Characterising REGEX Languages by Regular Languages
Equipped with Factor-Referencing

Markus L. Schmid

Trier University, Germany

DLT 2014

The Problems of Context-Freeness

@ “The world” is not context-free.

The Problems of Context-Freeness

@ “The world” is not context-free.

o Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

The Problems of Context-Freeness

@ “The world” is not context-free.

o Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

@ We often need language classes with some “non-context-free features”,
while at the same time weaker than context-sensitive.

The Problems of Context-Freeness

@ “The world” is not context-free.

o Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

@ We often need language classes with some “non-context-free features”,
while at the same time weaker than context-sensitive.

regulated rewriting (add control mechanisms to context-free grammars)

mildly context-sensitive (allow only a little bit of context-sensitivity).

Typical Non-Context-Free Features

Reduplication {ww | w € ¥*}
Multiple agreements {a"v"c” | n > 1}

Crossed agreements {a"b™c"d™ | n,m > 1}

We solely focus on reduplication.

Typical Non-Context-Free Features

Reduplication {ww | w € X*}
Multiple agreements {a"v"c” | n > 1}

Crossed agreements {a"b™c"d™ | n,m > 1}

We solely focus on reduplication.

Language descriptor/grammars models tailored to reduplication:

@ L systems,

@ pattern languages,

@ H-systems,

e Wijngaarden grammars, macro grammars, Indian parallel grammars,
deterministic iteration grammars,

@ pattern expressions, synchronized regular expressions, EH-expressions,
extended regular expressions with backreferences (REGEX).

Reference-Words - ldea

Reference-Words - ldea

Reference-Words - ldea

L2
abacbcbaccbzya
X

Reference-Words - ldea

2oz
abacbcbaccbzya

Reference-Words - ldea

2z
abacbcbaccbzya

Reference-Words - ldea

Xz
abacbcbaccbzcba

Reference-Words - ldea

_Z
abacbcbaccbzcba

Reference-Words - ldea

_Z
abacbcbaccbzchba

Reference-Words - ldea

_Z
abacbcbaccbbaccbcba

Reference-Words - ldea

abacbcbaccbbaccbcba

Reference-Words - Formal Definition

@ Y is a finite alphabet.

Reference-Words - Formal Definition

@ Y is a finite alphabet.
o I'={[,]x.xi | i € N}

Reference-Words - Formal Definition

@ Y is a finite alphabet.
o I'={[,]x.xi | i € N}
@ [« and], are called parentheses, x; is called variable.

Reference-Words - Formal Definition

Y is a finite alphabet.

M= {[Xi’]Xi?Xi i€ N}'

[x; and] are called parentheses, x; is called variable.
A ref-word over ¥ is a word w € (X UT)*.

Reference-Words - Formal Definition

Y is a finite alphabet.

M= {[Xia]XnXi i€ N}'

[x; and] are called parentheses, x; is called variable.
A ref-word over ¥ is a word w € (X UT)*.

A ref-word is valid if, for every i € N,

» only well-formed, non-nested pairs of parentheses [, |,
» no x; inside of [,;.. .]x.

Reference-Words - Formal Definition

Y is a finite alphabet.

M= {[Xia]XnXi i€ N}'

[, and |, are called parentheses, x; is called variable.
A ref-word over ¥ is a word w € (X UT)*.

A ref-word is valid if, for every i € N,

» only well-formed, non-nested pairs of parentheses [, |,
» no x; inside of [,;.. .]x.

o Y[* is the set of valid ref-words (over X).

Reference-Words - Examples

o [x[yblxex[xb]yzvb[ycz]y z[; cclx]z

o [ca[,b[;bba];c], byb], xy.

Reference-Words - Examples

o k[yblcex[xb]yzyb[ycz]y z [, cc]x]z
o [(a[,b[;bba];c], byb], xy.

References for x with a value u: [, u]x.

Reference-Words - Examples

o [[yblcex[xb]yzyb[, cz], z [z cc |k]z,
o [a[,b[.bba],c], byb]|, xy.

References for x with a value u: [u]x.

An Occurrence of variable x refers to the reference for x, which precedes it.

Reference-Words - Examples

o [x[yblxex[xb]yzyb[ycz], z [cclx]z
o [ca[,b[;bba];c], byb], xy.

References for x with a value u: [u]x.
An Occurrence of variable x refers to the reference for x, which precedes it.

Undefined variables: x not preceded by a reference for x.

Reference-Words - Examples

o [x[yblxex[xb]yzvb[ycz]y z[; cclx]z

o [af,b[.bba],c], byb], xy.

References for x with a value u: [u]x.
An Occurrence of variable x refers to the reference for x, which precedes it.
Undefined variables: x not preceded by a reference for x.

Nested references: [, ... [, ...], ...]x.

Reference-Words - Examples

o [[yblxex[xb]yzyb [, cz], z [; cclx]z
o [ca[,b[;bba];c], byb], xy.

References for x with a value u: [u]x.

An Occurrence of variable x refers to the reference for x, which precedes it.
Undefined variables: x not preceded by a reference for x.

Nested references: [, ... [, ...], ...]x.
Overlapping references: [... [, ...]x ...]y

Reference-Words - Dereference Function

Dyl 57
Example:

za[,x[xyb[yc]xbx[xc],b]xyc],xcz

Reference-Words - Dereference Function

Dyl 57
Example:

za[,x[xyb[yc]xbx[xc],b]xyc] xcz

Reference-Words - Dereference Function

Dyl 57
Example:

a[z[xblyclxbx[xc]yblxyc]zxcz

Reference-Words - Dereference Function

Dyl 57
Example:

a[z[xblyclxbx[xc]yb]xyc]zxcz

Reference-Words - Dereference Function

Dyl 57
Example:

a[z[xb[yc]xbbec[xc]yb]xyclxcz

Reference-Words - Dereference Function

Dyl 57
Example:

a[,b[, cbbe|yc],b]xyc],xcz

Reference-Words - Dereference Function

Dyl 57
Example:

a[,b[, cbbe[c],b]xyc],xcz

Reference-Words - Dereference Function

Dyl 57
Example:

a[,b[, cbbc|[c],b]xcbbeec],xcz

Reference-Words - Dereference Function

D:yM 5
Example:

a[,bcbbe[xcb]cbbeec] xcz

Reference-Words - Dereference Function

D:yM 5
Example:

a[,bcbbe|,cb]cbbecec],xcz

Reference-Words - Dereference Function

D:yM 5
Example:

a[,bcbbe|,cb]cbbeec],cbez

Reference-Words - Dereference Function

D:yM 5
Example:

a[,bcbbeccbebbecece], cbez

Reference-Words - Dereference Function

D:yM 5
Example:

a[,bcbbecbebbecece|, cbez

Reference-Words - Dereference Function

D:yM 5
Example:

a[,bcbbeccbebbecec|,cbebebbecbebbeee

Reference-Words - Dereference Function

Dy ¥
Example:

abcbbecbebbececcecbebebbecbebbece

Ref-Languages and Ref-Regular Languages

Lis a ref-language (over X) if
o L C ¥k and
o LC(XU{[x,]x.xi | i < k})*, for some k € N.

Ref-Languages and Ref-Regular Languages

Lis a ref-language (over X) if
o L C ¥k and
o LC(XU{[x,]x.xi | i < k})*, for some k € N.

REG

Ref-Languages and Ref-Regular Languages

Lis a ref-language (over X) if
o L C ¥k and
o LC(XU{[x,]x.xi | i < k})*, for some k € N.

ref-lang.

REG

Ref-Languages and Ref-Regular Languages

Lis a ref-language (over X) if
o L C ¥k and
o LC(XU{[x,]x.xi | i < k})*, for some k € N.

regular
ref-lang. 8

ref-lang.

REG

Ref-Languages and Ref-Regular Languages

Lis a ref-language (over X) if
o L C ¥k and
o LC(XU{[x,]x.xi | i < k})*, for some k € N.

regular

ref-lang. REG

ref-lang.

ref-REG

Ref-Languages and Ref-Regular Languages

e REG cC ref-REG c CS,

Ref-Languages and Ref-Regular Languages

e REG cC ref-REG c CS,

o Lc={[xw]xx|w e X*}is a regular ref-languages.
D(Le) = {ww | w € £*} (copy language).

Ref-Languages and Ref-Regular Languages

e REG cC ref-REG c CS,

o Lc={[xw]xx|w e X*}is a regular ref-languages.
D(Le) = {ww | w € £*} (copy language).

e {a"" | n € N} ¢ ref-REG.

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

acabccbhbhabccbhbccabccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

cabcchabccbhbccabccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

|

abccCbhbhabccbccabccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: open M

abccCbhbhabccbccabccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M [

M, | |

Ms | |

|

bcchabccbhbccabccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: open M,

M [

M, |

Ms |

|

bcchabccbhbccabccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M, [a b

M, |b

Ms |

|

cchabccbhbccabpccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M lab c

M, b c

Ms |

|

cCbhbabccbhbccabccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: close M

M lab c

M, b c

Ms |

|

cCbhbabccbhbccabccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M lab c

My b c c

Ms |

|

babccbccabccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: close Mo

M lab c |

My o cc |

Ms | |

|

babccbccabccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M, ab ¢ |

My o c c |

Ms | |

|

abccbhbccabccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: consult M

M lab c |

My o cc |

Ms | |

|

abccbhbccabccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M, ab ¢ |

My o c c |

Ms | |

|

cCbccabccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M, ab ¢ |

My o c c |

Ms | |

|

bccabccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: open Ms

M lab c |

My o cc |

Ms |

|

bccabccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: consult Mo

M lab c |

My o c c |

Ms |

|

bccabccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M, ab ¢ |

My o c c |

Ms b cc

|

abccbhbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: consult M

M lab c |

My o cc |

Ms b cc

|

abccbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

M, ab ¢ |

My o c c |

Mslbccabc

|

cbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: open M

My |

My b c c

Msbccabec

|

cbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

My [c

My b c c

Mslbccabcc

bccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: close Ms

My [c

My o cc |

Mslbccabcc |

bccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: consult M3

My [c

My o cc |

Mslbccabcc |

bccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions:

Mylcbccabcc

My b c c

Mslbccabcc

Memory Automata (MFA)

finite state control
k (= 3) memories
memory instructions: close M

Mylcbccabcc

My b c c

Mslbccabcc

Determinism of MFA

@ Pseudo deterministic: For every state, symbol b and memory /, at most
one move that reads b and at most one move that consults memory i.

Determinism of MFA

@ Pseudo deterministic: For every state, symbol b and memory /, at most
one move that reads b and at most one move that consults memory i.

@ Deterministic: e-free and for every state at most one possible move.

Determinism of MFA

@ Pseudo deterministic: For every state, symbol b and memory /, at most
one move that reads b and at most one move that consults memory i.

@ Deterministic: e-free and for every state at most one possible move.

e L(MFA) = L(pseudo-det- MFA) (extended subset construction).

Determinism of MFA

Pseudo deterministic: For every state, symbol b and memory /, at most
one move that reads b and at most one move that consults memory i.

@ Deterministic: e-free and for every state at most one possible move.

L(MFA) = L(pseudo-det- MFA) (extended subset construction).
L(DMFA) C L(MFA) ({ww | w € {a,b}*} ¢ L(DMFA)).

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping,
i.e.,

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping,
i.e.,

memory 2

—t
abacbacbabcch
~—

memory 1
is not possible.

Nested MFA

An MFA is nested, if no two memories record factors that are overlapping,
i.e.,

memory 2

—t
abacbacbabcch
~—
memory 1

is not possible.

Theorem

Every MFA(k) can be transformed into a equivalent MFA(k?) that is
pseudo-deterministic and nested.

Equivalence of £L(MFA) and ref-REG

Theorem
ref-REG = L(MFA).

Equivalence of £L(MFA) and ref-REG

Theorem
ref-REG = L(MFA).

Define ¢p : {M € NFA | L(M) C X[} — MFA by

Equivalence of £L(MFA) and ref-REG
Theorem
ref-REG = L£(MFA).

Define ¢p : {M € NFA | L(M) C I} — MFA by

NFA reads a € &
NFA reads [,
NFA reads]
NFA reads x;

MFA reads a € &
MFA opens memory |

MFA closes memory i

Ul

MFA consults memory |

Equivalence of £L(MFA) and ref-REG
Theorem
ref-REG = L£(MFA).

Define ¢p : {M € NFA | L(M) C I} — MFA by

NFA reads a € & = MFA reads a € &

NFA reads [, = MFA opens memory |

NFA reads] = MFA closes memory i

NFA reads x; = MFA consults memory |
Lemma

Let M € NFA with L(M) C £, Then D(L(M)) = L(¢p(M)).

Equivalence of £L(MFA) and ref-REG

Theorem
ref-REG = L(MFA).

Define ¢p : {M € NFA | L(M) C I} — MFA by

NFA reads a € & = MFA reads a € &

NFA reads [, = MFA opens memory |

NFA reads] = MFA closes memory i

NFA reads x; = MFA consults memory |
Lemma

Let M € NFA with L(M) C £, Then D(L(M)) = L(¢p(M)).

Lemma
Let M € MFA. Then L(M) = D(L(¢5}(M))).

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

r:=((alb)")(c"| (a"))

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

ro=0G(alb))i(c"| (2a"0)2)

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

ro=0(alb))i(c"| (2a")2)(\2]p")(\1)*

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.
ri=((alp)")i(c" | (22™)2) (\2|b") (\1)"

Some background information about REGEX:

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.
ri=((alp)")i(c" | (22™)2) (\2|b") (\1)"

Some background information about REGEX:

@ invented entirely on the level of software implementation,

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.
ri=((alp)")i(c" | (22™)2) (\2|b") (\1)"

Some background information about REGEX:

@ invented entirely on the level of software implementation,

@ applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.
ri=((alp)")i(c" | (22™)2) (\2|b") (\1)"

Some background information about REGEX:

@ invented entirely on the level of software implementation,

@ applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

@ NP-complete membership problem, undecidable inclusion problem,

Extended Regular Expressions with Backreferences (REGEX)

REGEX = regular expressions with references to subexpressions.

ro=0(alb))i(c"| (2a")2)(\2]p")(\1)*
Some background information about REGEX:

@ invented entirely on the level of software implementation,

@ applied in practice: Traditional and Modern grep, vi, Modern sed,
GNU Emacs, Perl, Python, Java, .Net,

@ NP-complete membership problem, undecidable inclusion problem,

@ language theoretical investigation started 10 years ago (Campeanu,
K. Salomaa, Yu).

Equivalence of ref-REG and L(REGEX)

Theorem
L(REGEX) C ref-REG.

Equivalence of ref-REG and L(REGEX)

Theorem
L(REGEX) C ref-REG.

Proof sketch:

Equivalence of ref-REG and L(REGEX)

Theorem
L(REGEX) C ref-REG.

Proof sketch:

ro="((alp))i(c | (22™)2) (\2| ") (\1)"

Equivalence of ref-REG and L(REGEX)

Theorem
L(REGEX) C ref-REG.

Proof sketch:
re=((alb))i(c" | (2a™)2)(\2[p")(\1)"

7=l (al8) Ja (¢ | [aadle) (o | 0) ()"

Equivalence of ref-REG and L(REGEX)

Theorem
L(REGEX) C ref-REG.

Proof sketch:
re=((alb))i(c" | (2a™)2)(\2[p")(\1)"

7=l (al8) Ja (¢ | [aadle) (o | 0) ()"

Equivalence of ref-REG and L(REGEX)

ref-REG C L(REGEX)?

Equivalence of ref-REG and L(REGEX)
ref-REG C £(REGEX)?

A regular expression r with L(r) € £l has the REGEX property if all
[x ...]x enclose a subexpression of r.

Equivalence of ref-REG and L(REGEX)
ref-REG C £(REGEX)?

A regular expression r with L(r) € £l has the REGEX property if all
[x ...]x enclose a subexpression of r.

Let L € ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L € L(REGEX).

Equivalence of ref-REG and L(REGEX)
ref-REG C £(REGEX)?

A regular expression r with L(r) € £l has the REGEX property if all
[x ...]x enclose a subexpression of r.

Let L € ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L € L(REGEX).

[Xz [X1 (a ’ b)*]Xl C*Xl]Xz axaXi

Equivalence of ref-REG and L(REGEX)
ref-REG C £(REGEX)?

A regular expression r with L(r) € £l has the REGEX property if all
[x ...]x enclose a subexpression of r.

Let L € ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L € L(REGEX).

[Xz [Xl(a ’ b)*]Xl C*Xl]XzaX2X1 = (2(1(3- | b)*)1C*\1)2a\2\1

Equivalence of ref-REG and L(REGEX)
ref-REG C £(REGEX)?

A regular expression r with L(r) € £l has the REGEX property if all
[x ...]x enclose a subexpression of r.

Let L € ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L € L(REGEX).

[Xz [Xl(a ’ b)*]Xl C*Xl]XzaX2X1 = (2(1(3- | b)*)1C*\1)2a\2\1

(([aa") | (L (al8)7)) ((cala) [1a)x

Equivalence of ref-REG and L(REGEX)
ref-REG C £(REGEX)?

A regular expression r with L(r) € £l has the REGEX property if all
[x ...]x enclose a subexpression of r.

Let L € ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L € L(REGEX).

[Xz [Xl(a ’ b)*]Xl C*Xl]XzaX2X1 = (2(1(3- | b)*)1C*\1)2a\2\1

(([aa™) | (L (al8))) ((cala) [1a)x = 777

Equivalence of ref-REG and L(REGEX)
ref-REG C £(REGEX)?

A regular expression r with L(r) € £l has the REGEX property if all
[x ...]x enclose a subexpression of r.

Let L € ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L € L(REGEX).

[Xz [Xl(a ’ b)*]Xl C*Xl]XzaX2X1 = (2(1(3- | b)*)1C*\1)2a\2\1

(([aa™) | (L (al8))) ((cala) [1a)x = 777

Question

Given a regular expression r with L(r) € X!, Is it possible to transform r
into r’ with the REGEX property and D(L(r)) = D(L(r")).

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG C £(REGEX).

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG C £(REGEX).

Proof sketch:

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG C £(REGEX).

Proof sketch:

L € ref-REG.

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG C £(REGEX).

Proof sketch:

L € ref-REG.
3 nested MFA M with L(M) = L.

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG C £(REGEX).

Proof sketch:

L € ref-REG.
3 nested MFA M with L(M) = L.
I NFA N with L(N) = L' € £ and D(L') = L.

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG C £(REGEX).

Proof sketch:

L € ref-REG.
3 nested MFA M with L(M) = L.
I NFA N with L(N) = L' € £ and D(L') = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG = £(MFA) = £(REGEX).

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG = £(MFA) = £(REGEX).

ref-regular languages are characterised by
o regular ref-languages,

» finite automata accepting ref-languages,

» regular expressions generating ref-languages,
L

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG = £(MFA) = £(REGEX).

ref-regular languages are characterised by
o regular ref-languages,

» finite automata accepting ref-languages,

» regular expressions generating ref-languages,
L

e MFA

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG = £(MFA) = £(REGEX).

ref-regular languages are characterised by
o regular ref-languages,

» finite automata accepting ref-languages,

» regular expressions generating ref-languages,
L

e MFA

e REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG = £(MFA) = £(REGEX).

ref-regular languages are characterised by
o regular ref-languages,

» finite automata accepting ref-languages,

» regular expressions generating ref-languages,
L

e MFA

e REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

Equivalence of ref-REG and L(REGEX)

Theorem
ref-REG = £(MFA) = £(REGEX).

ref-regular languages are characterised by
o regular ref-languages,

» finite automata accepting ref-languages,

» regular expressions generating ref-languages,
L

e MFA

e REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the “regular’-part from the “reduplication”-part.

Deterministic MFA Languages
L(DMFA) C £(MFA) (= £(REGEX) = ref-REG).

Deterministic MFA Languages
L(DMFA) C £(MFA) (= £(REGEX) = ref-REG).

Theorem

The membership problem for
DMFA-languages: O(|w|).

Deterministic MFA Languages
L(DMFA) C £(MFA) (= £(REGEX) = ref-REG).

Theorem

The membership problem for
DMFA-languages: O(|w|).

Theorem
L(DMFA) is closed under
e complementation and

@ intersection with
regular languages,

but it is not closed under

@ union or

@ intersection.

Deterministic MFA Languages
L(DMFA) C £(MFA) (= £(REGEX) = ref-REG).

Theorem Theorem

The membership problem for| The membership problem for
DMFA-languages: O(|w|). ref-REG-languages: NP-complete.

Theorem
L(DMFA) is closed under
e complementation and

@ intersection with
regular languages,

but it is not closed under

@ union or

@ intersection.

Deterministic MFA Languages
L(DMFA) C £(MFA) (= £(REGEX) = ref-REG).

Theorem

The membership problem for
DMFA-languages: O(|w|).

Theorem

The membership problem for
ref-REG-languages: NP-complete.

Theorem
L(DMFA) is closed under
e complementation and

@ intersection with
regular languages,

but it is not closed under
@ union or

@ intersection.

Theorem (Campeanu et al., Carle et al.)
ref-REG is closed under

@ union

o intersection with regular languages,
but it is not closed under

@ complementation or

@ intersection.

Further Research ldeas

e Implementations of REGEX-engines based on MFA (or DMFA).

Further Research ldeas

e Implementations of REGEX-engines based on MFA (or DMFA).

@ Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

Further Research ldeas

e Implementations of REGEX-engines based on MFA (or DMFA).

@ Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

@ Decision problems for ref-REG.

Further Research ldeas

e Implementations of REGEX-engines based on MFA (or DMFA).

@ Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

@ Decision problems for ref-REG.

@ Investigate ref-L for other language classes L, e. g., ref-CF.

Thank you very much for your attention,

