Closure Properties of Pattern Languages

Daniel Reidenbach ${ }^{1}$, Joel D. Day ${ }^{1}$, Markus L. Schmid ${ }^{2}$

${ }^{1}$ Loughborough University, UK
${ }^{2}$ Trier University, Germany

$$
\text { DLT } 2014
$$

Basic Definitions and Notation

$$
\Sigma \quad \text { Terminals } \quad\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}
$$

Basic Definitions and Notation

Σ	Terminals	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
X	Variables	$\left\{x_{1}, \mathrm{x}_{2}, x_{3}, \ldots\right\}$

Basic Definitions and Notation

Σ	Terminals	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
X	Variables	$\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$w \in \Sigma^{*}$	Word	abaacba

Basic Definitions and Notation

$$
\begin{array}{lll}
\Sigma & \text { Terminals } & \{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
X & \text { Variables } & \left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
w \in \Sigma^{*} & \text { Word } & \text { abaacba } \\
\alpha \in(\Sigma \cup X)^{+} & \text {Pattern } & \alpha:=x_{1} \mathrm{a} x_{2} x_{1} \text { bax } x_{2} x_{1} x_{3}
\end{array}
$$

Pattern Languages

Morphism Mapping $h: \Gamma_{1}^{*} \rightarrow \Gamma_{2}^{*}$ with $h(x \cdot y)=h(x) \cdot h(y)$; h is nonerasing iff, for every $a \in \Gamma_{1}, h(a) \neq \varepsilon$.

Pattern Languages

Morphism Mapping $h: \Gamma_{1}^{*} \rightarrow \Gamma_{2}^{*}$ with $h(x \cdot y)=h(x) \cdot h(y)$; h is nonerasing iff, for every $a \in \Gamma_{1}, h(a) \neq \varepsilon$.

Substitution Morphism $h:(\Sigma \cup X)^{*} \rightarrow \Sigma^{*}$ with $h(a)=a, a \in \Sigma$.

Pattern Languages

Morphism Mapping $h: \Gamma_{1}^{*} \rightarrow \Gamma_{2}^{*}$ with $h(x \cdot y)=h(x) \cdot h(y)$; h is nonerasing iff, for every $a \in \Gamma_{1}, h(a) \neq \varepsilon$.

Substitution Morphism $h:(\Sigma \cup X)^{*} \rightarrow \Sigma^{*}$ with $h(a)=a, a \in \Sigma$.
E-pattern lang. $L_{\mathrm{E}, \Sigma}(\alpha):=\{h(\alpha) \mid h$ is a substitution $\}$.

Pattern Languages

Morphism Mapping $h: \Gamma_{1}^{*} \rightarrow \Gamma_{2}^{*}$ with $h(x \cdot y)=h(x) \cdot h(y)$; h is nonerasing iff, for every $a \in \Gamma_{1}, h(a) \neq \varepsilon$.

Substitution Morphism $h:(\Sigma \cup X)^{*} \rightarrow \Sigma^{*}$ with $h(a)=a, a \in \Sigma$.
E-pattern lang. $L_{\mathrm{E}, \Sigma}(\alpha):=\{h(\alpha) \mid h$ is a substitution $\}$.
NE-pattern lang. $L_{\mathrm{NE}, \Sigma}(\alpha):=\{h(\alpha) \mid h$ is nonerasing substitution $\}$.

An Example

$$
\alpha=x_{1} \text { aa } x_{2} x_{1} x_{2} \mathrm{cb} x_{1}
$$

An Example

```
\alpha= x1 aa }\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\textrm{cb}\mp@subsup{x}{1}{
acaaabcbaacabcbacbac
```


An Example

```
\alpha= x1 aa }\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\textrm{cb}\mp@subsup{x}{1}{
acaaabcbaacabcbacbac
```


An Example

```
\alpha= x1 aa }\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\textrm{cb}\mp@subsup{x}{1}{
acaaabcbaacabcbacbac
```


An Example

```
\alpha= x1 aa }\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\textrm{cb}\mp@subsup{x}{1}{
acaaabcbaacabcbacbac
```


An Example

```
\alpha= x1 aa }\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\textrm{cb}\mp@subsup{x}{1}{
acaaabcbaacabcbacbac
```

$h(\alpha)=$ acaaabcbaacabcbacbac $\in L_{\text {NE, }\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}}(\alpha)$, where $h\left(x_{1}\right)=\mathrm{ac}, h\left(x_{2}\right)=\operatorname{abcba},(h(\mathrm{a})=\mathrm{a}, h(\mathrm{~b})=\mathrm{b})$.

An Example

$\alpha=x_{1}$ aa $x_{2} x_{1} x_{2} \mathrm{cb} x_{1}$
acaaabcbaacabcbacbac
$h(\alpha)=$ acaaabcbaacabcbacbac $\in L_{N E,\{a, b, c\}}(\alpha)$,
where $h\left(x_{1}\right)=\mathrm{ac}, h\left(x_{2}\right)=\mathrm{abcba},(h(\mathrm{a})=\mathrm{a}, h(\mathrm{~b})=\mathrm{b})$.
ccbaaccbcbccb $\notin L_{N E,\{a, b, c\}}(\alpha)$

An Example

```
\alpha= x1 aa }\mp@subsup{x}{2}{}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\textrm{cb}\mp@subsup{x}{1}{
acaaabcbaacabcbacbac
```

$h(\alpha)=$ acaaabcbaacabcbacbac $\in L_{N E,\{a, b, c\}}(\alpha)$,
where $h\left(x_{1}\right)=\mathrm{ac}, h\left(x_{2}\right)=$ abcba, $(h(\mathrm{a})=\mathrm{a}, h(\mathrm{~b})=\mathrm{b})$.
ccbaaccbcbccb $\notin L_{\mathrm{NE},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}}(\alpha)$
ccbaaccbcbccb $\in L_{E,\{a, b, c\}}(\alpha)$

Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)

Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)
- Later investigated from a purely language theoretical point of view.

Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)
- Later investigated from a purely language theoretical point of view.
- Independently developed in the pattern matching community.

Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)
- Later investigated from a purely language theoretical point of view.
- Independently developed in the pattern matching community.
- Practically applied in so-called regular expressions with backreferences (Perl, Java, Python, ...).

Some Background Information on Pattern Languages

- Introduced by Angluin in 1979. (Original motivation: inductive inference)
- Later investigated from a purely language theoretical point of view.
- Independently developed in the pattern matching community.
- Practically applied in so-called regular expressions with backreferences (Perl, Java, Python, ...).
- Relations to combinatorics on words: pattern avoidability, ambiguity of morphisms, word equations, equality sets.

Some Background Information on Pattern Languages

Problem	Complexity
Membership	NP-complete

Some Background Information on Pattern Languages

Problem	Complexity
Membership	NP-complete
Inclusion	undecidable

Some Background Information on Pattern Languages

Problem	Complexity
Membership	NP-complete
Inclusion	undecidable
Equivalence (NE-case)	trivial

Some Background Information on Pattern Languages

Problem	Complexity
Membership	NP-complete
Inclusion	undecidable
Equivalence (NE-case)	trivial
Equivalence (E-case)	open

Some Background Information on Pattern Languages

Problem	Complexity
Membership	NP-complete
Inclusion	undecidable
Equivalence (NE-case)	trivial
Equivalence (E-case)	open
Inclusion (terminal-free, E-case)	NP-complete

Some Background Information on Pattern Languages

Problem	Complexity
Membership	NP-complete
Inclusion	undecidable
Equivalence (NE-case)	trivial
Equivalence (E-case)	open
Inclusion (terminal-free, E-case)	NP-complete
Equivalence (terminal-free, E-case)	NP-complete

Closure Properties

Angluin 1979:
Pattern Languages are not closed under

- union
- intersection
- complement
- Kleene plus
- homomorphism
- inv. homo.

$$
\begin{aligned}
& L_{\mathrm{NE}, \Sigma}(\mathrm{a}) \cup L_{\mathrm{NE}, \Sigma}(\mathrm{~b})=\{\mathrm{a}, \mathrm{~b}\} \\
& L_{\mathrm{NE}, \Sigma}(\mathrm{a}) \cap L_{\mathrm{NE}, \Sigma}(\mathrm{~b})=\emptyset \\
& \{\mathrm{a}, \mathrm{~b}\}^{*} \backslash L_{\mathrm{NE}, \Sigma}(\mathrm{a}) \\
& \left(L_{\mathrm{NE},\{\mathrm{a}, \mathrm{~b}\}}(\mathrm{a})\right)^{*}\left(\left(L_{\mathrm{NE},\{\mathrm{a}, \mathrm{~b}\}}(\mathrm{a})\right)^{+}\right) \\
& h\left(L_{\mathrm{NE},\{\mathrm{a}, \mathrm{~b}\}}(x)\right)=(L(\mathrm{a}))^{+}, h(\mathrm{a})=h(\mathrm{~b})=\mathrm{a} \\
& g^{-1}\left(L_{\mathrm{NE},\{\mathrm{a}, \mathrm{~b}\}}(\mathrm{aaa})\right)=\{\mathrm{aaa}, \mathrm{ab}, \mathrm{ba}\}, g(\mathrm{a})=\mathrm{a}, g(\mathrm{~b})
\end{aligned}
$$

Closure Properties

Angluin 1979:
Pattern Languages are not closed under

- union
- intersection
- complement
- Kleene plus
- homomorphism
- inv. homo.

$$
L_{N E, \Sigma}(a) \cup L_{N E, \Sigma}(b)=\{a, b\}
$$

$$
L_{\mathrm{NE}, \Sigma}(\mathrm{a}) \cap L_{\mathrm{NE}, \Sigma}(\mathrm{~b})=\emptyset
$$

$$
\{\mathrm{a}, \mathrm{~b}\}^{*} \backslash L_{\mathrm{NE}, \Sigma}(\mathrm{a})
$$

$$
\left(L_{N E,\{a, b\}}(a)\right)^{*}\left(\left(L_{N E,\{a, b\}}(a)\right)^{+}\right)
$$

$$
h\left(L_{\mathrm{NE},\{\mathrm{a}, \mathrm{~b}\}}(x)\right)=(L(\mathrm{a}))^{+}, h(\mathrm{a})=h(\mathrm{~b})=\mathrm{a}
$$

$$
g^{-1}\left(L_{\mathrm{NE},\{\mathrm{a}, \mathrm{~b}\}}(\mathrm{aaa})\right)=\{\mathrm{aaa}, \mathrm{ab}, \mathrm{ba}\}, g(\mathrm{a})=\mathrm{a}, g(\mathrm{~b})
$$

Pattern Languages are closed under

- concatenation

$$
L(\alpha) \cdot L(\beta)=L(\alpha \cdot \beta)
$$

- reversal
$(L(\alpha))^{R}=L\left(\alpha^{R}\right)$

Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.

Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.
- Normally leads to insights and techniques that yield a better understanding of the class.

Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.
- Normally leads to insights and techniques that yield a better understanding of the class.
- In the case of pattern languages the existing closure properties fail to contribute to our understanding of their intrinsic properties.

Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.
- Normally leads to insights and techniques that yield a better understanding of the class.
- In the case of pattern languages the existing closure properties fail to contribute to our understanding of their intrinsic properties.
- All examples for non-closure require terminal symbols in the patterns (what about the closure of terminal-free pattern languages).

Motivation for Investigating Closure Properties

- One of the most classical and fundamental question in language theory.
- Normally leads to insights and techniques that yield a better understanding of the class.
- In the case of pattern languages the existing closure properties fail to contribute to our understanding of their intrinsic properties.
- All examples for non-closure require terminal symbols in the patterns (what about the closure of terminal-free pattern languages).
- Can we characterise those pairs (α, β) of patterns, for which $L(\alpha) \cup L(\beta)$ or $L(\alpha) \cap L(\beta)$ are pattern languages?

Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\alpha=x_{1} x_{2} x_{2} x_{1} x_{3} x_{1}$.

Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\alpha=x_{1} x_{2} x_{2} x_{1} x_{3} x_{1}$.
$\beta_{1}=x_{1} x_{2} x_{2} x_{1} x_{3} x_{1}$,
$\beta_{2}=x_{2} x_{2} x_{3}$,
$\beta_{3}=x_{1} x_{1} x_{3} x_{1}$,
$\beta_{4}=x_{1} x_{2} x_{2} x_{1} x_{1}$,
$\beta_{5}=x_{3}$,
$\beta_{6}=x_{2} x_{2}$,
$\beta_{7}=x_{1} x_{1} x_{1}$.
$L_{\mathrm{E}, \Sigma}(\alpha)=\bigcup_{i=1}^{6} L_{\mathrm{NE}, \Sigma}\left(\beta_{i}\right)$.

Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\alpha=x_{1} x_{2} x_{2} x_{1} x_{3} x_{1}$.

$$
\begin{array}{ll}
\beta_{1}=x_{1} x_{2} x_{2} x_{1} x_{3} x_{1}, & \gamma_{1}=a x_{1} a x_{2} a x_{2} a x_{1} a x_{3} a x_{1} \\
\beta_{2}=x_{2} x_{2} x_{3}, & \gamma_{2}=b x_{1} a x_{2} a x_{2} b x_{1} a x_{3} b x_{1} \\
\beta_{3}=x_{1} x_{1} x_{3} x_{1}, & \gamma_{3}=a x_{1} b x_{2} b x_{2} a x_{1} a x_{3} a x_{1} \\
\beta_{4}=x_{1} x_{2} x_{2} x_{1} x_{1}, & \gamma_{4}=a x_{1} a x_{2} a x_{2} a x_{1} b x_{3} a x_{1} \\
\beta_{5}=x_{3}, & \gamma_{5}=a x_{1} b x_{2} b x_{2} a x_{1} b x_{3} a x_{1} \\
\beta_{6}=x_{2} x_{2}, & \gamma_{6}=b x_{1} a x_{2} a x_{2} b x_{1} b x_{3} b x_{1} \\
\beta_{7}=x_{1} x_{1} x_{1} . & \gamma_{7}=b x_{1} b x_{2} b x_{2} b x_{1} a x_{3} b x_{1} \\
L_{\mathrm{E}, \Sigma}(\alpha)=\bigcup_{i=1}^{6} L_{\mathrm{NE}, \Sigma}\left(\beta_{i}\right) . & \gamma_{8}=b x_{1} b x_{2} b x_{2} b x_{1} b x_{3} b x_{1} \\
& L_{\mathrm{NE}, \Sigma}(\alpha)=\bigcup_{i=1}^{8} L_{\mathrm{E}, \Sigma}\left(\gamma_{i}\right) .
\end{array}
$$

Canonical Way of Expressing (NE/E)-pattern languages by unions of (E/NE)-pattern languages

- Every E-pattern language is the finite union of NE-pattern languages.
- Every NE-pattern language is the finite union of E-pattern languages.

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\alpha=x_{1} x_{2} x_{2} x_{1} x_{3} x_{1}$.

$$
\begin{array}{ll}
\beta_{1}=x_{1} x_{2} x_{2} x_{1} x_{3} x_{1}, & \gamma_{1}=a x_{1} a x_{2} a x_{2} a x_{1} a x_{3} a x_{1}, \\
\beta_{2}=x_{2} x_{2} x_{3}, & \gamma_{2}=b x_{1} a x_{2} a x_{2} b x_{1} a x_{3} b x_{1}, \\
\beta_{3}=x_{1} x_{1} x_{3} x_{1}, & \gamma_{3}=a x_{1} b x_{2} b x_{2} a x_{1} a x_{3} a x_{1}, \\
\beta_{4}=x_{1} x_{2} x_{2} x_{1} x_{1}, & \gamma_{4}=a x_{1} a x_{2} a x_{2} a x_{1} b x_{3} a x_{1}, \\
\beta_{5}=x_{3}, & \gamma_{5}=a x_{1} b x_{2} b x_{2} a x_{1} b x_{3} a x_{1}, \\
\beta_{6}=x_{2} x_{2}, & \gamma_{6}=b x_{1} a x_{2} a x_{2} b x_{1} b x_{3} b x_{1}, \\
\beta_{7}=x_{1} x_{1} x_{1} . & \gamma_{7}=b x_{1} b x_{2} b x_{2} b x_{1} a x_{3} b x_{1}, \\
L_{\mathrm{E}, \Sigma}(\alpha)=\bigcup_{i=1}^{6} L_{\mathrm{NE}, \Sigma}\left(\beta_{i}\right) . & \gamma_{8}=b x_{1} b x_{2} b x_{2} b x_{1} b x_{3} b x_{1} . \\
& L_{\mathrm{NE}, \Sigma}(\alpha)=\bigcup_{i=1}^{8} L_{\mathrm{E}, \Sigma}\left(\gamma_{i}\right) .
\end{array}
$$

Is this the only way of how unions of E - or unions of $\mathrm{NE}-$ pattern languages can be a NE- or a E-pattern languages, respectively?

Closure of Terminal-Free Pattern Languages

Terminal-free pattern languages ...

- ... have been a recent focus of interest in the research of pattern languages.

Closure of Terminal-Free Pattern Languages

Terminal-free pattern languages ...

- ... have been a recent focus of interest in the research of pattern languages.
- ... have better decidability properties (inclusion and equivalence is decidable in the E-case).

Closure of Terminal-Free Pattern Languages

Terminal-free pattern languages ...

- ... have been a recent focus of interest in the research of pattern languages.
- ... have better decidability properties (inclusion and equivalence is decidable in the E-case).
- ... have open closure properties.

Union of Terminal-Free Pattern Languages

Theorem
Let $Z, Z^{\prime} \in\{\mathrm{E}, \mathrm{NE}\}$ and α, β, γ patterns.

$$
L_{z, \Sigma}(\alpha) \cup L_{Z, \Sigma}(\beta)=L_{Z^{\prime}, \Sigma}(\gamma)
$$

$$
\begin{aligned}
& L_{Z, \Sigma}(\alpha) \subseteq L_{z, \Sigma}(\beta) \text { and } L_{z, \Sigma}(\beta)=L_{Z^{\prime}, \Sigma}(\gamma) \text { or } \\
& L_{z, \Sigma}(\beta) \subseteq L_{z, \Sigma}(\alpha) \text { and } L_{z, \Sigma}(\alpha)=L_{Z^{\prime}, \Sigma}(\gamma)
\end{aligned}
$$

Union of Terminal-Free Pattern Languages

Theorem
Let $Z, Z^{\prime} \in\{\mathrm{E}, \mathrm{NE}\}$ and α, β, γ patterns.

$$
\begin{gathered}
L_{z, \Sigma}(\alpha) \cup L_{z, \Sigma}(\beta)=L_{Z^{\prime}, \Sigma}(\gamma) \\
\Longleftrightarrow \\
L_{z, \Sigma}(\alpha) \subseteq L_{z, \Sigma}(\beta) \text { and } L_{z, \Sigma}(\beta)=L_{Z^{\prime}, \Sigma}(\gamma) \text { or } \\
L_{z, \Sigma}(\beta) \subseteq L_{z, \Sigma}(\alpha) \text { and } L_{z, \Sigma}(\alpha)=L_{Z^{\prime}, \Sigma}(\gamma) .
\end{gathered}
$$

\Rightarrow full characterisation of $L_{Z}(\alpha) \cup L_{Z}(\beta)=L_{Z^{\prime}}(\gamma), Z, Z^{\prime} \in\{\mathrm{E}, \mathrm{NE}\}$.

Union of Terminal-Free Pattern Languages

Theorem
Let $Z, Z^{\prime} \in\{\mathrm{E}, \mathrm{NE}\}$ and α, β, γ patterns.

$$
\begin{gathered}
L_{z, \Sigma}(\alpha) \cup L_{Z, \Sigma}(\beta)=L_{Z^{\prime}, \Sigma}(\gamma) \\
\Longleftrightarrow \\
L_{Z, \Sigma}(\alpha) \subseteq L_{z, \Sigma}(\beta) \text { and } L_{z, \Sigma}(\beta)=L_{Z^{\prime}, \Sigma}(\gamma) \text { or } \\
L_{Z, \Sigma}(\beta) \subseteq L_{z, \Sigma}(\alpha) \text { and } L_{Z, \Sigma}(\alpha)=L_{Z^{\prime}, \Sigma}(\gamma) .
\end{gathered}
$$

\Rightarrow full characterisation of $L_{Z}(\alpha) \cup L_{Z}(\beta)=L_{Z^{\prime}}(\gamma), Z, Z^{\prime} \in\{\mathrm{E}, \mathrm{NE}\}$.
Inclusion is decidable for terminal-free E-pattern languages, but still open for terminal-free NE-pattern languages

Intersection of Terminal-Free Pattern Languages

Theorem
Let $Z \in\{E, N E\}$. Then $L_{Z, \Sigma}\left(x_{1} x_{1}\right) \cap L_{Z, \Sigma}\left(x_{1} x_{1} x_{1}\right)=L_{Z, \Sigma}\left(x_{1}^{6}\right)$.

Intersection of Terminal-Free Pattern Languages

Theorem

Let $Z \in\{\mathrm{E}, \mathrm{NE}\}$. Then $L_{z, \Sigma}\left(x_{1} x_{1}\right) \cap L_{z, \Sigma}\left(x_{1} x_{1} x_{1}\right)=L_{z, \Sigma}\left(x_{1}^{6}\right)$.

Theorem
$L_{\mathrm{NE}, \Sigma}\left(x_{1} x_{2} x_{1}\right) \cap L_{\mathrm{NE}, \Sigma}\left(x_{1} x_{1} x_{2}\right)$ is not a terminal-free $N E$-pattern language.

Intersection of Terminal-Free Pattern Languages

Theorem

Let $Z \in\{\mathrm{E}, \mathrm{NE}\}$. Then $L_{z, \Sigma}\left(x_{1} x_{1}\right) \cap L_{z, \Sigma}\left(x_{1} x_{1} x_{1}\right)=L_{z, \Sigma}\left(x_{1}^{6}\right)$.

Theorem $L_{\mathrm{NE}, \Sigma}\left(x_{1} x_{2} x_{1}\right) \cap L_{\mathrm{NE}, \Sigma}\left(x_{1} x_{1} x_{2}\right)$ is not a terminal-free $N E$-pattern language.

Theorem
$L_{\mathrm{E}, \Sigma}\left(x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}\right) \cap L_{\mathrm{E}, \Sigma}\left(x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}\right)$ is not a tf-E-pattern language.

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.
$L_{\mathrm{E}, \Sigma}(\alpha) \cap L_{\mathrm{E}, \Sigma}(\beta)$ equals the solutions of
$x_{1} x_{2} x_{1} x_{1} x_{2} x_{1} x_{1} x_{1} x_{2} x_{2}=x_{3} x_{4} x_{4} x_{3} x_{3} x_{4} x_{4} x_{4} x_{4} x_{4} x_{4} x_{3} x_{3} x_{3}$.

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.
$L_{\mathrm{E}, \Sigma}(\alpha) \cap L_{\mathrm{E}, \Sigma}(\beta)$ equals the solutions of
$x_{1} x_{2} x_{1} x_{1} x_{2} x_{1} x_{1} x_{1} x_{2} x_{2}=x_{3} x_{4} x_{4} x_{3} x_{3} x_{4} x_{4} \quad x_{4} x_{4} x_{4} x_{4} x_{3} x_{3} x_{3}$.

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.
$L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ equals the solutions of

$$
\begin{aligned}
& x_{1} x_{2} x_{1} x_{1} x_{2}=x_{3} x_{4} x_{4} x_{3} x_{3} x_{4} x_{4} \\
& x_{1} x_{1} x_{1} x_{2} x_{2}=x_{4} x_{4} x_{4} x_{4} x_{3} x_{3} x_{3}
\end{aligned}
$$

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.
$L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ equals the solutions of

$$
\begin{aligned}
x_{1} x_{2} x_{1} x_{1} x_{2} & =x_{3} x_{5} x_{3} x_{3} x_{5} \\
x_{1} x_{1} x_{1} x_{2} x_{2} & =x_{5} x_{5} x_{3} x_{3} x_{3} \\
x_{5} & =x_{4} x_{4}
\end{aligned}
$$

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.
$L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ equals the solutions of

$$
\begin{aligned}
x_{1} x_{2} x_{1} x_{1} x_{2} & =x_{3} x_{5} x_{3} x_{3} x_{5} \\
x_{1} x_{1} x_{1} x_{2} x_{2} & =x_{5} x_{5} x_{3} x_{3} x_{3} \\
x_{5} & =x_{4} x_{4}
\end{aligned}
$$

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.
$L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ equals the solutions of

$$
\begin{aligned}
x_{1} x_{2} x_{1} x_{1} x_{2} & =x_{3} x_{5} x_{3} x_{3} x_{5} \\
x_{1} x_{1} x_{1} x_{2} x_{2} & =x_{5} x_{5} x_{3} x_{3} x_{3} \\
x_{5} & =x_{4} x_{4}
\end{aligned}
$$

\Rightarrow all solutions to the equations are periodic.

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.
$L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ equals the solutions of

$$
\begin{aligned}
x_{1} x_{2} x_{1} x_{1} x_{2} & =x_{3} x_{5} x_{3} x_{3} x_{5} \\
x_{1} x_{1} x_{1} x_{2} x_{2} & =x_{5} x_{5} x_{3} x_{3} x_{3} \\
x_{5} & =x_{4} x_{4}
\end{aligned}
$$

\Rightarrow all solutions to the equations are periodic.
Lemma: If $\alpha=\beta$ has only periodic solutions and $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ is a terminal-free E-pattern language, then $a^{k} \in L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ implies $k=\ell|w|$ for some $\ell \geq 1$.

Proof Sketch

Let $\alpha=x_{1} x_{2} x_{1}^{2} x_{2} x_{1}^{3} x_{2}^{2}$ and $\beta=x_{3} x_{4}^{2} x_{3}^{2} x_{4}^{6} x_{3}^{3}$.
$L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ equals the solutions of

$$
\begin{aligned}
x_{1} x_{2} x_{1} x_{1} x_{2} & =x_{3} x_{5} x_{3} x_{3} x_{5} \\
x_{1} x_{1} x_{1} x_{2} x_{2} & =x_{5} x_{5} x_{3} x_{3} x_{3} \\
x_{5} & =x_{4} x_{4}
\end{aligned}
$$

\Rightarrow all solutions to the equations are periodic.
Lemma: If $\alpha=\beta$ has only periodic solutions and $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ is a terminal-free E-pattern language, then $a^{k} \in L_{\mathrm{E}, \Sigma}(\alpha) \cap L_{\mathrm{E}, \Sigma}(\beta)$ implies $k=\ell|w|$ for some $\ell \geq 1$.

Since a^{6} is the shortest element in $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ and $\mathrm{a}^{8} \in L_{\mathrm{E}, \Sigma}(\alpha) \cap L_{\mathrm{E}, \Sigma}(\beta)$, we obtain a contradiction.

Other Closure Properties of TF Pattern Languages

Theorem
Let $|\Sigma| \geq 2$. The terminal-free NE - and E -pattern languages, with respect to Σ, are not closed under

- morphisms,
- inverse morphisms,
- Kleene plus and
- Kleene star.

Theorem

For every terminal-free pattern α, the complement of $L_{\mathrm{E}, \Sigma}(\alpha)$ is not a terminal-free E -pattern language and the complement of $L_{\mathrm{NE}, \Sigma}(\alpha)$ is not a terminal-free NE-pattern language.

Closure Properties of General Pattern Languages

Closure under complement is fully characterised:

Theorem

For every pattern α, the complement of $L_{\mathrm{E}, \Sigma}(\alpha)$ is not an E -pattern language and the complement of $L_{\mathrm{NE}, \Sigma}(\alpha)$ is not a NE -pattern language.

Main Research Question

For $Z, Z^{\prime} \in\{\mathrm{E}, \mathrm{NE}\}$ and $\circ \in\{\cup, \cap\}$, are there α, β such that

- $L_{Z, \Sigma}(\alpha) \circ L_{Z, \Sigma}(\beta)$ is not a Z^{\prime}-pattern language?
- $L_{Z, \Sigma}(\alpha) \circ L_{Z, \Sigma}(\beta)$ is a Z^{\prime}-pattern language?

Main Research Question

For $Z, Z^{\prime} \in\{\mathrm{E}, \mathrm{NE}\}$ and $\circ \in\{\cup, \cap\}$, are there α, β such that

- $L_{Z, \Sigma}(\alpha) \circ L_{Z, \Sigma}(\beta)$ is not a Z^{\prime}-pattern language?
- $L_{Z, \Sigma}(\alpha) \circ L_{Z, \Sigma}(\beta)$ is a Z^{\prime}-pattern language?

Characterise the α, β for which $L_{Z, \Sigma}(\alpha) \circ L_{Z, \Sigma}(\beta)$ is a Z^{\prime}-pattern language?

Intersection of General Pattern Languages

There are simple examples for the situation that

- $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ is an E -pattern language.
- $L_{N E, \Sigma}(\alpha) \cap L_{N E, \Sigma}(\beta)$ is an NE-pattern language.
- $L_{N E, \Sigma}(\alpha) \cap L_{N E, \Sigma}(\beta)$ is an E-pattern language.

Intersection of General Pattern Languages

There are simple examples for the situation that

- $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ is an E-pattern language.
- $L_{N E, \Sigma}(\alpha) \cap L_{N E, \Sigma}(\beta)$ is an NE-pattern language.
- $L_{N E, \Sigma}(\alpha) \cap L_{N E, \Sigma}(\beta)$ is an E-pattern language.

Open:

- Are there α, β, such that $L_{\mathrm{E}, \Sigma}(\alpha) \cap L_{\mathrm{E}, \Sigma}(\beta)$ is NE -pattern language?

Intersection of General Pattern Languages

There are simple examples for the situation that

- $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ is an E-pattern language.
- $L_{N E, \Sigma}(\alpha) \cap L_{N E, \Sigma}(\beta)$ is an NE-pattern language.
- $L_{N E, \Sigma}(\alpha) \cap L_{N E, \Sigma}(\beta)$ is an E-pattern language.

Open:

- Are there α, β, such that $L_{E, \Sigma}(\alpha) \cap L_{E, \Sigma}(\beta)$ is $N E$-pattern language?
- Characterisations?

Union of General Pattern Languages

There are simple examples for the situation that

- $L_{N E, \Sigma}(\alpha) \cup L_{N E, \Sigma}(\beta)$ is an NE-pattern language.
- $L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)$ is an NE-pattern language.
- $L_{N E, \Sigma}(\alpha) \cup L_{N E, \Sigma}(\beta)$ is an E-pattern language.

Union of General Pattern Languages

There are simple examples for the situation that

- $L_{N E, \Sigma}(\alpha) \cup L_{N E, \Sigma}(\beta)$ is an NE-pattern language.
- $L_{E, \Sigma}(\alpha) \cup L_{E, \Sigma}(\beta)$ is an NE-pattern language.
- $L_{N E, \Sigma}(\alpha) \cup L_{N E, \Sigma}(\beta)$ is an E-pattern language.

Examples for the situation that $L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)$ is an E-pattern language exist, but are much more complicated.

Union of General Pattern Languages

Example for " $\mathrm{E} \cup \mathrm{E}=\mathrm{E}$ " and alphabet size 2 :

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \\
& \alpha=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{2} \mathrm{ax} 3, \\
& \beta=x_{1} \mathrm{ax}_{2} \mathrm{bb} x_{2} \mathrm{a} x_{3}, \\
& \gamma=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{3} \mathrm{ax} 4 . \\
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), \\
& L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), \\
& L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Union of General Pattern Languages

Example for " $E \cup E=E$ " and alphabet size 2:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \\
& \alpha=x_{1} \mathrm{ax} 2 \mathrm{~b} x_{2} \mathrm{a} x_{3}, \\
& \beta=x_{1} \mathrm{ax} \mathrm{bb}_{2} \mathrm{a}, \\
& \gamma=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{3} \mathrm{a} x_{4} . \\
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), \\
& L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), \\
& L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Union of General Pattern Languages

Example for " $E \cup E=E$ " and alphabet size 2:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \\
& \alpha=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{2} \mathrm{ax} 3, \\
& \beta=x_{1} \mathrm{ax}_{2} \mathrm{bb} x_{2} \mathrm{ax}_{3}, \\
& \gamma=x_{1} \mathrm{ax} x_{2} \mathrm{~b} x_{3} \mathrm{ax} 4 . \\
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), \\
& L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), \\
& L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Proof sketch:
$L_{\mathrm{E}, \Sigma}(\alpha) \subseteq L_{\mathrm{E}, \Sigma}(\gamma)$ and
$L_{\mathrm{E}, \Sigma}(\beta) \subseteq L_{\mathrm{E}, \Sigma}(\gamma)$ is obvious.

Union of General Pattern Languages

Example for " $E \cup E=E$ " and alphabet size 2:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \\
& \alpha=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{2} \mathrm{a} x_{3}, \\
& \beta=x_{1} \mathrm{a} x_{2} \mathrm{bb} x_{2} \mathrm{a} x_{3}, \\
& \gamma=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{3} \mathrm{a} x_{4} . \\
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), \\
& L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), \\
& L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Proof sketch:

$$
L_{E, \Sigma}(\alpha) \subseteq L_{E, \Sigma}(\gamma) \text { and }
$$

$$
L_{\mathrm{E}, \Sigma}(\beta) \subseteq L_{\mathrm{E}, \Sigma}(\gamma) \text { is obvious. }
$$

$$
\text { Let } w \in L_{E, \Sigma}(\gamma)
$$

Union of General Pattern Languages

Example for " $E \cup E=E$ " and alphabet size 2:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \\
& \alpha=x_{1} \mathrm{ax} \mathrm{ax}_{2} \mathrm{a} x_{3}, \\
& \beta=x_{1} \mathrm{ax} \mathrm{bbbx}_{2} \mathrm{ax}, \\
& \gamma=x_{1} \mathrm{ax} x_{2} \mathrm{~b} x_{3} \mathrm{ax}
\end{aligned}, \quad \begin{aligned}
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), \\
& L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), \\
& L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Proof sketch:

$$
\begin{aligned}
& L_{\mathrm{E}, \Sigma}(\alpha) \subseteq L_{\mathrm{E}, \Sigma}(\gamma) \text { and } \\
& L_{\mathrm{E}, \Sigma}(\beta) \subseteq L_{\mathrm{E}, \Sigma}(\gamma) \text { is obvious. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } w \in L_{E, \Sigma}(\gamma) \\
& w=u \mathrm{ab}^{n} a v,
\end{aligned}
$$

Union of General Pattern Languages

Example for " $E \cup E=E$ " and alphabet size 2:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \\
& \alpha=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{2} \mathrm{a} x_{3}, \\
& \beta=x_{1} \mathrm{ax} x_{2} \mathrm{~b} x_{2} \mathrm{a} x_{3}, \\
& \gamma=x_{1} \mathrm{ax} x_{2} \mathrm{~b} x_{3} \mathrm{a} x_{4} . \\
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), \\
& L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), \\
& L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Proof sketch:

$$
\begin{aligned}
& L_{\mathrm{E}, \Sigma}(\alpha) \subseteq L_{\mathrm{E}, \Sigma}(\gamma) \text { and } \\
& L_{\mathrm{E}, \Sigma}(\beta) \subseteq L_{\mathrm{E}, \Sigma}(\gamma) \text { is obvious. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } w \in L_{\mathrm{E}, \Sigma}(\gamma) \\
& w=u \mathrm{ab}^{n} \mathrm{a} v, \\
& n \text { is even } \Rightarrow w \in L_{\mathrm{E}, \Sigma}(\beta)
\end{aligned}
$$

Union of General Pattern Languages

Example for " $E \cup E=E$ " and alphabet size 2:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}\}, \\
& \alpha=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{2} \mathrm{a} x_{3}, \\
& \beta=x_{1} \mathrm{ax} \mathrm{~b}_{2} \mathrm{~b} x_{2} \mathrm{a} x_{3}, \\
& \gamma=x_{1} \mathrm{a} x_{2} \mathrm{~b} x_{3} \mathrm{a} x_{4} . \\
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), \\
& L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), \\
& L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Proof sketch:

$$
\begin{aligned}
& L_{\mathrm{E}, \Sigma}(\alpha) \subseteq L_{\mathrm{E}, \Sigma}(\gamma) \text { and } \\
& L_{\mathrm{E}, \Sigma}(\beta) \subseteq L_{\mathrm{E}, \Sigma}(\gamma) \text { is obvious. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } w \in L_{\mathrm{E}, \Sigma}(\gamma) \\
& w=u \mathrm{ab}^{n} \mathrm{a} v, \\
& n \text { is even } \Rightarrow w \in L_{\mathrm{E}, \Sigma}(\beta) . \\
& n \text { is odd } \Rightarrow w \in L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Union of General Pattern Languages

Example for " $E \cup E=E$ " and alphabet size 3:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}, \\
& \alpha=x_{1} \mathrm{a} x_{2} x_{3}^{6} x_{4}^{3} x_{5}^{6} x_{6} \mathrm{~b} x_{7} \mathrm{a} x_{2} x_{8}^{12} x_{4}^{6} x_{9}^{12} x_{6} \mathrm{~b} x_{10}, \\
& \beta=x_{1} \mathrm{a} x_{2}^{6} x_{3}^{2} x_{4}^{2} x_{5}^{5} x_{6}^{6} x_{7} \mathrm{~b} x_{8} \mathrm{a} x_{2} x_{9}^{12} x_{4}^{4} x_{5}^{10} x_{10}^{12} x_{7} \mathrm{~b} x_{11}, \\
& \gamma=x_{1} \mathrm{a} x_{2} x_{3}^{6} x_{4}^{2} x_{5}^{3} x_{6}^{6} x_{7} \mathrm{~b} x_{8} \mathrm{a} x_{2} x_{9}^{12} x_{4}^{4} x_{5}^{6} x_{10}^{12} x_{7} \mathrm{~b} x_{11} . \\
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), \\
& L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), \\
& L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Union of General Pattern Languages
Example for " $E \cup E=E$ " and alphabet size 4:

$$
\begin{aligned}
& \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\}, \\
& \alpha \\
& \alpha= x_{1} \mathrm{a} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6} \mathrm{~b} x_{7} \mathrm{a} x_{2} x_{8}^{2} x_{4}^{2} x_{9}^{2} x_{6} \mathrm{~b} \\
& x_{10} \mathrm{c} x_{11} x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{15}^{2} x_{16} \mathrm{~d} x_{17} \mathrm{c} x_{11} x_{18}^{2} x_{13}^{2} x_{14}^{2} x_{19}^{2} x_{16} \mathrm{~d} \\
& x_{20} x_{13}^{2} x_{14}^{2} x_{13}^{2} x_{14}^{2} x_{13}^{2} x_{14}^{2} x_{21} x_{4}^{6}, \\
& \beta:= x_{1} \mathrm{a} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6}^{2} x_{7} \mathrm{~b} x_{8} \mathrm{a} x_{2} x_{9}^{2} x_{4}^{2} x_{5}^{2} x_{10}^{2} x_{7} \mathrm{~b} \\
& x_{11} \mathrm{c} x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{15}^{2} x_{16} \mathrm{~d} x_{17} \mathrm{c} x_{12} x_{18}^{2} x_{14}^{2} x_{19}^{2} x_{16} \mathrm{~d} \\
& x_{20} x_{14}^{6} x_{21} x_{4}^{2} x_{5}^{2} x_{4}^{2} x_{5}^{2} x_{4}^{2} x_{5}^{2} \text { and } \\
& \gamma:= x_{1} \mathrm{a} x_{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6}^{2} x_{7} \mathrm{~b} x_{8} \mathrm{a} x_{2} x_{9}^{2} x_{4}^{2} x_{5}^{2} x_{10}^{2} x_{7} \mathrm{~b} \\
& x_{11}^{\mathrm{c} x_{12} x_{13}^{2} x_{14}^{2} x_{15}^{2} x_{16}^{2} x_{17} \mathrm{~d} x_{18} \mathrm{c} x_{12} x_{19}^{2} x_{14}^{2} x_{15}^{2} x_{20}^{2} x_{17} \mathrm{~d}} \\
& x_{21} x_{14}^{2} x_{15}^{2} x_{14}^{2} x_{15}^{2} x_{14}^{2} x_{15}^{2} x_{22} x_{4}^{2} x_{5}^{2} x_{4}^{2} x_{5}^{2} x_{4}^{2} x_{5}^{2} . \\
& L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma), L_{\mathrm{E}, \Sigma}(\alpha) \nsubseteq L_{\mathrm{E}, \Sigma}(\beta), L_{\mathrm{E}, \Sigma}(\beta) \nsubseteq L_{\mathrm{E}, \Sigma}(\alpha) .
\end{aligned}
$$

Necessary Condition for $\mathrm{E} \cup \mathrm{E}=\mathrm{E}$

$$
\begin{aligned}
& \alpha=\alpha_{0} u_{1} \alpha_{1} u_{2} \alpha_{2} \ldots \alpha_{n-1} u_{n} \\
& \beta=\beta_{0} v_{1} \beta_{1} v_{2} \beta_{2} \ldots \beta_{m-1} v_{m} \\
& \gamma=\gamma_{0} w_{1} \gamma_{1} w_{2} \gamma_{2} \ldots \gamma_{m-1} w_{k} \\
& \alpha_{i}, \beta_{i}, \gamma_{i} \in X^{+}, u_{i}, v_{i}, w_{i} \in \Sigma^{+}
\end{aligned}
$$

Necessary Condition for $\mathrm{E} \cup \mathrm{E}=\mathrm{E}$

$$
\begin{aligned}
& \alpha=\alpha_{0} u_{1} \alpha_{1} u_{2} \alpha_{2} \ldots \alpha_{n-1} u_{n} \\
& \beta=\beta_{0} v_{1} \beta_{1} v_{2} \beta_{2} \ldots \beta_{m-1} v_{m} \\
& \gamma=\gamma_{0} w_{1} \gamma_{1} w_{2} \gamma_{2} \ldots \gamma_{m-1} w_{k} \\
& \alpha_{i}, \beta_{i}, \gamma_{i} \in X^{+}, u_{i}, v_{i}, w_{i} \in \Sigma^{+}
\end{aligned}
$$

$$
L_{\mathrm{E}, \Sigma}(\alpha) \cup L_{\mathrm{E}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma)
$$

$w_{0} w_{1} \ldots w_{k}=u_{0} u_{1} \ldots u_{k}$ and $w_{0} w_{1} \ldots w_{k}$ subsequence of $v_{0} v_{1} \ldots v_{k}$ or $w_{0} w_{1} \ldots w_{k}=v_{0} v_{1} \ldots v_{k}$ and $w_{0} w_{1} \ldots w_{k}$ subsequence of $u_{0} u_{1} \ldots u_{k}$

Necessary Condition for $N E \cup N E=N E$
Let $\{\mathrm{a}, \mathrm{b}\} \subseteq \Sigma$, let α, β and γ be patterns with neither

- $L_{\text {NE, } \Sigma}(\alpha) \subseteq L_{N E, \Sigma}(\beta), \beta=\gamma$ nor
- $L_{N E, \Sigma}(\beta) \subseteq L_{\text {NE, } \Sigma}(\alpha), \alpha=\gamma$.

Necessary Condition for $N E \cup N E=N E$
Let $\{\mathrm{a}, \mathrm{b}\} \subseteq \Sigma$, let α, β and γ be patterns with neither

- $L_{N E, \Sigma}(\alpha) \subseteq L_{N E, \Sigma}(\beta), \beta=\gamma$ nor
- $L_{\mathrm{NE}, \Sigma}(\beta) \subseteq L_{\mathrm{NE}, \Sigma}(\alpha), \alpha=\gamma$.

$$
\begin{aligned}
& L_{\mathrm{NE}, \Sigma}(\alpha) \cup L_{\mathrm{NE}, \Sigma}(\beta)=L_{\mathrm{NE}, \Sigma}(\gamma) \\
& \Longrightarrow \\
& \begin{array}{l}
|\Sigma|=2 \\
\alpha=\delta_{0} \mathrm{a} \delta_{1} \mathrm{a} \delta_{2} \ldots \delta_{m-1} \mathrm{a} \delta_{m} \\
\beta=\delta_{0} \mathrm{~b} \delta_{1} \mathrm{~b} \delta_{2} \ldots \delta_{m-1} \mathrm{~b} \delta_{m} \\
\gamma=\delta_{0} \times \delta_{1} \times \delta_{2} \ldots \delta_{m-1} \times \delta_{m}
\end{array}
\end{aligned}
$$

where $m \geq 1, \delta_{i} \in(X \cup \Sigma)^{*}, 0 \leq i \leq m$.

Characterisations for $\mathrm{NE} \cup \mathrm{NE}=\mathrm{E}$

Let $|\Sigma| \geq 2$, let α, β and γ be patterns.

Characterisations for $\mathrm{NE} \cup \mathrm{NE}=\mathrm{E}$

Let $|\Sigma| \geq 2$, let α, β and γ be patterns.

$$
L_{\mathrm{NE}, \Sigma}(\alpha) \cup L_{\mathrm{NE}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma)
$$

$$
\alpha=u_{1} u_{2} \ldots u_{m+1} \in \Sigma^{+} \text {and } \beta=\gamma=u_{1} x^{j_{1}} u_{2} x^{j_{2}} \ldots x^{j_{m}} u_{m+1}, j_{i} \in \mathbb{N}_{0} .
$$

Characterisations for $\mathrm{NE} \cup \mathrm{NE}=\mathrm{E}$

Let $|\Sigma| \geq 2$, let α, β and γ be patterns.

$$
\begin{gathered}
L_{\mathrm{NE}, \Sigma}(\alpha) \cup L_{\mathrm{NE}, \Sigma}(\beta)=L_{\mathrm{E}, \Sigma}(\gamma) \\
\Longleftrightarrow \\
\alpha=u_{1} u_{2} \ldots u_{m+1} \in \Sigma^{+} \text {and } \beta=\gamma=u_{1} x^{j_{1}} u_{2} x^{j_{2}} \ldots x^{j_{m}} u_{m+1}, j_{i} \in \mathbb{N}_{0} .
\end{gathered}
$$

This corresponds to the canonical way of expressing E-pattern languages by unions of NE-pattern languages.

Characterisations for $E \cup E=N E$
Let $\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\} \subseteq \Sigma, \ell \geq 2$, let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}, \gamma$ be patterns with $L_{E, \Sigma}\left(\alpha_{i}\right) \neq L_{E, \Sigma}\left(\alpha_{j}\right)$.

Characterisations for $\mathrm{E} \cup \mathrm{E}=\mathrm{NE}$
Let $\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\} \subseteq \Sigma, \ell \geq 2$, let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}, \gamma$ be patterns with $L_{E, \Sigma}\left(\alpha_{i}\right) \neq L_{E, \Sigma}\left(\alpha_{j}\right)$.

$$
\bigcup_{i=1}^{\ell} L_{\mathrm{E}, \Sigma}\left(\alpha_{i}\right)=L_{\mathrm{NE}, \Sigma}(\gamma)
$$

$$
\begin{aligned}
\Sigma= & \left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\ell}\right\} \\
\gamma= & u_{1} \times u_{2} \times u_{3} \ldots u_{k} \times u_{k+1} \\
\alpha_{i}= & u_{1} \alpha_{i}^{\prime} \mathrm{a}_{i} \alpha_{i}^{\prime \prime} u_{2} \alpha_{i}^{\prime} \mathrm{a}_{i} \alpha_{i}^{\prime \prime} u_{3} \ldots u_{k} \alpha_{i}^{\prime} \mathrm{a}_{i} \alpha_{i}^{\prime \prime} u_{k+1} \\
& \alpha_{i}^{\prime}, \alpha_{i}^{\prime \prime} \in X^{*} \text { and, }
\end{aligned}
$$

there exists a variable y_{i} with exactly one occurrence in $\alpha_{i}^{\prime} \mathrm{a}_{i} \alpha_{i}^{\prime \prime}$.

Thank you very much for your attention.

