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Pattern Languages

Morphism Mapping h : Γ∗1 → Γ∗2 with h(x · y) = h(x) · h(y);
h is nonerasing i�, for every a ∈ Γ1, h(a) 6= ε.

Substitution Morphism h : (Σ ∪ X )∗ → Σ∗ with h(a) = a, a ∈ Σ.

E-pattern lang. LE,Σ(α) := {h(α) | h is a substitution}.

NE-pattern lang. LNE,Σ(α) := {h(α) | h is nonerasing substitution}.
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An Example

α = x1 aa x2 x1 x2 cb x1

acaaabcbaacabcbacbac

h(α) = acaaabcbaacabcbacbac ∈ LNE,{a,b,c}(α),
where h(x1) = ac, h(x2) = abcba, (h(a) = a, h(b) = b).

ccbaaccbcbccb /∈ LNE,{a,b,c}(α)
ccbaaccbcbccb ∈ LE,{a,b,c}(α)
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Some Background Information on Pattern Languages

Introduced by Angluin in 1979. (Original motivation: inductive

inference)

Later investigated from a purely language theoretical point of view.

Independently developed in the pattern matching community.

Practically applied in so-called regular expressions with backreferences

(Perl, Java, Python, . . .).

Relations to combinatorics on words: pattern avoidability, ambiguity of

morphisms, word equations, equality sets.
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Some Background Information on Pattern Languages

Problem Complexity

Membership NP-complete

Inclusion undecidable

Equivalence (NE-case) trivial

Equivalence (E-case) open

Inclusion (terminal-free, E-case) NP-complete

Equivalence (terminal-free, E-case) NP-complete
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Closure Properties

Angluin 1979:

Pattern Languages are not closed under

union

intersection

complement

Kleene plus

homomorphism

inv. homo.

LNE,Σ(a) ∪ LNE,Σ(b) = {a, b}
LNE,Σ(a) ∩ LNE,Σ(b) = ∅
{a, b}∗ \ LNE,Σ(a)

(LNE,{a,b}(a))∗ ((LNE,{a,b}(a))+)

h(LNE,{a,b}(x)) = (L(a))+, h(a) = h(b) = a

g−1(LNE,{a,b}(aaa)) = {aaa, ab, ba}, g(a) = a, g(b) = aa

Pattern Languages are closed under

concatenation

reversal

L(α) · L(β) = L(α · β)

(L(α))R = L(αR)
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Motivation for Investigating Closure Properties

One of the most classical and fundamental question in language

theory.

Normally leads to insights and techniques that yield a better

understanding of the class.

In the case of pattern languages the existing closure properties fail to

contribute to our understanding of their intrinsic properties.

All examples for non-closure require terminal symbols in the patterns

(what about the closure of terminal-free pattern languages).

Can we characterise those pairs (α, β) of patterns, for which

L(α) ∪ L(β) or L(α) ∩ L(β) are pattern languages?
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Canonical Way of Expressing (NE/E)-pattern languages by
unions of (E/NE)-pattern languages

Every E-pattern language is the �nite union of NE-pattern languages.

Every NE-pattern language is the �nite union of E-pattern languages.

Let Σ = {a, b} and α = x1x2x2x1x3x1.

β1 = x1x2x2x1x3x1,

β2 = x2x2x3,

β3 = x1x1x3x1,

β4 = x1x2x2x1x1,

β5 = x3,

β6 = x2x2,

β7 = x1x1x1.

LE,Σ(α) =
⋃6

i=1 LNE,Σ(βi ).

γ1 = ax1ax2ax2ax1ax3ax1,

γ2 = bx1ax2ax2bx1ax3bx1,

γ3 = ax1bx2bx2ax1ax3ax1,

γ4 = ax1ax2ax2ax1bx3ax1,

γ5 = ax1bx2bx2ax1bx3ax1,

γ6 = bx1ax2ax2bx1bx3bx1,

γ7 = bx1bx2bx2bx1ax3bx1,

γ8 = bx1bx2bx2bx1bx3bx1.

LNE,Σ(α) =
⋃8

i=1 LE,Σ(γi ).
Is this the only way of how unions of E- or unions of NE- pattern languages

can be a NE- or a E-pattern languages, respectively?
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Closure of Terminal-Free Pattern Languages

Terminal-free pattern languages . . .

. . . have been a recent focus of interest in the research of pattern

languages.

. . . have better decidability properties (inclusion and equivalence is

decidable in the E-case).

. . . have open closure properties.
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Theorem

Let Z , Z ′ ∈ {E,NE} and α, β, γ patterns.

LZ ,Σ(α) ∪ LZ ,Σ(β) = LZ ′,Σ(γ)

⇐⇒

LZ ,Σ(α) ⊆ LZ ,Σ(β) and LZ ,Σ(β) = LZ ′,Σ(γ) or

LZ ,Σ(β) ⊆ LZ ,Σ(α) and LZ ,Σ(α) = LZ ′,Σ(γ) .

⇒ full characterisation of LZ (α) ∪ LZ (β) = LZ ′(γ), Z ,Z ′ ∈ {E,NE}.

Inclusion is decidable for terminal-free E-pattern languages, but still open

for terminal-free NE-pattern languages
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Let Z ∈ {E,NE}. Then LZ ,Σ(x1x1) ∩ LZ ,Σ(x1x1x1) = LZ ,Σ(x61 ).

Theorem

LNE,Σ(x1x2x1) ∩ LNE,Σ(x1x1x2) is not a terminal-free NE-pattern language.

Theorem

LE,Σ(x1x2x
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LE,Σ(α) ∩ LE,Σ(β) equals the solutions of

x1x2x1x1x2 = x3x5x3x3x5

x1x1x1x2x2 = x5x5x3x3x3

x5 = x4x4

⇒ all solutions to the equations are periodic.

Lemma: If α = β has only periodic solutions and LE,Σ(α) ∩ LE,Σ(β) is a

terminal-free E-pattern language, then ak ∈ LE,Σ(α) ∩ LE,Σ(β) implies

k = `|w | for some ` ≥ 1.

Since a
6 is the shortest element in LE,Σ(α) ∩ LE,Σ(β) and

a
8 ∈ LE,Σ(α) ∩ LE,Σ(β), we obtain a contradiction.
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Other Closure Properties of TF Pattern Languages

Theorem

Let |Σ| ≥ 2. The terminal-free NE- and E-pattern languages, with respect

to Σ, are not closed under

morphisms,

inverse morphisms,

Kleene plus and

Kleene star.

Theorem

For every terminal-free pattern α, the complement of LE,Σ(α) is not a

terminal-free E-pattern language and the complement of LNE,Σ(α) is not a

terminal-free NE-pattern language.



Closure Properties of General Pattern Languages

Closure under complement is fully characterised:

Theorem

For every pattern α, the complement of LE,Σ(α) is not an E-pattern

language and the complement of LNE,Σ(α) is not a NE-pattern language.



Main Research Question

For Z ,Z ′ ∈ {E,NE} and ◦ ∈ {∪,∩}, are there α, β such that

LZ ,Σ(α) ◦ LZ ,Σ(β) is not a Z ′-pattern language? X

LZ ,Σ(α) ◦ LZ ,Σ(β) is a Z ′-pattern language?

Characterise the α, β for which LZ ,Σ(α)◦LZ ,Σ(β) is a Z ′-pattern language?
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Union of General Pattern Languages

Example for �E∪E = E� and alphabet size 2:

Σ = {a, b},
α = x1ax2bx2ax3,

β = x1ax2bbx2ax3,

γ = x1ax2bx3ax4.

LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ),
LE,Σ(α) 6⊆ LE,Σ(β),
LE,Σ(β) 6⊆ LE,Σ(α).

Proof sketch:

LE,Σ(α) ⊆ LE,Σ(γ) and

LE,Σ(β) ⊆ LE,Σ(γ) is obvious.

Let w ∈ LE,Σ(γ)

w = u a bn a v ,
n is even ⇒ w ∈ LE,Σ(β).
n is odd ⇒ w ∈ LE,Σ(α).
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Union of General Pattern Languages

Example for �E∪E = E� and alphabet size 3:

Σ = {a, b, c},
α = x1ax2x

6
3 x

3
4 x

6
5 x6bx7ax2x

12
8 x64 x

12
9 x6bx10,

β = x1ax2x
6
3 x

2
4 x

5
5 x

6
6 x7bx8ax2x
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9 x44 x
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5 x1210 x7bx11,
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6
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LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ),
LE,Σ(α) 6⊆ LE,Σ(β),
LE,Σ(β) 6⊆ LE,Σ(α).



Union of General Pattern Languages

Example for �E∪E = E� and alphabet size 4:

Σ = {a, b, c, d},

α := x1ax2x
2
3 x

2
4 x

2
5 x6bx7ax2x

2
8 x

2
4 x

2
9 x6b

x10cx11x
2
12x

2
13x

2
14x

2
15x16dx17cx11x

2
18x

2
13x

2
14x

2
19x16d

x20x
2
13x

2
14x

2
13x

2
14x

2
13x

2
14x21x

6
4 ,

β := x1ax2x
2
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2
4 x

2
5 x

2
6 x7bx8ax2x

2
9 x

2
4 x

2
5 x

2
10x7b
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2
13x

2
14x

2
15x16dx17cx12x

2
18x

2
14x

2
19x16d

x20x
6
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2
4 x

2
5 x

2
4 x

2
5 x

2
4 x

2
5 and

γ := x1ax2x
2
3 x

2
4 x

2
5 x

2
6 x7bx8ax2x

2
9 x

2
4 x

2
5 x

2
10x7b

x11cx12x
2
13x

2
14x

2
15x

2
16x17dx18cx12x

2
19x

2
14x

2
15x

2
20x17d

x21x
2
14x

2
15x

2
14x

2
15x

2
14x

2
15x22x

2
4 x

2
5 x

2
4 x

2
5 x

2
4 x

2
5 .

LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ), LE,Σ(α) 6⊆ LE,Σ(β), LE,Σ(β) 6⊆ LE,Σ(α).



Necessary Condition for E∪E = E

α = α0u1α1u2α2 . . . αn−1un,
β = β0v1β1v2β2 . . . βm−1vm,
γ = γ0w1γ1w2γ2 . . . γm−1wk ,

αi , βi , γi ∈ X+, ui , vi ,wi ∈ Σ+.

LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ)

=⇒

w0w1 . . .wk = u0u1 . . . uk and w0w1 . . .wk subsequence of v0v1 . . . vk or

w0w1 . . .wk = v0v1 . . . vk and w0w1 . . .wk subsequence of u0u1 . . . uk
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Necessary Condition for NE∪NE = NE

Let {a, b} ⊆ Σ, let α, β and γ be patterns with neither

LNE,Σ(α) ⊆ LNE,Σ(β), β = γ nor

LNE,Σ(β) ⊆ LNE,Σ(α), α = γ.

LNE,Σ(α) ∪ LNE,Σ(β) = LNE,Σ(γ)

=⇒

|Σ| = 2

α = δ0 a δ1 a δ2 . . . δm−1 a δm ,

β = δ0 b δ1 b δ2 . . . δm−1 b δm ,

γ = δ0 x δ1 x δ2 . . . δm−1 x δm ,

where m ≥ 1, δi ∈ (X ∪ Σ)∗, 0 ≤ i ≤ m.
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Characterisations for NE∪NE = E

Let |Σ| ≥ 2, let α, β and γ be patterns.

LNE,Σ(α) ∪ LNE,Σ(β) = LE,Σ(γ)

⇐⇒

α = u1 u2 . . . um+1 ∈ Σ+ and β = γ = u1 x
j1 u2 x

j2 . . . x jm um+1, ji ∈ N0.

This corresponds to the canonical way of expressing E-pattern languages by

unions of NE-pattern languages.
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