Pattern Matching with Variables:
 A Multivariate Complexity Analysis

Henning Fernau, Markus L. Schmid, Universität Trier

Presented 19 June 2013 at CPM

Words with Coloured Holes

A word with (coloured) holes. . .

$$
\mathrm{ab} \square \mathrm{c} \square \mathrm{cb} \square \mathrm{~b} \square \mathrm{ca} \square
$$

Words with Coloured Holes

A word with (coloured) holes. . .

$$
\mathrm{ab} \square \mathrm{c} \square \mathrm{cb} \square \mathrm{~b} \square \mathrm{ca} \square
$$

...can be repaired...

$$
\begin{aligned}
\mathrm{aba} & \rightarrow \square \\
\mathrm{c} \mathrm{~b} & \rightarrow \square
\end{aligned}
$$

Words with Coloured Holes

A word with (coloured) holes. . .

$$
\mathrm{ab} \square \mathrm{c} \square \mathrm{cb} \square \mathrm{~b} \square \mathrm{ca} \square
$$

...can be repaired...

$$
\begin{aligned}
\mathrm{ab} \mathrm{a} & \rightarrow \square \\
\mathrm{c} \mathrm{~b} & \rightarrow \square
\end{aligned}
$$

... by filling in new words:

$$
a b a b a c c b c b a b a b c b c a c b
$$

A Special Kind of Pattern Matching

For given
α (a word with coloured holes),
w (a word without holes),
is it possible to fill the holes of α in such a way that we obtain w ?

A Special Kind of Pattern Matching

For given
α (a word with coloured holes),
w (a word without holes),
is it possible to fill the holes of α in such a way that we obtain w ?

Example 1:

$$
\begin{aligned}
\alpha & =\square \mathrm{a} \mathrm{a} \square \square \square \mathrm{cb} \square \\
\mathrm{u} & =\mathrm{ac} \mathrm{a} \mathrm{a} \mathrm{abcbaacabcbacbac}
\end{aligned}
$$

A Special Kind of Pattern Matching

For given
α (a word with coloured holes),
w (a word without holes),
is it possible to fill the holes of α in such a way that we obtain w ?

Example 1:

$$
\begin{aligned}
\alpha & =\mathrm{acaa} \square \mathrm{ac} \square \mathrm{cbac} \\
\mathrm{u} & =\mathrm{acaaabcbaacabcbacbac}
\end{aligned}
$$

A Special Kind of Pattern Matching

For given
α (a word with coloured holes),
w (a word without holes),
is it possible to fill the holes of α in such a way that we obtain w ?

Example 1:

$$
\begin{aligned}
\alpha & =\mathrm{acaaabcba} \mathrm{acabcbacbac} \\
u & =\mathrm{acaaabcbaacabcbacbac}
\end{aligned}
$$

A Special Kind of Pattern Matching

For given
α (a word with coloured holes),
w (a word without holes),
is it possible to fill the holes of α in such a way that we obtain w ?

Example 2:

$$
\begin{aligned}
\alpha & =\square \mathrm{a} \mathrm{a} \square \square \square \mathrm{c} \square \square \\
\mathrm{v} & =\mathrm{c} \mathrm{c} \mathrm{~b} \mathrm{a} \mathrm{accbc} \mathrm{c} \mathrm{c} \mathrm{c} \mathrm{~b}
\end{aligned}
$$

A Special Kind of Pattern Matching

For given
α (a word with coloured holes),
w (a word without holes),
is it possible to fill the holes of α in such a way that we obtain w ?

Example 2:

$$
\begin{aligned}
\alpha & =\mathrm{ccbaa} \square \mathrm{ccb} \square \mathrm{cbccb} \\
v & =\mathrm{ccbaaccbcbccb}
\end{aligned}
$$

A Special Kind of Pattern Matching

For given
α (a word with coloured holes),
w (a word without holes),
is it possible to fill the holes of α in such a way that we obtain w ?

Example 2:

$$
\begin{aligned}
\alpha & =\mathrm{c} \mathrm{cbaaccbcbccb} \\
v & =\mathrm{c} \mathrm{cbaaccbcbccb}
\end{aligned}
$$

A Special Kind of Pattern Matching

For given
α (a word with coloured holes),
w (a word without holes),
is it possible to fill the holes of α in such a way that we obtain w ?

Example 3:

$$
\begin{aligned}
& \alpha=\square \mathrm{a} \mathrm{a} \square \square \square \mathrm{c} \square \square \\
& \mathrm{w}=\mathrm{abba} \mathrm{ababc} \mathrm{abc}
\end{aligned}
$$

Some Notations and Definitions

Σ is a terminal alphabet,

$$
\Sigma=\{a, b, c\}
$$

Some Notations and Definitions

Σ is a terminal alphabet,
X is the set of variables,

$$
\Sigma=\{a, b, c\}
$$

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
$$

Some Notations and Definitions

Σ is a terminal alphabet,
X is the set of variables,

$$
w \in \Sigma^{*} \text { is a word }
$$

Some Notations and Definitions

Σ is a terminal alphabet,
X is the set of variables,
$w \in \Sigma^{*}$ is a word
$\alpha \in(\Sigma \cup X)^{+}$is a pattern

$$
\Sigma=\{a, b, c\}
$$

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
$$

abaacba
$\alpha:=x_{1} \mathrm{a} x_{2} x_{1} \operatorname{bax}_{2} x_{1} x_{3}$

Some Notations and Definitions

Σ is a terminal alphabet,
X is the set of variables,
$w \in \Sigma^{*}$ is a word
$\alpha \in(\Sigma \cup X)^{+}$is a pattern
$X \rightarrow \Sigma^{+}$is a substitution

$$
\Sigma=\{a, b, c\}
$$

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
$$

$\alpha:=x_{1} \operatorname{ax} x_{2} x_{1} \operatorname{bax}_{2} x_{1} x_{3}$

$$
h\left(x_{1}\right):=\mathrm{ab}, h\left(x_{2}\right):=\mathrm{bcc}
$$

Pattern Matching with Variables

VPatMatch
Instance: A pattern $\alpha \in(\Sigma \cup X)^{*}$, a word $w \in \Sigma^{*}$.
Question: Does there exist a substitution h with $h(\alpha)=w$?

Pattern Matching with Variables

VPatMatch
Instance: A pattern $\alpha \in(\Sigma \cup X)^{*}$, a word $w \in \Sigma^{*}$.
Question: Does there exist a substitution h with $h(\alpha)=w$?
Two variants:
E-VPatMatch Substitution may map variables to the empty word ε.
NE-VPatMatch Substitution can only map to non-empty words.

A Very Brief History

Three branches:

- Learning theory and Language theory (1980-today):
- Membership problem of Angluin's pattern languages.
- First NE-case, later E-case.
- Word equations, where one side is "variable-free".

A Very Brief History

Three branches:

- Learning theory and Language theory (1980-today):
- Membership problem of Angluin's pattern languages.
- First NE-case, later E-case.
- Word equations, where one side is "variable-free".
- Pattern matching community (1996-today):
- Baker's parameterised matching (finding repetitions in program code).
- A. Amir, Y. Aumann, R. Cole, M. Lewenstein: function matching.
- A. Amir, I. Nor: generalized function matching.
- R. Clifford, A. W. Harrow, A. Popa, B. Sach: generalised matching.
- Only NE-case.

A Very Brief History

Three branches:

- Learning theory and Language theory (1980-today):
- Membership problem of Angluin's pattern languages.
- First NE-case, later E-case.
- Word equations, where one side is "variable-free".
- Pattern matching community (1996-today):
- Baker's parameterised matching (finding repetitions in program code).
- A. Amir, Y. Aumann, R. Cole, M. Lewenstein: function matching.
- A. Amir, I. Nor: generalized function matching.
- R. Clifford, A. W. Harrow, A. Popa, B. Sach: generalised matching.
- Only NE-case.
- The "real" world (?? - today):
- Matchtest for regular expressions with backreferences.
- Nowadays a standard tool in text editors (grep, emacs, ...) and programming language (Perl, Java, Python, ...).

NP-Completeness

Theorem (Angluin 1980, Ehrenfeucht and Rozenberg 1979) If $|\Sigma| \geq 2$, then E- and NE-VPatMATCH are NP-complete.

NP-Completeness

Theorem (Angluin 1980, Ehrenfeucht and Rozenberg 1979) If $|\Sigma| \geq 2$, then E- and NE-VРАтMATch are NP-complete.

3CNF formula (without negated variables)

$$
\psi=\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(v_{2} \vee v_{4} \vee v_{5}\right) \wedge\left(v_{3} \vee v_{1} \vee v_{3}\right) \wedge\left(v_{4} \vee v_{1} \vee v_{2}\right)
$$

NP-Completeness

Theorem (Angluin 1980, Ehrenfeucht and Rozenberg 1979)
If $|\Sigma| \geq 2$, then E- and NE-VРАтMATCH are NP-complete.

3CNF formula (without negated variables)

$$
\psi=\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(v_{2} \vee v_{4} \vee v_{5}\right) \wedge\left(v_{3} \vee v_{1} \vee v_{3}\right) \wedge\left(v_{4} \vee v_{1} \vee v_{2}\right)
$$

E-VPatMatch instance:

$$
\begin{aligned}
& \alpha_{\psi}=x_{1} x_{2} x_{3} \mathrm{~b} x_{2} x_{4} x_{5} \mathrm{~b} x_{3} x_{1} x_{3} \mathrm{~b} x_{4} x_{1} x_{2} \\
& w_{\psi}=\mathrm{abababa}
\end{aligned}
$$

NP-Completeness

Theorem (Angluin 1980, Ehrenfeucht and Rozenberg 1979) If $|\Sigma| \geq 2$, then E- and NE-VРатМатсн are NP-complete.

3CNF formula (without negated variables)

$$
\psi=\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(v_{2} \vee v_{4} \vee v_{5}\right) \wedge\left(v_{3} \vee v_{1} \vee v_{3}\right) \wedge\left(v_{4} \vee v_{1} \vee v_{2}\right)
$$

E-VPatMatch instance:

$$
\begin{aligned}
& \alpha_{\psi}=x_{1} x_{2} x_{3} \mathrm{~b} x_{2} x_{4} x_{5} \mathrm{~b} x_{3} x_{1} x_{3} \mathrm{~b} x_{4} x_{1} x_{2} \\
& w_{\psi}=\mathrm{abababa}
\end{aligned}
$$

$\exists h: h\left(\alpha_{\psi}\right)=w_{\psi}$ iff ψ is "1-in-3-satisfiable".

Special Cases

OK, so VPatMatch is a hard problem, but what if

Special Cases

OK, so VPatMatch is a hard problem, but what if

- we are only interested in texts of size at most 50 ,

Special Cases

OK, so VPatMatch is a hard problem, but what if

- we are only interested in texts of size at most 50 ,
- we are only interested in injective substitutions,

Special Cases

OK, so VPatMatch is a hard problem, but what if

- we are only interested in texts of size at most 50 ,
- we are only interested in injective substitutions,
- in our patterns every variable occurs at most twice,

Special Cases

OK, so VPatMatch is a hard problem, but what if

- we are only interested in texts of size at most 50 ,
- we are only interested in injective substitutions,
- in our patterns every variable occurs at most twice,
- we are only interested in patterns without any terminal symbols and we only consider substitutions of the form $h: X \rightarrow\{a, b, \varepsilon\}$? (i. e., for some u over some alphabet Γ and some $w \in\{a, b\}^{*}$, can we obtain w by replacing every $x \in \Gamma$ in u by either a or b or deleting it?)

Some More Notation

For any pattern α (e.g., $\alpha:=x_{1} \operatorname{ax} x_{2} x_{1}$ bax $x_{2} x_{1} x_{3}$),

Some More Notation

For any pattern α (e.g., $\alpha:=x_{1} \operatorname{ax} x_{2} x_{1} \operatorname{ba} x_{2} x_{1} x_{3}$),
$\operatorname{var}(\alpha)$ is the set of variables in α

$$
\operatorname{var}(\alpha)=\left\{x_{1}, x_{2}, x_{3}\right\}
$$

Some More Notation

For any pattern α (e.g., $\alpha:=x_{1} \operatorname{ax} x_{2} x_{1} \operatorname{bax} x_{2} x_{1} x_{3}$),
$\operatorname{var}(\alpha)$ is the set of variables in α
$|\alpha|_{x}$ is the number of Occ. of x in α

$$
\begin{array}{r}
\operatorname{var}(\alpha)=\left\{x_{1}, x_{2}, x_{3}\right\} \\
|\alpha|_{x_{1}}=3
\end{array}
$$

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.
- Substitutions can be non-injective or must be injective.

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.
- Substitutions can be non-injective or must be injective.
- Patterns can contain terminal symbols or must be terminal-free.

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.
- Substitutions can be non-injective or must be injective.
- Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:
$|\operatorname{var}(\alpha)|$ Number of variables.

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.
- Substitutions can be non-injective or must be injective.
- Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:
$|\operatorname{var}(\alpha)|$ Number of variables.
$|w|$ word length.

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.
- Substitutions can be non-injective or must be injective.
- Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:
$|\operatorname{var}(\alpha)|$ Number of variables.
$|w|$ word length.
$|h(x)|$ Max. length of substitution words.

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.
- Substitutions can be non-injective or must be injective.
- Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:
$|\operatorname{var}(\alpha)|$ Number of variables.
$|w|$ word length.
$|h(x)|$ Max. length of substitution words.
$|\alpha|_{x}$ Max. occ. per variable.

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.
- Substitutions can be non-injective or must be injective.
- Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:
$|\operatorname{var}(\alpha)|$ Number of variables.
$|w|$ word length.
$|h(x)|$ Max. length of substitution words.
$|\alpha|_{x}$ Max. occ. per variable.
$|\Sigma|$ Alphabet size.

Different Versions

Types of VPatMatch:

- Substitutions can be erasing or must be non-erasing.
- Substitutions can be non-injective or must be injective.
- Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:
$|\operatorname{var}(\alpha)|$ Number of variables.
$|w|$ word length.
$|h(x)|$ Max. length of substitution words.
$|\alpha|_{x}$ Max. occ. per variable.
$|\Sigma|$ Alphabet size.
2^{3} types, 2^{5} combinations of parameters $\rightarrow 256$ versions of VPATMATch.

Research Questions

256 Questions of the following form:

Main Research Question

For any type X of VPatMatch and for any subset P of parameters, can we bound the parameters in P by constants, such that type X of VPatMatch is still NP-complete?

First Observations

Theorem (Geilke, Zilles, 2011)
If

$$
\begin{aligned}
|\operatorname{var}(\alpha)| & \leq c \text { or } \\
|w| & \leq c
\end{aligned}
$$

for some constant c, then all variants of VPatMatch are in P.

First Observations

Theorem (Geilke, Zilles, 2011)

If

$$
\begin{aligned}
|\operatorname{var}(\alpha)| & \leq c \text { or } \\
|w| & \leq c
\end{aligned}
$$

for some constant c, then all variants of VPatMatch are in P.
So we focus on the parameters $|h(x)|,|\alpha|_{x}$ and $|\Sigma|$.

First Observations

Theorem (Geilke, Zilles, 2011)

If

$$
\begin{aligned}
|\operatorname{var}(\alpha)| & \leq c \text { or } \\
|w| & \leq c
\end{aligned}
$$

for some constant c, then all variants of VPatMatch are in P.
So we focus on the parameters $|h(x)|,|\alpha|_{x}$ and $|\Sigma|$.

Observation

If

$$
\begin{aligned}
|\alpha|_{x} & =1 \text { or } \\
|\Sigma| & =1
\end{aligned}
$$

then all variants of VPatMatch are in P.

The Non-injective Case

Theorem
Erasing, non-injective VPATMATch is NP-complete,

The Non-injective Case

Theorem
Erasing, non-injective VPatMatch is NP-complete,

- even if

$$
\begin{array}{r}
|h(x)| \leq 1, \\
|\alpha|_{x} \leq 2, \\
|\Sigma| \leq 2 .
\end{array}
$$

The Non-injective Case

Theorem

Erasing, non-injective VPatMatch is NP-complete,

- even if

$$
\begin{aligned}
|h(x)| & \leq 1, \\
|\alpha|_{x} & \leq 2, \\
|\Sigma| & \leq 2 .
\end{aligned}
$$

- even if terminal-free and

$$
\begin{aligned}
|h(x)| & \leq 1 \\
|\alpha|_{x} & \leq 8 \\
|\Sigma| & \leq 2 .
\end{aligned}
$$

The Non-injective Case

Theorem

Erasing, non-injective VPatMatch is NP-complete,

- even if

$$
\begin{aligned}
|h(x)| & \leq 1 \\
|\alpha|_{x} & \leq 2, \\
|\Sigma| & \leq 2 .
\end{aligned}
$$

- even if terminal-free and

$$
\begin{aligned}
|h(x)| & \leq 1 \\
|\alpha|_{x} & \leq \neq 2 \\
|\Sigma| & \leq 2
\end{aligned}
$$

The Non-injective Case

Theorem

(Non-)Erasing, non-injective VPatMatch is NP-complete,

- even if

$$
\begin{aligned}
|h(x)| & \leq 1, \\
|\alpha|_{x} & \leq 2, \\
|\Sigma| & \leq 2 .
\end{aligned}
$$

- even if terminal-free and

$$
\begin{aligned}
|h(x)| & \leq 1 \\
|\alpha|_{x} & \leq \neq 2 \\
|\Sigma| & \leq 2
\end{aligned}
$$

The Non-injective Case

Theorem

(Non-)Erasing, non-injective VPatMatch is NP-complete,

- even if

$$
\begin{aligned}
|h(x)| & \leq 1(3) \\
|\alpha|_{x} & \leq 2(2) \\
|\Sigma| & \leq 2(2)
\end{aligned}
$$

- even if terminal-free and

$$
\begin{aligned}
|h(x)| & \leq 1(3) \\
|\alpha|_{x} & \leq \neq 2(3) \\
|\Sigma| & \leq 2(4) .
\end{aligned}
$$

The Injective Case $1 / 2$

Theorem
Let $c_{1}, c_{2} \in \mathbb{N}$. All injective variants of VPatMatch, restricted to

$$
\begin{aligned}
|h(x)| & \leq c_{1}, \\
|\Sigma| & \leq c_{2},
\end{aligned}
$$

are in P.

The Injective Case $2 / 2$

For all other injective variants, we have NP-completeness, but the constants are a bit larger.

The Injective Case 2/2

For all other injective variants, we have NP-completeness, but the constants are a bit larger.

Theorem

Injective, erasing or non-erasing, terminal-free or non-terminal-free VPatMatch is NP-complete,

- even if

$$
\begin{aligned}
|h(x)| & \leq 19 \\
|\alpha|_{x} & \leq 4,
\end{aligned}
$$

- even if

$$
\begin{aligned}
|\alpha|_{x} & \leq 9 \\
|\Sigma| & \leq 5 .
\end{aligned}
$$

Further Research $1 / 2$

Main Research Question
For any variant X of VPatMatch and for any subset P of parameters, can we bound the parameters in P by constants, such that variant X of VPatMatch is still NP-complete?

Further Research $1 / 2$

Main Research Question

For any variant X of VPatMatch and for any subset P of parameters, can we bound the parameters in P by constants, such that variant X of VPatMatch is still NP-complete?

Dichotomy Result

For any variant X of VPatMatch, for any subset P of parameters and for any set C of specific bounds for the parameters in P, is the variant X of VPatMatch still NP-complete if the parameters of P are bounded by the constants in C?

Further Research $1 / 2$

Main Research Question

For any variant X of VPatMatch and for any subset P of parameters, can we bound the parameters in P by constants, such that variant X of VPatMatch is still NP-complete?

Dichotomy Result for Erasing and Non-injective Case

Let $c_{1}, c_{2}, c_{3} \in \mathbb{N}$. Erasing, non-injective VPatMatch, restricted to

$$
\begin{aligned}
|h(x)| & \leq c_{1}, \\
|\alpha|_{x} & \leq c_{2}, \\
|\Sigma| & \leq c_{3},
\end{aligned}
$$

is NP-Complete if and only if $c_{1} \geq 1, c_{2} \geq 2, c_{3} \geq 2$.

Further Research 2/2

Parameterized Complexity

Consider the parameters (|var |, | $\Sigma \mid, \ldots$) as parameters in terms of parameterized complexity theory and investigate the parameterized complexity of the corresponding parameterized problems.

Thank you very much for your attention.

