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@ “The world” is not context-free.

o Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

@ We often need language classes with some “non-context-free features”,
while at the same time weaker than context-sensitive.

regulated rewriting (add control mechanisms to context-free grammars)

mildly context-sensitive (allow only a little bit of context-sensitivity).
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Typical Non-Context-Free Features

Reduplication {ww | w € X*}
Multiple agreements {a"v"c” | n > 1}

Crossed agreements {a"b™c"d™ | n,m > 1}

We solely focus on reduplication.

Language descriptor/grammars models tailored to reduplication:

@ L systems,

@ pattern languages,

@ H-systems,

e Wijngaarden grammars, macro grammars, Indian parallel grammars,
deterministic iteration grammars,

@ pattern expressions, synchronized regular expressions, EH-expressions,
extended regular expressions with backreferences (REGEX).
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Reference-Words - Formal Definition

Y is a finite alphabet.

M= {[Xia]XnXi i€ N}'

[, and |, are called parentheses, x; is called variable.
A ref-word over ¥ is a word w € (X UT)*.

A ref-word is valid if, for every i € N,

» only well-formed, non-nested pairs of parentheses [, |,
» no x; inside of [,;.. .]x.

o Y[* is the set of valid ref-words (over X).
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Reference-Words - Examples

o [ [yblxex[xb]yzyb [, cz], z [; cclx ]z
o [ca[,b[;bba];c], byb ], xy.

References for x with a value u: [ u]x.

An Occurrence of variable x refers to the reference for x, which precedes it.
Undefined variables: x not preceded by a reference for x.

Nested references: [, ... [, ... ], ... ]x.
Overlapping references: [ ... [, ... ]x ... ]y
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D:yM 5
Example:
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Reference-Words - Dereference Function

Dy ¥
Example:

abcbbecbebbececcecbebebbecbebbece
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Ref-Languages and Ref-Regular Languages

Lis a ref-language (over X) if
o L C ¥k and
o LC(XU{[x,]x.xi | i < k})*, for some k € N.

regular

ref-lang. REG

ref-lang.

ref-REG
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Ref-Languages and Ref-Regular Languages

e REG cC ref-REG c CS,

o Lc={[xw]xx|w e X*}is a regular ref-languages.
D(Le) = {ww | w € £*} (copy language).

e {a"" | n € N} ¢ ref-REG.
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Determinism of MFA

Pseudo deterministic: For every state, symbol b and memory /, at most
one move that reads b and at most one move that consults memory i.

@ Deterministic: e-free and for every state at most one possible move.

L(MFA) = L(pseudo-det- MFA) (extended subset construction).
L(DMFA) C L(MFA) ({ww | w € {a,b}*} ¢ L(DMFA)).
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Nested MFA

An MFA is nested, if no two memories record factors that are overlapping,
i.e.,

memory 2

—t
abacbacbabcch
~—
memory 1

is not possible.

Theorem

Every MFA(k) can be transformed into a equivalent MFA(k?) that is
pseudo-deterministic and nested.
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Equivalence of £L(MFA) and ref-REG

Theorem
ref-REG = L(MFA).

Define ¢p : {M € NFA | L(M) C I} — MFA by

NFA reads a € & = MFA reads a € &

NFA reads [, = MFA opens memory |

NFA reads ] = MFA closes memory i

NFA reads x; = MFA consults memory |
Lemma

Let M € NFA with L(M) C £, Then D(L(M)) = L(¢p(M)).

Lemma
Let M € MFA. Then L(M) = D(L(¢5}(M))).
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Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

ro=0(alb) )i(c"| (2a")2)(\2]p")(\1)*
Some background information about REGEX:

@ invented entirely on the level of software implementation,

@ applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

@ NP-complete membership problem, undecidable inclusion problem,

@ language theoretical investigation started 10 years ago (Campeanu,
K. Salomaa, Yu).
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Equivalence of ref-REG and L(REGEX)
ref-REG C £(REGEX)?

A regular expression r with L(r) € £l has the REGEX property if all
[x ...]x enclose a subexpression of r.

Let L € ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L € L(REGEX).

[Xz [Xl(a ’ b)*]Xl C*Xl]XzaX2X1 = (2(1(3- | b)*)1C*\1)2a\2\1

(([aa™) | (L (al8))) ((cala) [1a)x = 777

Question

Given a regular expression r with L(r) € X!, Is it possible to transform r
into r’ with the REGEX property and D(L(r)) = D(L(r")).
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Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG C £(REGEX).

Proof sketch:

L € ref-REG.
3 nested MFA M with L(M) = L.
I NFA N with L(N) = L' € £ and D(L') = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.
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Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG = £(MFA) = £(REGEX).

ref-regular languages are characterised by
o regular ref-languages,

» finite automata accepting ref-languages,

» regular expressions generating ref-languages,
L

e MFA

e REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the “regular’-part from the “reduplication”-part.
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Deterministic MFA Languages
L(DMFA) C £(MFA) (= £(REGEX) = ref-REG).

Theorem

The membership problem for
DMFA-languages: O(|w|).

Theorem

The membership problem for
ref-REG-languages: NP-complete.

Theorem
L(DMFA) is closed under
e complementation and

@ intersection with
regular languages,

but it is not closed under
@ union or

@ intersection.

Theorem (Campeanu et al., Carle et al.)
ref-REG is closed under

@ union

o intersection with regular languages,
but it is not closed under

@ complementation or

@ intersection.
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Further Research ldeas

e Implementations of REGEX-engines based on MFA (or DMFA).

@ Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

@ Decision problems for ref-REG.

@ Investigate ref-L for other language classes L, e. g., ref-CF.



Thank you very much for your attention,



