Inside the Class of REGEX Languages

Markus L. Schmid,
Loughborough University, UK

DLT 2012

Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of homomorphic replacement.

Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of homomorphic replacement.

$$
(\mathrm{a} \mid \mathrm{b})^{*} \quad \mathrm{cb} b^{*}
$$

Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of homomorphic replacement.

$$
\begin{aligned}
& (\mathrm{a} \mid \mathrm{b})^{*} \mathrm{cb}^{*} \\
& \left\{w \mathrm{cb}^{n} \quad \mid w \in\{\mathrm{a}, \mathrm{~b}\}^{*}, n \geq 0\right\}
\end{aligned}
$$

Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of homomorphic replacement.
$\left.{ }_{1}(\mathrm{a} \mid \mathrm{b})^{*}\right)_{1} \mathrm{cb} \mathrm{b}^{*}$
$\left\{w \mathrm{cb}^{n} \quad \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}, n \geq 0\right\}$

Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of homomorphic replacement.
$\left.{ }_{1}(\mathrm{a} \mid \mathrm{b})^{*}\right)_{1} \mathrm{cb}^{*} \backslash 1$
$\left\{w \mathrm{cb}^{n} \quad \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}, n \geq 0\right\}$

Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of homomorphic replacement.
$\left.{ }_{1}(\mathrm{a} \mid \mathrm{b})^{*}\right)_{1} \mathrm{c} \mathrm{b}^{*} \backslash 1$
$\left\{w \mathrm{cb}^{n} w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}, n \geq 0\right\}$

Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of homomorphic replacement.
$\left.{ }_{1}(\mathrm{a} \mid \mathrm{b})^{*}\right)_{1} \mathrm{cb}^{*} \backslash 1$
$\left\{w \mathrm{cb}^{n} w \mid w \in\{\mathrm{a}, \mathrm{b}\}^{*}, n \geq 0\right\}$
$\left(1\left(2 a^{*}\right)_{2} b \backslash 2\right)_{1} c \backslash 1$
$\left\{\mathrm{a}^{n} \mathrm{ba}^{n} \mathrm{ca}^{n} \mathrm{ba}^{n} \mid n \geq 0\right\}$

Practical Relevance of REGEX

- REGEX are intensely applied in practice...
- Traditional and Modern grep
- vi
- Modern sed
- GNU Emacs
- Perl
- Python
- Java
- .Net

Practical Relevance of REGEX

- REGEX are intensely applied in practice...
- Traditional and Modern grep
- vi
- Modern sed
- GNU Emacs
- Perl
- Python
- Java
- .Net
- ...even though their membership problem is NP-complete.

An Easy Example

$$
\left(1(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{c}^{*}\right)_{1}(2(\mathrm{~b} \mid \mathrm{d}))_{2}(\backslash 1 \mid \backslash 2)
$$

An Easy Example

$$
\left(1(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{c}^{*}\right)_{1} \quad(2(\mathrm{~b} \mid \mathrm{d}))_{2}
$$

$(\backslash 1 \mid \backslash 2)$

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

An Easy Example

$\left(1(a \mid b)^{*} c^{*}\right)_{1}$
$(2(b \mid d))_{2}$
X_{2}
$(\ 1 \mid \backslash 2)$
$\left(x_{1} \mid x_{2}\right)$

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

An Easy Example

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

A More Complex Example

$$
\left(1\left(2\left(3(a \mid b)^{*}\right)_{3} c \backslash 3\right)_{2} d(\backslash 2 c)^{*}\right)_{1} e \backslash 1
$$

A More Complex Example

$$
\left(1\left(2\left(3(a \mid b)^{*}\right)_{3} c \backslash 3\right)_{2} d(\backslash 2 c)^{*}\right)_{1} \quad e \quad \backslash 1
$$

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

A More Complex Example

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

A More Complex Example

$$
\left(1\left(2\left(3(\mathrm{a} \mid \mathrm{b})^{*}\right)_{3} \mathrm{c} \backslash 3\right)_{2} \mathrm{~d}(\backslash 2 \mathrm{c})^{*}\right)_{1}
$$

A More Complex Example

$$
\left(1\left(2\left(3(\mathrm{a} \mid \mathrm{b})^{*}\right)_{3} \mathrm{c} \backslash 3\right)_{2} \mathrm{~d}(\backslash 2 \mathrm{c})^{*}\right)_{1}
$$

A More Complex Example

$$
\left(1\left(2\left(3(\mathrm{a} \mid \mathrm{b})^{*}\right)_{3} \mathrm{c} \backslash 3\right)_{2} \mathrm{~d}(\backslash 2 \mathrm{c})^{*}\right)_{1}
$$

Markus L. Schmid, Loughborough University, UK

A Fairly Involved Example

$$
\left(1 a^{*}\right)_{1} c(2 \backslash 1(b \mid c) \backslash 1)_{2} c\left(3(\backslash 1 \mid d)^{*} \backslash 2\right)_{3} \backslash 3
$$

A Fairly Involved Example

$$
\left(1 \mathrm{a}^{*}\right)_{1} \quad c \quad(2 \backslash 1(\mathrm{~b} \mid \mathrm{c}) \backslash 1)_{2} \quad c \quad\left(3(\backslash 1 \mid d)^{*} \backslash 2\right)_{3} \quad \backslash 3
$$

Markus L. Schmid, Loughborough University, UK

A Fairly Involved Example

A Fairly Involved Example

Markus L. Schmid, Loughborough University, UK

A Fairly Involved Example

Markus L. Schmid, Loughborough University, UK

A Fairly Involved Example

Markus L. Schmid, Loughborough University, UK

Aim of This Paper

- Regular expressions on the one hand and homomorphic replacement on the other a well understood concepts in language theory.

Aim of This Paper

- Regular expressions on the one hand and homomorphic replacement on the other a well understood concepts in language theory.
- In REGEX, these two concepts seem inherently entangled and it seems difficulty to treat them separately.

Aim of This Paper

- Regular expressions on the one hand and homomorphic replacement on the other a well understood concepts in language theory.
- In REGEX, these two concepts seem inherently entangled and it seems difficulty to treat them separately.
- Our approach: Study REGEX by investigating alternative ways to combine regular expressions and homomorphic replacement...

Aim of This Paper

- Regular expressions on the one hand and homomorphic replacement on the other a well understood concepts in language theory.
- In REGEX, these two concepts seem inherently entangled and it seems difficulty to treat them separately.
- Our approach: Study REGEX by investigating alternative ways to combine regular expressions and homomorphic replacement...
- ...without exceeding the expressive power of REGEX languages.

Aim of This Paper

- Regular expressions on the one hand and homomorphic replacement on the other a well understood concepts in language theory.
- In REGEX, these two concepts seem inherently entangled and it seems difficulty to treat them separately.
- Our approach: Study REGEX by investigating alternative ways to combine regular expressions and homomorphic replacement...
- ...without exceeding the expressive power of REGEX languages.
- Informally: Take regular expressions, take some mechanism of homomorphic replacement, combine them and see how much of the class of REGEX languages we actually get.

(Typed) Pattern languages

Pattern: A word containing terminals (e.g. $\Sigma=\{a, b, c\}$) and variables $\left(X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}\right)$.

(Typed) Pattern languages

Pattern: A word containing terminals (e.g. $\Sigma=\{a, b, c\}$) and variables $\left(X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}\right)$.
$\alpha=x_{1} x_{2} b x_{1} x_{2} x_{1}$

(Typed) Pattern languages

Pattern: A word containing terminals (e.g. $\Sigma=\{a, b, c\}$) and variables $\left(X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}\right)$.
$\alpha=x_{1} x_{2} \mathrm{~b} x_{1} x_{2} x_{1}$
$\mathcal{L}_{\Sigma}(\alpha)=\left\{w \mid w=u v \mathrm{~b} u v u, u, v \in \Sigma^{*}\right\}$.

(Typed) Pattern languages

Pattern: A word containing terminals (e.g. $\Sigma=\{a, b, c\}$) and variables $\left(X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}\right)$.
$\alpha=x_{1} x_{2} \mathrm{~b} x_{1} x_{2} x_{1}$
$\mathcal{L}_{\Sigma}(\alpha)=\left\{w \mid w=u v \mathrm{~b} u v u, u, v \in \Sigma^{*}\right\}$.

A type for $\alpha: \mathcal{T}:=\left(T_{x_{1}}, T_{x_{2}}\right)$

(Typed) Pattern languages

Pattern: A word containing terminals (e.g. $\Sigma=\{a, b, c\}$) and variables $\left(X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}\right)$.
$\alpha=x_{1} x_{2} \mathrm{~b} x_{1} x_{2} x_{1}$
$\mathcal{L}_{\Sigma}(\alpha)=\left\{w \mid w=u v \mathrm{~b} u v u, u, v \in \Sigma^{*}\right\}$.

A type for $\alpha: \mathcal{T}:=\left(T_{x_{1}}, T_{x_{2}}\right)$
$\mathcal{L}_{\mathcal{T}}(\alpha)=\left\{w \mid w=u v \mathrm{~b} u v u, u \in T_{x_{1}}, v \in T_{x_{2}}\right\}$.

(Typed) Pattern languages

PAT $:=(\Sigma \cup X)^{+}$.

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

(Typed) Pattern languages

PAT $:=(\Sigma \cup X)^{+}$.
$\operatorname{var}(\alpha)$: Set of variables occurring in α.
E. g. $\operatorname{var}\left(x_{1} a b x_{2} b a x_{1} x_{2} c x_{3}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$.

(Typed) Pattern languages

PAT $:=(\Sigma \cup X)^{+}$.
$\operatorname{var}(\alpha)$: Set of variables occurring in α.
E. g. $\operatorname{var}\left(x_{1} a b x_{2} b a x_{1} x_{2} c x_{3}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$.

For any language class \mathfrak{L}, $\mathcal{L}_{\mathfrak{L}}(\mathrm{PAT}):=\left\{\mathcal{L}_{\mathcal{T}}(\alpha) \mid \alpha \in \mathrm{PAT}, \mathcal{T} \in \mathfrak{L}^{|\operatorname{var}(\alpha)|}\right\}$.

(Typed) Pattern languages

PAT $:=(\Sigma \cup X)^{+}$.
$\operatorname{var}(\alpha)$: Set of variables occurring in α.
E. g. $\operatorname{var}\left(x_{1} a b x_{2} b a x_{1} x_{2} c x_{3}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$.

For any language class \mathfrak{L}, $\mathcal{L}_{\mathfrak{L}}(\mathrm{PAT}):=\left\{\mathcal{L}_{\mathcal{T}}(\alpha) \mid \alpha \in \mathrm{PAT}, \mathcal{T} \in \mathfrak{L}^{|\operatorname{var}(\alpha)|}\right\}$.

Proposition

$\mathcal{L}_{\text {REG }}(\mathrm{PAT}) \subseteq \mathcal{L}($ REGEX $)$.

(Typed) Pattern languages

Idea:
$\mathfrak{L}_{1}:=\mathcal{L}_{\text {REG }}($ PAT $)$,

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

(Typed) Pattern languages

Idea:
$\mathfrak{L}_{1}:=\mathcal{L}_{\text {REG }}($ PAT $)$,
$\mathfrak{L}_{2}:=\mathcal{L}_{\mathfrak{L}_{1}}(\mathrm{PAT})$,

(Typed) Pattern languages

Idea:
$\mathfrak{L}_{1}:=\mathcal{L}_{\text {REG }}($ PAT $)$,
$\mathfrak{L}_{2}:=\mathcal{L}_{\mathfrak{L}_{1}}(\mathrm{PAT})$,
$\mathfrak{L}_{3}:=\mathcal{L}_{\mathfrak{L}_{2}}$ (PAT), :

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

(Typed) Pattern languages

Idea:
$\mathfrak{L}_{1}:=\mathcal{L}_{\text {REG }}($ PAT $)$,
$\mathfrak{L}_{2}:=\mathcal{L}_{\mathfrak{L}_{1}}$ (PAT),
$\mathfrak{L}_{3}:=\mathcal{L}_{\mathfrak{L}_{2}}(\mathrm{PAT})$, :

Proposition
For any class of languages $\mathfrak{L}, \mathcal{L}_{\mathfrak{L}}(\mathrm{PAT})=\mathcal{L}_{\mathcal{L}_{\mathfrak{L}}(\mathrm{PAT})}(\mathrm{PAT})$.

(Typed) Pattern languages

Idea:
$\mathfrak{L}_{1}:=\mathcal{L}_{\text {REG }}($ PAT $)$,
$\mathfrak{L}_{2}:=\mathcal{L}_{\mathfrak{L}_{1}}$ (PAT),
$\mathfrak{L}_{3}:=\mathcal{L}_{\mathfrak{L}_{2}}$ (PAT), :

Proposition
For any class of languages $\mathfrak{L}, \mathcal{L}_{\mathfrak{L}}(\mathrm{PAT})=\mathcal{L}_{\mathcal{L}_{\mathfrak{N}}(\mathrm{PAT})}(\mathrm{PAT})$.
Hence, the aspect of regular expressions cannot be limited to the type languages.

Patterns with Regular Operators

$\mathrm{PAT}_{\mathrm{ro}}:=\{\alpha \mid \alpha$ is a regular expression over $(\Sigma \cup X)\}$. Every
$\alpha \in \mathrm{PAT}_{\text {ro }}$ is a pattern with regular operators.

Patterns with Regular Operators

$\mathrm{PAT}_{\mathrm{ro}}:=\{\alpha \mid \alpha$ is a regular expression over $(\Sigma \cup X)\}$. Every $\alpha \in \mathrm{PAT}_{\text {ro }}$ is a pattern with regular operators.
$\mathcal{L}_{\mathcal{T}}(\alpha):=\mathcal{L}_{\mathcal{T}}\left(\beta_{1}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{2}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{3}\right) \cup \ldots$, where

Patterns with Regular Operators

$\mathrm{PAT}_{\mathrm{ro}}:=\{\alpha \mid \alpha$ is a regular expression over $(\Sigma \cup X)\}$. Every $\alpha \in \mathrm{PAT}_{\text {ro }}$ is a pattern with regular operators.
$\mathcal{L}_{\mathcal{T}}(\alpha):=\mathcal{L}_{\mathcal{T}}\left(\beta_{1}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{2}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{3}\right) \cup \ldots$, where

- \mathcal{T} is a type for α and

Patterns with Regular Operators

$\mathrm{PAT}_{\mathrm{ro}}:=\{\alpha \mid \alpha$ is a regular expression over $(\Sigma \cup X)\}$. Every $\alpha \in \mathrm{PAT}_{\text {ro }}$ is a pattern with regular operators.
$\mathcal{L}_{\mathcal{T}}(\alpha):=\mathcal{L}_{\mathcal{T}}\left(\beta_{1}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{2}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{3}\right) \cup \ldots$, where

- \mathcal{T} is a type for α and
- $\mathcal{L}(\alpha)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right\}$.

Patterns with Regular Operators

$\mathrm{PAT}_{\mathrm{ro}}:=\{\alpha \mid \alpha$ is a regular expression over $(\Sigma \cup X)\}$. Every $\alpha \in \mathrm{PAT}_{\text {ro }}$ is a pattern with regular operators.
$\mathcal{L}_{\mathcal{T}}(\alpha):=\mathcal{L}_{\mathcal{T}}\left(\beta_{1}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{2}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{3}\right) \cup \ldots$, where

- \mathcal{T} is a type for α and
- $\mathcal{L}(\alpha)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right\}$.

Example: $\mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(\left(x_{1} c\right)^{+}\right)=$

Patterns with Regular Operators

$\mathrm{PAT}_{\mathrm{ro}}:=\{\alpha \mid \alpha$ is a regular expression over $(\Sigma \cup X)\}$. Every $\alpha \in \mathrm{PAT}_{\text {ro }}$ is a pattern with regular operators.
$\mathcal{L}_{\mathcal{T}}(\alpha):=\mathcal{L}_{\mathcal{T}}\left(\beta_{1}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{2}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{3}\right) \cup \ldots$, where

- \mathcal{T} is a type for α and
- $\mathcal{L}(\alpha)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right\}$.

Example: $\mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(\left(x_{1} c\right)^{+}\right)=$
$\mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(x_{1} c\right) \cup \mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(x_{1} c x_{1} c\right) \cup \mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(x_{1} c x_{1} c x_{1} c\right) \cup \ldots=$

Patterns with Regular Operators

$\mathrm{PAT}_{\mathrm{ro}}:=\{\alpha \mid \alpha$ is a regular expression over $(\Sigma \cup X)\}$. Every $\alpha \in \mathrm{PAT}_{\text {ro }}$ is a pattern with regular operators.
$\mathcal{L}_{\mathcal{T}}(\alpha):=\mathcal{L}_{\mathcal{T}}\left(\beta_{1}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{2}\right) \cup \mathcal{L}_{\mathcal{T}}\left(\beta_{3}\right) \cup \ldots$, where

- \mathcal{T} is a type for α and
- $\mathcal{L}(\alpha)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right\}$.

Example: $\mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(\left(x_{1} c\right)^{+}\right)=$
$\mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(x_{1} c\right) \cup \mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(x_{1} c x_{1} c\right) \cup \mathcal{L}_{\left(\mathcal{L}\left(b^{*}\right)\right)}\left(x_{1} c x_{1} c x_{1} c\right) \cup \ldots=$ $\left\{\left(b^{n} c\right)^{m} \mid n \geq 0, m \geq 1\right\}$.

Expressive Power

Theorem $\mathcal{L}_{\left\{\Sigma^{*}\right\}}(\mathrm{PAT}) \subset \mathcal{L}_{\mathrm{REG}}(\mathrm{PAT}) \subset \mathcal{L}_{\mathrm{REG}}\left(\mathrm{PAT}_{\text {ro }}\right)$.

Iteratively Typing Patterns with Regular Operators

$$
\mathfrak{L}_{\mathrm{r}, 0}:=\mathrm{REG},
$$

Iteratively Typing Patterns with Regular Operators

$$
\begin{aligned}
& \mathfrak{L}_{\mathrm{ro}, 0}:=\mathrm{REG} \\
& \mathfrak{L}_{\mathrm{ro}, 1}:=\mathcal{L}_{\mathfrak{L}_{\mathrm{ro}, 0}}\left(\mathrm{PAT}_{\mathrm{ro}}\right)=\mathcal{L}_{\mathrm{REG}}\left(\mathrm{PAT}_{\mathrm{ro}}\right)
\end{aligned}
$$

Iteratively Typing Patterns with Regular Operators

$$
\begin{aligned}
& \mathfrak{L}_{\mathrm{ro}, 0}:=\mathrm{REG} \\
& \mathfrak{L}_{\mathrm{ro}, 1}:=\mathcal{L}_{\mathfrak{R}_{\mathrm{ro}, 0}}\left(\mathrm{PAT}_{\mathrm{ro}}\right)=\mathcal{L}_{\mathrm{REG}}\left(\mathrm{PAT}_{\mathrm{ro}}\right), \\
& \mathfrak{L}_{\mathrm{ro}, 2}:=\mathcal{L}_{\mathfrak{R}_{\mathrm{ro}}, 1}\left(\mathrm{PAT}_{\mathrm{ro}}\right),
\end{aligned}
$$

Iteratively Typing Patterns with Regular Operators

$$
\begin{aligned}
& \mathfrak{L}_{\mathrm{ro}, 0}:=\mathrm{REG} \\
& \mathfrak{L}_{\mathrm{ro}, 1}:=\mathcal{L}_{\mathfrak{L}_{\mathrm{ro}, 0}}\left(\mathrm{PAT}_{\mathrm{ro}}\right)=\mathcal{L}_{\mathrm{REG}}\left(\mathrm{PAT}_{\mathrm{ro}}\right), \\
& \mathfrak{L}_{\mathrm{ro}, 2}:=\mathcal{L}_{\mathfrak{R}_{\mathrm{ro}, 1}}\left(\mathrm{PAT}_{\mathrm{ro}}\right), \\
& \mathfrak{L}_{\mathrm{ro}, 3}:=\mathcal{L}_{\mathfrak{R}_{\mathrm{ro}, 2}}\left(\mathrm{PAT}_{\mathrm{ro}}\right),
\end{aligned}
$$

Iteratively Typing Patterns with Regular Operators

$$
\begin{aligned}
\mathfrak{L}_{\mathrm{ro}, 0} & :=\mathrm{REG}, \\
\mathfrak{L}_{\mathrm{ro}, 1} & :=\mathcal{L}_{\mathfrak{L}_{\mathrm{ro}, 0}}\left(\mathrm{PAT}_{\mathrm{ro}}\right)=\mathcal{L}_{\mathrm{REG}}\left(\mathrm{PAT}_{\mathrm{ro}}\right), \\
\mathfrak{L}_{\mathrm{ro}, 2} & :=\mathcal{L}_{\mathfrak{R}_{\mathrm{ro}, 1}}\left(\mathrm{PAT}_{\mathrm{ro}}\right) \\
\mathfrak{L}_{\mathrm{ro}, 3} & :=\mathcal{L}_{\mathfrak{L}_{\mathrm{ro}, 2}}\left(\mathrm{PAT}_{\mathrm{ro}}\right) \\
& \vdots \\
\mathfrak{L}_{\mathrm{ro}, \infty} & :=\bigcup_{i=0}^{\infty} \mathfrak{L}_{\mathrm{ro}, i} .
\end{aligned}
$$

Iteratively Typing Patterns with Regular Operators

$$
\begin{aligned}
\mathfrak{L}_{\mathrm{ro}, 0} & :=\mathrm{REG}, \\
\mathfrak{L}_{\mathrm{ro}, 1} & :=\mathcal{L}_{\mathfrak{L}_{\mathrm{r}, 0}}\left(\mathrm{PAT}_{\mathrm{ro}}\right)=\mathcal{L}_{\mathrm{REG}}\left(\mathrm{PAT}_{\mathrm{ro}}\right), \\
\mathfrak{L}_{\mathrm{ro}, 2} & :=\mathcal{L}_{\mathfrak{L}_{\mathrm{ro}, 1}}\left(\mathrm{PAT}_{\mathrm{ro}}\right) \\
\mathfrak{L}_{\mathrm{ro}, 3} & :=\mathcal{L}_{\mathfrak{L}_{\mathrm{ro}, 2}}\left(\mathrm{PAT}_{\mathrm{ro}}\right) \\
\vdots & \\
\mathfrak{L}_{\mathrm{ro}, \infty} & :=\bigcup_{i=0}^{\infty} \mathfrak{L}_{\mathrm{ro}, i} .
\end{aligned}
$$

Theorem

$$
\mathfrak{L}_{\mathrm{ro}, 0} \subset \mathfrak{L}_{\mathrm{ro}, 1} \subset \mathfrak{L}_{\mathrm{ro}, 2} \subseteq \mathfrak{L}_{\mathrm{ro}, 3} \subseteq \mathfrak{L}_{\mathrm{ro}, 4} \subseteq \ldots
$$

Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.
A pattern expression is a tuple

$$
\left(x_{1} \rightarrow r_{1}, x_{2} \rightarrow r_{2}, \ldots, x_{n} \rightarrow r_{n}\right),
$$

Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.
A pattern expression is a tuple

$$
\left(x_{1} \rightarrow r_{1}, x_{2} \rightarrow r_{2}, \ldots, x_{n} \rightarrow r_{n}\right),
$$

where

- $\operatorname{var}\left(r_{1}\right)=\emptyset$,
- $\operatorname{var}\left(r_{2}\right) \subseteq\left\{x_{1}\right\}$,
- $\operatorname{var}\left(r_{3}\right) \subseteq\left\{x_{1}, x_{2}\right\}$,
- $\operatorname{var}\left(r_{4}\right) \subseteq\left\{x_{1}, x_{2}, x_{3}\right\}$,

Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.
A pattern expression is a tuple

$$
\left(x_{1} \rightarrow r_{1}, x_{2} \rightarrow r_{2}, \ldots, x_{n} \rightarrow r_{n}\right),
$$

where

- $\operatorname{var}\left(r_{1}\right)=\emptyset$,
- $\operatorname{var}\left(r_{2}\right) \subseteq\left\{x_{1}\right\}$,
- $\operatorname{var}\left(r_{3}\right) \subseteq\left\{x_{1}, x_{2}\right\}$,
- $\operatorname{var}\left(r_{4}\right) \subseteq\left\{x_{1}, x_{2}, x_{3}\right\}$,

The set of all pattern expressions is denoted by PE.

Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.
A pattern expression is a tuple

$$
\left(x_{1} \rightarrow r_{1}, x_{2} \rightarrow r_{2}, \ldots, x_{n} \rightarrow r_{n}\right),
$$

where

- $\operatorname{var}\left(r_{1}\right)=\emptyset$,
- $\operatorname{var}\left(r_{2}\right) \subseteq\left\{x_{1}\right\}$,
- $\operatorname{var}\left(r_{3}\right) \subseteq\left\{x_{1}, x_{2}\right\}$,
- $\operatorname{var}\left(r_{4}\right) \subseteq\left\{x_{1}, x_{2}, x_{3}\right\}$,

The set of all pattern expressions is denoted by PE.
Example: $q:=\left(x_{1} \rightarrow a^{*}, x_{2} \rightarrow x_{1}(c \mid d) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)$.
Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

$$
\begin{array}{lllllll}
a^{*} & x_{1} & (c \mid d) & x_{1} & x_{1} & c & x_{2}
\end{array}
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

$$
x_{1} \subset \quad x_{2}
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

$$
x_{1} \quad c \quad x_{2}
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow a^{*}, x_{2} \rightarrow x_{1}(c \mid d) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right),
$$

$$
a^{*} \quad \text { aaa }(c \mid d) \text { aaa } \quad x_{1} c x_{2}
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow a^{*}, x_{2} \rightarrow x_{1}(c \mid d) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right),
$$

$$
a^{*} \quad \text { aaa }(c \mid d) \text { aaa } \quad x_{1} c \text { aaacaaa }
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

a* aaa (c|d) aaa
a c aaacaaa

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

$$
a^{*} \quad \text { aaa }(c \mid d) \text { aaa } \quad \text { a } c \text { aaacaaa }
$$

$\mathcal{L}_{\text {it }}(q)=\left\{\mathrm{a}^{k} \mathrm{ca}^{m} u \mathrm{a}^{m} \mid k, m \in \mathbb{N}_{0}, u \in\{\mathrm{c}, \mathrm{d}\}\right\}$ is the language generated by q with respect to iterated substitution.

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

$$
a^{*} \quad x_{1} \quad(c \mid d) \quad x_{1} \quad x_{1} \subset x_{2}
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right),
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right),
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right),
$$

$$
a^{*} \quad \text { aaa }(c \mid d) \text { aaa aaa } c x_{2}
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right),
$$

$$
a^{*} \quad \text { aaa }(c \mid d) \text { aaa } \quad \text { aaa } c \text { aadaaa }
$$

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

a* aaa (c|d) aaa

aaa c aaadaaa

Pattern Expression Languages

$$
q:=\left(x_{1} \rightarrow \mathrm{a}^{*}, x_{2} \rightarrow x_{1}(\mathrm{c} \mid \mathrm{d}) x_{1}, x_{3} \rightarrow x_{1} c x_{2}\right)
$$

a* aaa (c|d) aaa aaa c aaadaaa
$\mathcal{L}_{\text {uni }}(q)=\left\{\mathrm{a}^{m} \mathrm{ca}^{m} u \mathrm{a}^{m} \mid m \in \mathbb{N}_{0}, u \in\{\mathrm{c}, \mathrm{d}\}\right\}$ is the language generated by q with respect to uniform substitution.

Pattern Expression Languages

Proposition
 [Campeanu and Yu] For every $p \in \mathrm{PE}, \mathcal{L}_{\mathrm{it}}(p)$ is a REGEX language.

Theorem

$$
\mathfrak{L}_{\mathrm{ro}, \infty}=\mathcal{L}_{\mathrm{it}}(\mathrm{PE})
$$

Iterated vs. Uniform Substitution

Proposition

Let $p:=\left(x_{1} \rightarrow r_{1}, \ldots, x_{m} \rightarrow r_{m}\right) \in \mathrm{PE}$.

- $\mathcal{L}_{\text {uni }}(p) \subseteq \mathcal{L}_{\text {it }}(p)$,
- if, for every $i, j, 1 \leq i<j \leq m$, $\operatorname{var}\left(r_{i}\right) \cap \operatorname{var}\left(r_{j}\right)=\emptyset$, then $\mathcal{L}_{\text {it }}(p) \subseteq \mathcal{L}_{\text {uni }}(p)$.

Iterated vs. Uniform Substitution

Proposition

Let $p:=\left(x_{1} \rightarrow r_{1}, \ldots, x_{m} \rightarrow r_{m}\right) \in$ PE.

- $\mathcal{L}_{\text {uni }}(p) \subseteq \mathcal{L}_{\text {it }}(p)$,
- if, for every $i, j, 1 \leq i<j \leq m$, $\operatorname{var}\left(r_{i}\right) \cap \operatorname{var}\left(r_{j}\right)=\emptyset$, then $\mathcal{L}_{\text {it }}(p) \subseteq \mathcal{L}_{\text {uni }}(p)$.

Theorem

$\mathcal{L}_{\text {it }}(\mathrm{PE}) \subset \mathcal{L}_{\text {uni }}(\mathrm{PE})$.

Notation

A REGEX r is star-free initialised iff every referenced subexpression does not occur under a star.

Notation

A REGEX r is star-free initialised iff every referenced subexpression does not occur under a star.

- $\left(\left(_{1}(\mathrm{a} \mid \mathrm{b})^{*}\right)_{1} \mathrm{~b} \backslash 1\right)^{*} \mathrm{~b} \backslash 1$
- $\left({ }_{1}(\mathrm{a} \mid \mathrm{b})^{*}\right)_{1} \backslash 1\left({ }_{2} \mathrm{c}^{*}\right)_{2}(\mathrm{~d} \backslash 1 \backslash 2)^{*}$

PE w. r. t. uniform subst. vs. star-free initialised REGEX

Lemma

For every pattern expression p, there exists a star-free initialised REGEX r with $\mathcal{L}_{\text {uni }}(p)=\mathcal{L}(r)$.

PE w. r. t. uniform subst. vs. star-free initialised REGEX

Lemma

For every pattern expression p, there exists a star-free initialised REGEX r with $\mathcal{L}_{\text {uni }}(p)=\mathcal{L}(r)$.

Lemma

For every star-free initialised REGEX r, there exists a pattern expression p with $\mathcal{L}(r)=\mathcal{L}_{\text {uni }}(p)$.

PE w. r. t. uniform subst. vs. star-free initialised REGEX

Lemma

For every pattern expression p, there exists a star-free initialised REGEX r with $\mathcal{L}_{\text {uni }}(p)=\mathcal{L}(r)$.

Lemma

For every star-free initialised REGEX r, there exists a pattern expression p with $\mathcal{L}(r)=\mathcal{L}_{\text {uni }}(p)$.

Theorem
$\mathcal{L}\left(\right.$ REGEX $\left._{\text {sfi }}\right)=\mathcal{L}_{\text {uni }}(P E)$.
$-->$ subset \longrightarrow proper subset
REG \longleftrightarrow equality

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

---> subset \longrightarrow proper subset \longleftrightarrow equality

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

---> subset \longrightarrow proper subset \longleftrightarrow equality

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

Markus L. Schmid, Loughborough University, UK
Inside the Class of REGEX Languages

