$.

- Σ is a finite alphabet.
- $\Gamma = \{ [x_i, x_i, x_i \mid i \in \mathbb{N} \} \}$.
- $[x_i \text{ and }]_{x_i}$ are called parentheses, x_i is called variable.
- A ref-word over Σ is a word $w \in (\Sigma \cup \Gamma)^*$.
- A ref-word is valid if, for every $i \in \mathbb{N}$,
 - ▶ only well-formed, non-nested pairs of parentheses $[x_i,]_{x_i}$,
 - no x_i inside of $[x_i, \ldots]_{x_i}$.

- Σ is a finite alphabet.
- $\Gamma = \{ [x_i, x_i, x_i \mid i \in \mathbb{N} \} \}$.
- $[x_i \text{ and }]_{x_i}$ are called parentheses, x_i is called variable.
- A ref-word over Σ is a word $w \in (\Sigma \cup \Gamma)^*$.
- A ref-word is valid if, for every $i \in \mathbb{N}$,
 - ▶ only well-formed, non-nested pairs of parentheses $[x_i,]x_i$,
 - ▶ no x_i inside of $[x_i...]_{x_i}$.
- $\Sigma^{[*]}$ is the set of valid ref-words (over Σ).

- $\bullet \ \left[\begin{tabular}{lll} \bullet \ & \begin{tabular}{lll} \begin{tabular}{lll} \begin{tabular}{lll} \bullet \ & \begin{tabular}{lll} \begin{tabular} \begin{tabular}{lll} \begin{tabular}{lll} \begin{tabular$
- $[x \ a \ [y \ b \ [z \ bba \]_z \ c \]_y \ byb \]_x \ xy$.

- $\bullet \ [_X \ [_y \ b \]_X \ cx \ [_X \ b \]_y \ zyb \ [_y \ cz \]_y \ z \ [_z \ cc \]_X \]_z,$
- $[x \text{ a } [y \text{ b } [z \text{ bba }]_z \text{ c }]_y \text{ byb }]_x xy.$

References for x with a value $u: [x u]_x$.

- $\bullet \ [_X \ [_Y \ b \]_X \ cx \ [_X \ b \]_Y \ zyb \ [_Y \ cz \]_Y \ z \ [_Z \ cc \]_X \]_Z,$
- $[x \text{ a } [y \text{ b } [z \text{ bba }]_z \text{ c }]_y \text{ byb }]_x xy.$

References for x with a value $u: [x u]_x$.

An Occurrence of variable x refers to the reference for x, which precedes it.

- $\bullet \ \left[\begin{smallmatrix} x & \left[y & b \right]_X & \mathsf{c} x & \left[_X & b \right]_Y & \mathsf{z} y b & \left[_Y & \mathsf{c} \mathsf{z} \right]_Y & \mathsf{z} & \left[_Z & \mathsf{c} \mathsf{c} \right]_X \end{array}\right]_{\mathsf{z}},$
- $[x \text{ a } [y \text{ b } [z \text{ bba }]_z \text{ c }]_y \text{ byb }]_x xy.$

References for x with a value $u: [x u]_x$.

An Occurrence of variable x refers to the reference for x, which precedes it.

Undefined variables: x not preceded by a reference for x.

- $\bullet \ [_X \ [_Y \ b \]_X \ \mathsf{c} x \ [_X \ b \]_Y \ \mathsf{z} \mathsf{y} \mathsf{b} \ [_Y \ \mathsf{c} \mathsf{z} \]_Y \ \mathsf{z} \ [_Z \ \mathsf{c} \mathsf{c} \]_X \]_Z,$
- $[x \text{ a } [y \text{ b } [z \text{ bba }]_z \text{ c }]_y \text{ byb }]_x xy.$

References for x with a value $u: [x u]_x$.

An Occurrence of variable x refers to the reference for x, which precedes it.

Undefined variables: x not preceded by a reference for x.

Nested references: $[x \ldots [y \ldots]y \ldots]_x$.

- $\bullet \ [_X \ [_Y \ b \]_X \ cx \ [_X \ b \]_Y \ zyb \ [_Y \ cz \]_Y \ z \ [_Z \ cc \]_X \]_Z,$
- $[x \ a \ [y \ b \ [z \ bba \]_z \ c \]_y \ byb \]_x \ xy.$

References for x with a value $u: [x u]_x$.

An Occurrence of variable x refers to the reference for x, which precedes it.

Undefined variables: x not preceded by a reference for x.

Nested references: $[x \dots [y \dots]_y \dots]_x$.

Overlapping references: $[x \ldots [y \ldots]_x \ldots]_y$.

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

$$za[_zx[_xyb[_yc]_xbx[_xc]_yb]_xyc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

$$za[_zx[_xyb[_yc]_xbx[_xc]_yb]_xyc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

$$a[_z[_xb[_yc]_xbx[_xc]_yb]_xyc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

$$a[_z[_xb[_yc]_xbx[_xc]_yb]_xyc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

$$a[_z[_xb[_yc]_xbbc[_xc]_yb]_xyc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

$$a[_zb[_ycbbc[_xc]_yb]_xyc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

$$a[_zb[_ycbbc[_xc]_yb]_xyc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

Example:

$$a[_zb[_ycbbc[_xc]_yb]_xcbbccc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

Example:

a[zbcbbc[xcb]xcbbccc]zxcz

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

Example:

$$a[zbcbbc[xcb]_xcbbccc]_zxcz$$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

Example:

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

Example:

 $\mathbf{a}[_{z}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{b}\mathbf{c}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{b}\mathbf{c}\mathbf{c}\mathbf{c}]_{z}\mathbf{c}\mathbf{b}\mathbf{c}z$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

Example:

 $a[zbcbbccbcbbccc]_zcbcz$

$$\mathcal{D}:\Sigma^{[*]}\to\Sigma^*$$

Example:

a[zbcbbccbcbbccc]zcbcbbccbcbbccc

$$\mathcal{D}: \Sigma^{[*]} \to \Sigma^*$$

Example:

abcbbccbcbbccccbcbbccbcbbccc

- $L\subseteq \Sigma^{[*]}$ and
- $L \subseteq (\Sigma \cup \{[x_i,]x_i,x_i \mid i \leq k\})^*$, for some $k \in \mathbb{N}$.

- $L \subset \Sigma^{[*]}$ and
- $L \subseteq (\Sigma \cup \{[x_i,]x_i,x_i \mid i \leq k\})^*$, for some $k \in \mathbb{N}$.

- ullet $L\subseteq \Sigma^{[*]}$ and
- $L \subseteq (\Sigma \cup \{[x_i,]x_i,x_i \mid i \leq k\})^*$, for some $k \in \mathbb{N}$.

- \bullet $L\subseteq \Sigma^{[*]}$ and
- $L \subseteq (\Sigma \cup \{[x_i,]x_i,x_i \mid i \leq k\})^*$, for some $k \in \mathbb{N}$.

- \bullet $L\subseteq \Sigma^{[*]}$ and
- $L \subseteq (\Sigma \cup \{[x_i,]x_i,x_i \mid i \leq k\})^*$, for some $k \in \mathbb{N}$.

 $\bullet \ \mathsf{REG} \subset \mathsf{ref}\text{-}\mathsf{REG} \subset \mathsf{CS},$

- REG \subset ref-REG \subset CS,
- $L_c = \{[x \ w \]_x \ x \mid w \in \Sigma^*\}$ is a regular ref-languages. $\mathcal{D}(L_c) = \{ww \mid w \in \Sigma^*\}$ (copy language).

- REG \subset ref-REG \subset CS,
- $L_c = \{[x \ w]_x \ x \mid w \in \Sigma^*\}$ is a regular ref-languages. $\mathcal{D}(L_c) = \{ww \mid w \in \Sigma^*\}$ (copy language).
- $\{a^nb^n \mid n \in \mathbb{N}\} \notin \text{ref-REG}.$

M_1 M_2 M_3 M_3	finite state control $k (= 3)$ memories memory instructions:	
M_2 M_3	M_1	
M_3	M_2	
	<i>M</i> ₃	

```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions:
```


a cabccbabccbccabccabcc

```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: open M_1
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: open M_2
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: close M_1
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: close M_2
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: consult M_1
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: open M_3
```



```
finite state control
 k (= 3) memories
memory instructions: consult M_2
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: consult M_1
```


a c a b c c b a b c c b c c a b c c

```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: open M_1
```



```
finite state control
 k (= 3) memories
memory instructions:
```



```
finite state control
 k (= 3) memories
memory instructions: close M_3
```



```
finite state control
 k (= 3) memories
memory instructions: consult M<sub>3</sub>
```



```
finite state control
 k (= 3) memories
memory instructions:
      рссарсс
```


acabccbabccbccabccbccabcc

```
finite state control
 k (= 3) memories
memory instructions: close M_1
      рссарсс
```

• Pseudo deterministic: For every state, symbol b and memory i, at most one move that reads b and at most one move that consults memory i.

- Pseudo deterministic: For every state, symbol b and memory i, at most one move that reads b and at most one move that consults memory i.
- Deterministic: ε -free and for every state at most one possible move.

- Pseudo deterministic: For every state, symbol b and memory i, at most one move that reads b and at most one move that consults memory i.
- Deterministic: ε -free and for every state at most one possible move.
- $\mathcal{L}(\mathsf{MFA}) = \mathcal{L}(\mathsf{pseudo-det-MFA})$ (extended subset construction).

- Pseudo deterministic: For every state, symbol b and memory i, at most one move that reads b and at most one move that consults memory i.
- Deterministic: ε -free and for every state at most one possible move.
- $\mathcal{L}(\mathsf{MFA}) = \mathcal{L}(\mathsf{pseudo-det-MFA})$ (extended subset construction).
- $\mathcal{L}(\mathsf{DMFA}) \subset \mathcal{L}(\mathsf{MFA})$ $(\{ww \mid w \in \{\mathsf{a},\mathsf{b}\}^*\} \notin \mathcal{L}(\mathsf{DMFA})).$

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping, i. e.,

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping, i. e.,

is not possible.

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping, i. e.,

is not possible.

Theorem

Every MFA(k) can be transformed into a equivalent MFA(k^2) that is pseudo-deterministic and nested.

Equivalence of $\mathcal{L}(\mathsf{MFA})$ and ref-REG

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG} = \mathcal{L}(\mathsf{MFA}).$

Equivalence of $\mathcal{L}(MFA)$ and ref-REG

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG} = \mathcal{L}(\mathsf{MFA}).$

Define $\psi_{\mathcal{D}}: \{M \in \mathsf{NFA} \mid L(M) \subseteq \Sigma^{[*]}\} \to \mathsf{MFA}$ by

Equivalence of $\mathcal{L}(MFA)$ and ref-REG

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG} = \mathcal{L}(\mathsf{MFA}).$

Define
$$\psi_{\mathcal{D}}: \{M \in \mathsf{NFA} \mid L(M) \subseteq \Sigma^{[*]}\} \to \mathsf{MFA}$$
 by

NFA reads
$$a \in \Sigma$$
 \Rightarrow MFA reads $a \in \Sigma$
NFA reads $[x_i]$ \Rightarrow MFA opens memory i
NFA reads $]x_i$ \Rightarrow MFA closes memory i
NFA reads x_i \Rightarrow MFA consults memory i

Equivalence of $\mathcal{L}(MFA)$ and ref-REG

Theorem

 $\mathsf{ref}\mathsf{-REG} = \mathcal{L}(\mathsf{MFA}).$

Define
$$\psi_{\mathcal{D}}: \{M \in \mathsf{NFA} \mid L(M) \subseteq \Sigma^{[*]}\} \to \mathsf{MFA}$$
 by

NFA reads
$$a \in \Sigma$$
 \Rightarrow MFA reads $a \in \Sigma$
NFA reads $[x_i]$ \Rightarrow MFA opens memory i
NFA reads $]x_i$ \Rightarrow MFA closes memory i
NFA reads x_i \Rightarrow MFA consults memory i

Lemma

Let $M \in NFA$ with $L(M) \subseteq \Sigma^{[*]}$. Then $\mathcal{D}(L(M)) = L(\psi_{\mathcal{D}}(M))$.

Equivalence of $\mathcal{L}(\mathsf{MFA})$ and ref-REG

Theorem

 $\mathsf{ref}\mathsf{-REG} = \mathcal{L}(\mathsf{MFA}).$

NFA reads $a \in \Sigma$

Define
$$\psi_{\mathcal{D}}: \{M \in \mathsf{NFA} \mid L(M) \subseteq \Sigma^{[*]}\} o \mathsf{MFA}$$
 by

NFA reads
$$[x_i]$$
 \Rightarrow MFA opens memory i

NFA reads $]x_i$ \Rightarrow MFA closes memory i

NFA reads x_i \Rightarrow MFA consults memory i

MFA reads $a \in \Sigma$

Lemma

Let $M \in \mathsf{NFA}$ with $L(M) \subseteq \Sigma^{[*]}$. Then $\mathcal{D}(L(M)) = L(\psi_{\mathcal{D}}(M))$.

Lemma

Let $M \in MFA$. Then $L(M) = \mathcal{D}(L(\psi_{\mathcal{D}}^{-1}(M)))$.

 $\label{eq:REGEX} REGEX = regular \ expressions \ with \ references \ to \ subexpressions.$

 $\mathsf{REGEX} = \mathsf{regular} \; \mathsf{expressions} \; \mathsf{with} \; \mathsf{references} \; \mathsf{to} \; \mathsf{subexpressions}.$

```
r := ((a | b)^*)(c^* | (a^*b))
```

 $\label{eq:REGEX} REGEX = regular \ expressions \ with \ references \ to \ subexpressions.$

```
r := (1 (a | b)^*)_1 (c^* | (2 a^*b)_2)
```

 $\label{eq:REGEX} REGEX = regular \ expressions \ with \ references \ to \ subexpressions.$

```
r := (1 (a | b)^*)_1 (c^* | (2 a^* b)_2) ((2 | b^*) ((1)^*)^*
```

 $\label{eq:REGEX} REGEX = regular \ expressions \ with \ references \ to \ subexpressions.$

$$r := (1 (a | b)^*)_1 (c^* | (2 a^* b)_2) (\2 | b^*) (\1)^*$$

 $\mathsf{REGEX} = \mathsf{regular} \; \mathsf{expressions} \; \mathsf{with} \; \mathsf{references} \; \mathsf{to} \; \mathsf{subexpressions}.$

$$r := (1 (a | b)^*)_1 (c^* | (2 a^* b)_2) ((2 | b^*) ((1)^*)_1$$

Some background information about REGEX:

invented entirely on the level of software implementation,

 $\label{eq:REGEX} REGEX = regular \ expressions \ with \ references \ to \ subexpressions.$

$$r := (1 (a | b)^*)_1 (c^* | (2 a^* b)_2) ((2 | b^*) ((1)^*)_1$$

- invented entirely on the level of software implementation,
- applied in practice: Traditional and Modern grep, vi, Modern sed, GNU Emacs, Perl, Python, Java, .Net,

 $\label{eq:REGEX} REGEX = regular \ expressions \ with \ references \ to \ subexpressions.$

$$r := (1 (a | b)^*)_1 (c^* | (2 a^* b)_2) ((2 | b^*) ((1)^*)_1$$

- invented entirely on the level of software implementation,
- applied in practice: Traditional and Modern grep, vi, Modern sed, GNU Emacs, Perl, Python, Java, .Net,
- NP-complete membership problem, undecidable inclusion problem,

 $\label{eq:REGEX} REGEX = regular \ expressions \ with \ references \ to \ subexpressions.$

$$r := (1 (a | b)^*)_1 (c^* | (2 a^* b)_2) ((2 | b^*) ((1)^*)_1$$

- invented entirely on the level of software implementation,
- applied in practice: Traditional and Modern grep, vi, Modern sed, GNU Emacs, Perl, Python, Java, .Net,
- NP-complete membership problem, undecidable inclusion problem,
- language theoretical investigation started 10 years ago (Câmpeanu, K. Salomaa, Yu).

Theorem

 $\mathcal{L}(\mathsf{REGEX}) \subseteq \mathsf{ref}\text{-}\mathsf{REG}.$

Theorem

 $\mathcal{L}(\mathsf{REGEX}) \subseteq \mathsf{ref}\text{-}\mathsf{REG}.$

Proof sketch:

Theorem

$$\mathcal{L}(\mathsf{REGEX}) \subseteq \mathsf{ref}\mathsf{-REG}$$
.

Proof sketch:

$$r := (1 (a | b)^*)_1 (c^* | (2 a^* b)_2) (\2 | b^*) (\1)^*$$

Theorem

$$\mathcal{L}(\mathsf{REGEX}) \subseteq \mathsf{ref}\mathsf{-REG}$$
.

Proof sketch:

$$r := (1 (a | b)^*)_1 (c^* | (2 a^* b)_2) (\2 | b^*) (\1)^*$$

$$r' := [x_1 (a | b)^*]_{x_1} (c^* | [x_2 a^* b]_{x_2}) (x_2 | b^*) (x_1)^*$$

Theorem

$$\mathcal{L}(\mathsf{REGEX}) \subseteq \mathsf{ref}\text{-}\mathsf{REG}$$
.

Proof sketch:

$$r' := [x_1 (a | b)^*]_{x_1} (c^* | [x_2 a^* b]_{x_2}) (x_2 | b^*) (x_1)^*$$

$$L(r) = \mathcal{D}(L(r'))$$

 $r := (1 (a | b)^*)_1 (c^* | (2 a^*b)_2) ((2 | b^*) ((1)^*)$

 $ref-REG \subseteq \mathcal{L}(REGEX)$?

 $ref-REG \subseteq \mathcal{L}(REGEX)$?

A regular expression r with $L(r) \in \Sigma^{[*]}$ has the REGEX property if all $[x \dots]_X$ enclose a subexpression of r.

$ref-REG \subseteq \mathcal{L}(REGEX)$?

A regular expression r with $L(r) \in \Sigma^{[*]}$ has the REGEX property if all $[x \dots]_X$ enclose a subexpression of r.

Let $L \in \text{ref-REG}$ and let r be a regular expression with $\mathcal{D}(L(r)) = L$. If r has the REGEX property, then $L \in \mathcal{L}(\text{REGEX})$.

 $ref-REG \subseteq \mathcal{L}(REGEX)$?

A regular expression r with $L(r) \in \Sigma^{[*]}$ has the REGEX property if all $[x \dots]_X$ enclose a subexpression of r.

$$[x_2]_{x_1}(a \mid b)^*]_{x_1}c^*x_1]_{x_2}ax_2x_1$$

$ref-REG \subseteq \mathcal{L}(REGEX)$?

A regular expression r with $L(r) \in \Sigma^{[*]}$ has the REGEX property if all $[x \dots]_X$ enclose a subexpression of r.

$$[x_2[x_1(a \mid b)^*]_{x_1}c^*x_1]_{x_2}ax_2x_1 \Rightarrow (2(1(a \mid b)^*)_1c^*\setminus 1)_2a\setminus 2\setminus 1$$

$ref-REG \subseteq \mathcal{L}(REGEX)$?

A regular expression r with $L(r) \in \Sigma^{[*]}$ has the REGEX property if all $[x \dots]_X$ enclose a subexpression of r.

$ref-REG \subseteq \mathcal{L}(REGEX)$?

A regular expression r with $L(r) \in \Sigma^{[*]}$ has the REGEX property if all $[x \dots]_X$ enclose a subexpression of r.

$$[x_2[x_1(a \mid b)^*]_{x_1}c^*x_1]_{x_2}ax_2x_1 \Rightarrow (2(1(a \mid b)^*)_1c^*\setminus 1)_2a\setminus 2\setminus 1$$

$$(([x_1a^*) \mid ([x_1(a \mid b)^*))((ca]_{x_1}x_1) \mid]_{x_1})x_1 \Rightarrow ???$$

$ref-REG \subseteq \mathcal{L}(REGEX)$?

A regular expression r with $L(r) \in \Sigma^{[*]}$ has the REGEX property if all $[x \dots]_X$ enclose a subexpression of r.

Let $L \in \text{ref-REG}$ and let r be a regular expression with $\mathcal{D}(L(r)) = L$. If r has the REGEX property, then $L \in \mathcal{L}(\text{REGEX})$.

$$[x_2[x_1(a \mid b)^*]_{x_1}c^*x_1]_{x_2}ax_2x_1 \Rightarrow (2(1(a \mid b)^*)_1c^*\setminus 1)_2a\setminus 2\setminus 1$$

$$(([x_1a^*) \mid ([x_1(a \mid b)^*))((ca]_{x_1}x_1) \mid]_{x_1})x_1 \Rightarrow ???$$

Question

Given a regular expression r with $L(r) \in \Sigma^{[*]}$. Is it possible to transform r into r' with the REGEX property and $\mathcal{D}(L(r)) = \mathcal{D}(L(r'))$.

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG}\subseteq\mathcal{L}(\mathsf{REGEX}).$

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG}\subseteq\mathcal{L}(\mathsf{REGEX}).$

Proof sketch:

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG}\subseteq\mathcal{L}(\mathsf{REGEX}).$

Proof sketch:

 $L \in \mathsf{ref}\text{-}\mathsf{REG}$.

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG}\subseteq\mathcal{L}(\mathsf{REGEX}).$

Proof sketch:

 $L \in \mathsf{ref}\text{-}\mathsf{REG}$.

 \exists nested MFA M with L(M) = L.

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG}\subseteq\mathcal{L}(\mathsf{REGEX}).$

Proof sketch:

$$L \in \mathsf{ref}\text{-}\mathsf{REG}$$
 .

 \exists nested MFA M with L(M) = L.

$$\exists$$
 NFA N with $L(N) = L' \in \Sigma^{[*]}$ and $\mathcal{D}(L') = L$.

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG} \subseteq \mathcal{L}(\mathsf{REGEX})$.

Proof sketch:

$$L \in \mathsf{ref}\text{-}\mathsf{REG}$$
.

 \exists nested MFA M with L(M) = L.

 \exists NFA N with $L(N) = L' \in \Sigma^{[*]}$ and $\mathcal{D}(L') = L$.

Transform N into a regular expression r with L(r) = L(N) that has the REGEX property.

Theorem

 $\mathsf{ref}\text{-}\mathsf{REG} = \mathcal{L}(\mathsf{MFA}) = \mathcal{L}(\mathsf{REGEX}).$

Theorem

 $ref-REG = \mathcal{L}(MFA) = \mathcal{L}(REGEX).$

ref-regular languages are characterised by

- regular ref-languages,
 - finite automata accepting ref-languages,
 - regular expressions generating ref-languages,
 - **•** ...

Theorem

 $ref-REG = \mathcal{L}(MFA) = \mathcal{L}(REGEX).$

ref-regular languages are characterised by

- regular ref-languages,
 - finite automata accepting ref-languages,
 - regular expressions generating ref-languages,
 - **•** . . .
- MFA

Theorem

 $ref-REG = \mathcal{L}(MFA) = \mathcal{L}(REGEX).$

ref-regular languages are characterised by

- regular ref-languages,
 - finite automata accepting ref-languages,
 - regular expressions generating ref-languages,
 - **.** . . .
- MFA
- REGEX (which can be considered a normal form of regular expressions generating ref-languages)

Theorem

 $ref-REG = \mathcal{L}(MFA) = \mathcal{L}(REGEX).$

ref-regular languages are characterised by

- regular ref-languages,
 - finite automata accepting ref-languages,
 - regular expressions generating ref-languages,
 - **>** . . .
- MFA
- REGEX (which can be considered a normal form of regular expressions generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

Theorem

 $\mathsf{ref}\mathsf{-REG} = \mathcal{L}(\mathsf{MFA}) = \mathcal{L}(\mathsf{REGEX}).$

ref-regular languages are characterised by

- regular ref-languages,
 - finite automata accepting ref-languages,
 - ► regular expressions generating ref-languages,
 - **.**...
- MFA
- REGEX (which can be considered a normal form of regular expressions generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the "regular"-part from the "reduplication"-part.

$$\mathcal{L}(\mathsf{DMFA}) \subset \mathcal{L}(\mathsf{MFA}) \, (= \mathcal{L}(\mathsf{REGEX}) = \mathsf{ref-REG}).$$

$$\mathcal{L}(\mathsf{DMFA}) \subset \mathcal{L}(\mathsf{MFA}) \, (= \mathcal{L}(\mathsf{REGEX}) = \mathsf{ref} \mathsf{-REG}).$$

Theorem

The membership problem for DMFA-languages: O(|w|).

$$\mathcal{L}(\mathsf{DMFA}) \subset \mathcal{L}(\mathsf{MFA}) \, (= \mathcal{L}(\mathsf{REGEX}) = \mathsf{ref} \mathsf{-REG}).$$

Theorem

The membership problem for DMFA-languages: O(|w|).

Theorem

 $\mathcal{L}(\mathsf{DMFA})$ is closed under

- complementation and
- intersection with regular languages,

but it is not closed under

- union or
- intersection.

$$\mathcal{L}(\mathsf{DMFA}) \subset \mathcal{L}(\mathsf{MFA}) (= \mathcal{L}(\mathsf{REGEX}) = \mathsf{ref-REG}).$$

Theorem

The membership problem for DMFA-languages: O(|w|).

Theorem

The membership problem for ref-REG-languages: NP-complete.

Theorem

 $\mathcal{L}(\mathsf{DMFA})$ is closed under

- complementation and
- intersection with regular languages,

but it is not closed under

- union or
- intersection.

$$\mathcal{L}(\mathsf{DMFA}) \subset \mathcal{L}(\mathsf{MFA}) (= \mathcal{L}(\mathsf{REGEX}) = \mathsf{ref-REG}).$$

Theorem

The membership problem for DMFA-languages: O(|w|).

Theorem

The membership problem for ref-REG-languages: NP-complete.

Theorem

 $\mathcal{L}(\mathsf{DMFA})$ is closed under

- complementation and
- intersection with regular languages,

but it is not closed under

- union or
- intersection.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

- union
- intersection with regular languages,

but it is not closed under

- complementation or
- intersection.

• Implementations of REGEX-engines based on MFA (or DMFA).

- Implementations of REGEX-engines based on MFA (or DMFA).
- Descriptional complexity with respect to number of references in regular expression describing ref-languages, number of references in REGEX, number of memories of MFA.

- Implementations of REGEX-engines based on MFA (or DMFA).
- Descriptional complexity with respect to number of references in regular expression describing ref-languages, number of references in REGEX, number of memories of MFA.
- Decision problems for ref-REG.

- Implementations of REGEX-engines based on MFA (or DMFA).
- Descriptional complexity with respect to number of references in regular expression describing ref-languages, number of references in REGEX, number of memories of MFA.
- Decision problems for ref-REG.
- Investigate ref- \mathcal{L} for other language classes \mathcal{L} , e.g., ref-CF.