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The Problems of Context-Freeness

�The world� is not context-free.

Context-sensitive languages are often too powerful (vast expressive
power, parsing intractable, undecidability, etc.)

We often need language classes with some �non-context-free features�,
while at the same time weaker than context-sensitive.

regulated rewriting (add control mechanisms to context-free grammars)

mildly context-sensitive (allow only a little bit of context-sensitivity).
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Typical Non-Context-Free Features

Reduplication {ww | w ∈ Σ∗}
Multiple agreements {anbncn | n ≥ 1}
Crossed agreements {anbmcndm | n,m ≥ 1}

We solely focus on reduplication.

Language descriptor/grammars models tailored to reduplication:

L systems,

pattern languages,

H-systems,

Wijngaarden grammars, macro grammars, Indian parallel grammars,
deterministic iteration grammars,

pattern expressions, synchronized regular expressions, EH-expressions,
extended regular expressions with backreferences (REGEX).
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Reference-Words - Formal De�nition

Σ is a �nite alphabet.

Γ = {[xi
, ]xi

, xi | i ∈ N}.
[xi

and ]xi
are called parentheses, xi is called variable.

A ref-word over Σ is a word w ∈ (Σ ∪ Γ)∗.

A ref-word is valid if, for every i ∈ N,
I only well-formed, non-nested pairs of parentheses [xi

, ]xi
,

I no xi inside of [xi
. . .]xi

.

Σ[∗] is the set of valid ref-words (over Σ).
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Reference-Words - Examples

[x [y b ]x cx [x b ]y zyb [y cz ]y z [z cc ]x ]z ,

[x a [y b [z bba ]z c ]y byb ]x xy .

References for x with a value u: [xu]x .

An Occurrence of variable x refers to the reference for x , which precedes it.

Unde�ned variables: x not preceded by a reference for x .

Nested references: [x . . . [y . . . ]y . . . ]x .

Overlapping references: [x . . . [y . . . ]x . . . ]y .
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Determinism of MFA

Pseudo deterministic: For every state, symbol b and memory i , at most
one move that reads b and at most one move that consults memory i .

Deterministic: ε-free and for every state at most one possible move.

L(MFA) = L(pseudo-det-MFA) (extended subset construction).

L(DMFA) ⊂ L(MFA) ({ww | w ∈ {a, b}∗} /∈ L(DMFA)).
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An MFA is nested, if no two memories record factors that are overlapping,
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Every MFA(k) can be transformed into a equivalent MFA(k2) that is
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Theorem

ref-REG = L(MFA).

De�ne ψD : {M ∈ NFA | L(M) ⊆ Σ[∗]} → MFA by

NFA reads a ∈ Σ ⇒ MFA reads a ∈ Σ

NFA reads [xi
⇒ MFA opens memory i

NFA reads ]xi
⇒ MFA closes memory i

NFA reads xi ⇒ MFA consults memory i

Lemma

Let M ∈ NFA with L(M) ⊆ Σ[∗]. Then D(L(M)) = L(ψD(M)).

Lemma

Let M ∈ MFA. Then L(M) = D(L(ψ−1D (M))).
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r ′ := [x1 ( a | b )∗ ]x1 ( c∗ | [x2 a
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L(r) = D(L(r ′))
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Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . . ]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

( ( [x1a
∗ ) | ( [x1 ( a | b )∗ ) ) ( ( ca]x1x1 ) | ]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).



Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . . ]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

( ( [x1a
∗ ) | ( [x1 ( a | b )∗ ) ) ( ( ca]x1x1 ) | ]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).



Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . . ]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

( ( [x1a
∗ ) | ( [x1 ( a | b )∗ ) ) ( ( ca]x1x1 ) | ]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).



Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . . ]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1

⇒ (2(1(a | b)∗)1c
∗\1)2a\2\1

( ( [x1a
∗ ) | ( [x1 ( a | b )∗ ) ) ( ( ca]x1x1 ) | ]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).



Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . . ]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

( ( [x1a
∗ ) | ( [x1 ( a | b )∗ ) ) ( ( ca]x1x1 ) | ]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).



Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . . ]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

( ( [x1a
∗ ) | ( [x1 ( a | b )∗ ) ) ( ( ca]x1x1 ) | ]x1) x1

⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).



Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . . ]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

( ( [x1a
∗ ) | ( [x1 ( a | b )∗ ) ) ( ( ca]x1x1 ) | ]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).



Equivalence of ref-REG and L(REGEX)
ref-REG ⊆ L(REGEX)?

A regular expression r with L(r) ∈ Σ[∗] has the REGEX property if all
[x . . . ]x enclose a subexpression of r .

Let L ∈ ref-REG and let r be a regular expression with D(L(r)) = L. If r
has the REGEX property, then L ∈ L(REGEX).

[x2 [x1(a | b)∗]x1c
∗x1]x2ax2x1 ⇒ (2(1(a | b)∗)1c

∗\1)2a\2\1

( ( [x1a
∗ ) | ( [x1 ( a | b )∗ ) ) ( ( ca]x1x1 ) | ]x1) x1 ⇒ ???

Question

Given a regular expression r with L(r) ∈ Σ[∗]. Is it possible to transform r

into r ′ with the REGEX property and D(L(r)) = D(L(r ′)).



Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.



Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.



Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.



Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.



Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.



Equivalence of ref-REG and L(REGEX)

Theorem

ref-REG ⊆ L(REGEX).

Proof sketch:

L ∈ ref-REG.

∃ nested MFA M with L(M) = L.

∃ NFA N with L(N) = L′ ∈ Σ[∗] and D(L′) = L.

Transform N into a regular expression r with L(r) = L(N) that has the
REGEX property.
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ref-REG = L(MFA) = L(REGEX).

ref-regular languages are characterised by

regular ref-languages,
I �nite automata accepting ref-languages,
I regular expressions generating ref-languages,
I . . .

MFA

REGEX (which can be considered a normal form of regular expressions
generating ref-languages)

We have characterisations of REGEX-languages independent of REGEX.

We have separated the �regular�-part from the �reduplication�-part.
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Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.



Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.



Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.



Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.



Deterministic MFA Languages

L(DMFA) ⊂ L(MFA) (= L(REGEX) = ref-REG).

Theorem

The membership problem for

DMFA-languages: O(|w |).

Theorem

L(DMFA) is closed under

complementation and

intersection with

regular languages,

but it is not closed under

union or

intersection.

Theorem

The membership problem for

ref-REG-languages: NP-complete.

Theorem (Câmpeanu et al., Carle et al.)

ref-REG is closed under

union

intersection with regular languages,

but it is not closed under

complementation or

intersection.



Further Research Ideas

Implementations of REGEX-engines based on MFA (or DMFA).

Descriptional complexity with respect to number of references in
regular expression describing ref-languages, number of references in
REGEX, number of memories of MFA.

Decision problems for ref-REG.

Investigate ref-L for other language classes L, e. g., ref-CF.
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Thank you very much for your attention.


