
Inside the Class of REGEX Languages

Markus L. Schmid,
Loughborough University, UK

DLT 2012

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of
homomorphic replacement.

(1 (a | b)∗ )1c b
∗\1

{wcb
nw | w ∈ {a, b}∗, n ≥ 0}

(1 (2 a
∗ )2 b \2 )1 c\1

{anbancanban | n ≥ 0}

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of
homomorphic replacement.

(1 (a | b)∗ )1c b
∗\1

{wcb
nw | w ∈ {a, b}∗, n ≥ 0}

(1 (2 a
∗ )2 b \2 )1 c\1

{anbancanban | n ≥ 0}

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of
homomorphic replacement.

(1 (a | b)∗ )1c b
∗\1

{wcb
nw | w ∈ {a, b}∗, n ≥ 0}

(1 (2 a
∗ )2 b \2 )1 c\1

{anbancanban | n ≥ 0}

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of
homomorphic replacement.

(1 (a | b)∗ )1c b
∗\1

{wcb
nw | w ∈ {a, b}∗, n ≥ 0}

(1 (2 a
∗ )2 b \2 )1 c\1

{anbancanban | n ≥ 0}

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of
homomorphic replacement.

(1 (a | b)∗ )1c b
∗\1

{wcb
nw | w ∈ {a, b}∗, n ≥ 0}

(1 (2 a
∗ )2 b \2 )1 c\1

{anbancanban | n ≥ 0}

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of
homomorphic replacement.

(1 (a | b)∗ )1c b
∗\1

{wcb
nw | w ∈ {a, b}∗, n ≥ 0}

(1 (2 a
∗ )2 b \2 )1 c\1

{anbancanban | n ≥ 0}

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of
homomorphic replacement.

(1 (a | b)∗ )1c b
∗\1

{wcb
nw | w ∈ {a, b}∗, n ≥ 0}

(1 (2 a
∗ )2 b \2 )1 c\1

{anbancanban | n ≥ 0}

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Practical Relevance of REGEX

REGEX are intensely applied in practice...

Traditional and Modern grep

vi

Modern sed

GNU Emacs

Perl

Python

Java

.Net

...even though their membership problem is NP-complete.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Practical Relevance of REGEX

REGEX are intensely applied in practice...

Traditional and Modern grep

vi

Modern sed

GNU Emacs

Perl

Python

Java

.Net

...even though their membership problem is NP-complete.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



An Easy Example

(1 (a | b)∗c∗ )1 (2 (b | d) )2 (\1 | \2)

() ()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



An Easy Example

(1 (a | b)∗c∗ )1 (2 (b | d) )2 ( \1 | \2 )

() ()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



An Easy Example

(1 (a | b)∗c∗ )1 (2 (b | d) )2 ( \1 | \2 )

x1 x2 ( x1 | x2 )

() ()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



An Easy Example

(1 (a | b)∗c∗ )1 (2 (b | d) )2 ( \1 | \2 )

x1 x2 ( x1 | x2 )

L((a | b)∗c∗) L(b | d)

() ()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A More Complex Example

(1 (2 (3 (a | b)∗ )3 c\3 )2 d ( \2 c)∗ )1 e \1

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A More Complex Example

(1 (2 (3 (a | b)∗ )3 c\3 )2 d ( \2 c)∗ )1 e \1

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A More Complex Example

(1 (2 (3 (a | b)∗ )3 c\3 )2 d ( \2 c)∗ )1 e \1

x1

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A More Complex Example

(1 (2 (3 (a | b)∗ )3 c\3 )2 d ( \2 c)∗ )1 e \1

x1

x2d (x2c)∗

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A More Complex Example

(1 (2 (3 (a | b)∗ )3 c\3 )2 d ( \2 c)∗ )1 e \1

x1

x2d (x2c)∗

x3 c x3

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A More Complex Example

(1 (2 (3 (a | b)∗ )3 c\3 )2 d ( \2 c)∗ )1 e \1

x1

x2d (x2c)∗

x3 c x3

L((a | b)∗)

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A Fairly Involved Example

(1 a
∗ )1 c (2 \1 (b | c) \1 )2 c (3 (\1 | d)∗ \2 )3 \3

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A Fairly Involved Example

(1 a
∗ )1 c (2 \1 (b | c) \1 )2 c (3 (\1 | d)∗ \2 )3 \3

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A Fairly Involved Example

(1 a
∗ )1 c (2 \1 (b | c) \1 )2 c (3 (\1 | d)∗ \2 )3 \3

x1 x2 x3

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A Fairly Involved Example

(1 a
∗ )1 c (2 \1 (b | c) \1 )2 c (3 (\1 | d)∗ \2 )3 \3

x1 x2 x3

L(a∗) x1(b | c)x1 (x1| d)∗ x2

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A Fairly Involved Example

(1 a
∗ )1 c (2 \1 (b | c) \1 )2 c (3 (\1 | d)∗ \2 )3 \3

x1 x2 x3

L(a∗) x1(b | c)x1 (x1| d)∗ x2

L(a∗) L(a∗) x1(b | c)x1

()

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



A Fairly Involved Example

(1 a
∗ )1 c (2 \1 (b | c) \1 )2 c (3 (\1 | d)∗ \2 )3 \3

x1 x2 x3

L(a∗) x1(b | c)x1 (x1| d)∗ x2

L(a∗) L(a∗) x1(b | c)x1

L(a∗)

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Aim of This Paper

Regular expressions on the one hand and homomorphic
replacement on the other a well understood concepts in
language theory.

In REGEX, these two concepts seem inherently entangled and
it seems di�culty to treat them separately.

Our approach: Study REGEX by investigating alternative ways
to combine regular expressions and homomorphic
replacement...

...without exceeding the expressive power of REGEX languages.

Informally: Take regular expressions, take some mechanism of
homomorphic replacement, combine them and see how much
of the class of REGEX languages we actually get.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Aim of This Paper

Regular expressions on the one hand and homomorphic
replacement on the other a well understood concepts in
language theory.

In REGEX, these two concepts seem inherently entangled and
it seems di�culty to treat them separately.

Our approach: Study REGEX by investigating alternative ways
to combine regular expressions and homomorphic
replacement...

...without exceeding the expressive power of REGEX languages.

Informally: Take regular expressions, take some mechanism of
homomorphic replacement, combine them and see how much
of the class of REGEX languages we actually get.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Aim of This Paper

Regular expressions on the one hand and homomorphic
replacement on the other a well understood concepts in
language theory.

In REGEX, these two concepts seem inherently entangled and
it seems di�culty to treat them separately.

Our approach: Study REGEX by investigating alternative ways
to combine regular expressions and homomorphic
replacement...

...without exceeding the expressive power of REGEX languages.

Informally: Take regular expressions, take some mechanism of
homomorphic replacement, combine them and see how much
of the class of REGEX languages we actually get.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Aim of This Paper

Regular expressions on the one hand and homomorphic
replacement on the other a well understood concepts in
language theory.

In REGEX, these two concepts seem inherently entangled and
it seems di�culty to treat them separately.

Our approach: Study REGEX by investigating alternative ways
to combine regular expressions and homomorphic
replacement...

...without exceeding the expressive power of REGEX languages.

Informally: Take regular expressions, take some mechanism of
homomorphic replacement, combine them and see how much
of the class of REGEX languages we actually get.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Aim of This Paper

Regular expressions on the one hand and homomorphic
replacement on the other a well understood concepts in
language theory.

In REGEX, these two concepts seem inherently entangled and
it seems di�culty to treat them separately.

Our approach: Study REGEX by investigating alternative ways
to combine regular expressions and homomorphic
replacement...

...without exceeding the expressive power of REGEX languages.

Informally: Take regular expressions, take some mechanism of
homomorphic replacement, combine them and see how much
of the class of REGEX languages we actually get.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Pattern: A word containing terminals (e. g. Σ = {a, b, c}) and
variables (X := {x1, x2, x3, . . .}).

α = x1 x2 b x1 x2 x1

LΣ(α) = {w | w = u v b u v u, u, v ∈ Σ∗}.

A type for α: T := (Tx1 ,Tx2)

LT (α) = {w | w = u v b u v u, u ∈ Tx1 , v ∈ Tx2}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Pattern: A word containing terminals (e. g. Σ = {a, b, c}) and
variables (X := {x1, x2, x3, . . .}).

α = x1 x2 b x1 x2 x1

LΣ(α) = {w | w = u v b u v u, u, v ∈ Σ∗}.

A type for α: T := (Tx1 ,Tx2)

LT (α) = {w | w = u v b u v u, u ∈ Tx1 , v ∈ Tx2}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Pattern: A word containing terminals (e. g. Σ = {a, b, c}) and
variables (X := {x1, x2, x3, . . .}).

α = x1 x2 b x1 x2 x1

LΣ(α) = {w | w = u v b u v u, u, v ∈ Σ∗}.

A type for α: T := (Tx1 ,Tx2)

LT (α) = {w | w = u v b u v u, u ∈ Tx1 , v ∈ Tx2}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Pattern: A word containing terminals (e. g. Σ = {a, b, c}) and
variables (X := {x1, x2, x3, . . .}).

α = x1 x2 b x1 x2 x1

LΣ(α) = {w | w = u v b u v u, u, v ∈ Σ∗}.

A type for α: T := (Tx1 ,Tx2)

LT (α) = {w | w = u v b u v u, u ∈ Tx1 , v ∈ Tx2}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Pattern: A word containing terminals (e. g. Σ = {a, b, c}) and
variables (X := {x1, x2, x3, . . .}).

α = x1 x2 b x1 x2 x1

LΣ(α) = {w | w = u v b u v u, u, v ∈ Σ∗}.

A type for α: T := (Tx1 ,Tx2)

LT (α) = {w | w = u v b u v u, u ∈ Tx1 , v ∈ Tx2}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

PAT := (Σ ∪ X )+.

var(α): Set of variables occurring in α.
E. g. var(x1abx2bax1x2cx3) = {x1, x2, x3}.

For any language class L,
LL(PAT) := {LT (α) | α ∈ PAT, T ∈ L| var(α)|}.

Proposition

LREG(PAT) ⊆ L(REGEX).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

PAT := (Σ ∪ X )+.

var(α): Set of variables occurring in α.
E. g. var(x1abx2bax1x2cx3) = {x1, x2, x3}.

For any language class L,
LL(PAT) := {LT (α) | α ∈ PAT, T ∈ L| var(α)|}.

Proposition

LREG(PAT) ⊆ L(REGEX).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

PAT := (Σ ∪ X )+.

var(α): Set of variables occurring in α.
E. g. var(x1abx2bax1x2cx3) = {x1, x2, x3}.

For any language class L,
LL(PAT) := {LT (α) | α ∈ PAT, T ∈ L| var(α)|}.

Proposition

LREG(PAT) ⊆ L(REGEX).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

PAT := (Σ ∪ X )+.

var(α): Set of variables occurring in α.
E. g. var(x1abx2bax1x2cx3) = {x1, x2, x3}.

For any language class L,
LL(PAT) := {LT (α) | α ∈ PAT, T ∈ L| var(α)|}.

Proposition

LREG(PAT) ⊆ L(REGEX).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Patterns with Regular Operators

PATro := {α | α is a regular expression over (Σ ∪ X )}. Every
α ∈ PATro is a pattern with regular operators.

LT (α) := LT (β1) ∪ LT (β2) ∪ LT (β3) ∪ . . ., where

T is a type for α and

L(α) = {β1, β2, β3, . . .}.

Example: L(L(b∗))((x1c)+) =
L(L(b∗))(x1c) ∪ L(L(b∗))(x1cx1c) ∪ L(L(b∗))(x1cx1cx1c) ∪ . . . =
{(bnc)m | n ≥ 0,m ≥ 1}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Patterns with Regular Operators

PATro := {α | α is a regular expression over (Σ ∪ X )}. Every
α ∈ PATro is a pattern with regular operators.

LT (α) := LT (β1) ∪ LT (β2) ∪ LT (β3) ∪ . . ., where

T is a type for α and

L(α) = {β1, β2, β3, . . .}.

Example: L(L(b∗))((x1c)+) =
L(L(b∗))(x1c) ∪ L(L(b∗))(x1cx1c) ∪ L(L(b∗))(x1cx1cx1c) ∪ . . . =
{(bnc)m | n ≥ 0,m ≥ 1}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Patterns with Regular Operators

PATro := {α | α is a regular expression over (Σ ∪ X )}. Every
α ∈ PATro is a pattern with regular operators.

LT (α) := LT (β1) ∪ LT (β2) ∪ LT (β3) ∪ . . ., where
T is a type for α and

L(α) = {β1, β2, β3, . . .}.

Example: L(L(b∗))((x1c)+) =
L(L(b∗))(x1c) ∪ L(L(b∗))(x1cx1c) ∪ L(L(b∗))(x1cx1cx1c) ∪ . . . =
{(bnc)m | n ≥ 0,m ≥ 1}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Patterns with Regular Operators

PATro := {α | α is a regular expression over (Σ ∪ X )}. Every
α ∈ PATro is a pattern with regular operators.

LT (α) := LT (β1) ∪ LT (β2) ∪ LT (β3) ∪ . . ., where
T is a type for α and

L(α) = {β1, β2, β3, . . .}.

Example: L(L(b∗))((x1c)+) =
L(L(b∗))(x1c) ∪ L(L(b∗))(x1cx1c) ∪ L(L(b∗))(x1cx1cx1c) ∪ . . . =
{(bnc)m | n ≥ 0,m ≥ 1}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Patterns with Regular Operators

PATro := {α | α is a regular expression over (Σ ∪ X )}. Every
α ∈ PATro is a pattern with regular operators.

LT (α) := LT (β1) ∪ LT (β2) ∪ LT (β3) ∪ . . ., where
T is a type for α and

L(α) = {β1, β2, β3, . . .}.

Example: L(L(b∗))((x1c)+) =

L(L(b∗))(x1c) ∪ L(L(b∗))(x1cx1c) ∪ L(L(b∗))(x1cx1cx1c) ∪ . . . =
{(bnc)m | n ≥ 0,m ≥ 1}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Patterns with Regular Operators

PATro := {α | α is a regular expression over (Σ ∪ X )}. Every
α ∈ PATro is a pattern with regular operators.

LT (α) := LT (β1) ∪ LT (β2) ∪ LT (β3) ∪ . . ., where
T is a type for α and

L(α) = {β1, β2, β3, . . .}.

Example: L(L(b∗))((x1c)+) =
L(L(b∗))(x1c) ∪ L(L(b∗))(x1cx1c) ∪ L(L(b∗))(x1cx1cx1c) ∪ . . . =

{(bnc)m | n ≥ 0,m ≥ 1}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Patterns with Regular Operators

PATro := {α | α is a regular expression over (Σ ∪ X )}. Every
α ∈ PATro is a pattern with regular operators.

LT (α) := LT (β1) ∪ LT (β2) ∪ LT (β3) ∪ . . ., where
T is a type for α and

L(α) = {β1, β2, β3, . . .}.

Example: L(L(b∗))((x1c)+) =
L(L(b∗))(x1c) ∪ L(L(b∗))(x1cx1c) ∪ L(L(b∗))(x1cx1cx1c) ∪ . . . =
{(bnc)m | n ≥ 0,m ≥ 1}.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Expressive Power

Theorem

L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ LREG(PATro).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Iteratively Typing Patterns with Regular Operators

Lro,0 := REG,

Lro,1 := LLro,0(PATro) = LREG(PATro),

Lro,2 := LLro,1(PATro),

Lro,3 := LLro,2(PATro),
...

Lro,∞ :=
⋃∞

i=0
Lro,i .

Theorem

Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Iteratively Typing Patterns with Regular Operators

Lro,0 := REG,

Lro,1 := LLro,0(PATro) = LREG(PATro),

Lro,2 := LLro,1(PATro),

Lro,3 := LLro,2(PATro),
...

Lro,∞ :=
⋃∞

i=0
Lro,i .

Theorem

Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Iteratively Typing Patterns with Regular Operators

Lro,0 := REG,

Lro,1 := LLro,0(PATro) = LREG(PATro),

Lro,2 := LLro,1(PATro),

Lro,3 := LLro,2(PATro),
...

Lro,∞ :=
⋃∞

i=0
Lro,i .

Theorem

Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Iteratively Typing Patterns with Regular Operators

Lro,0 := REG,

Lro,1 := LLro,0(PATro) = LREG(PATro),

Lro,2 := LLro,1(PATro),

Lro,3 := LLro,2(PATro),
...

Lro,∞ :=
⋃∞

i=0
Lro,i .

Theorem

Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Iteratively Typing Patterns with Regular Operators

Lro,0 := REG,

Lro,1 := LLro,0(PATro) = LREG(PATro),

Lro,2 := LLro,1(PATro),

Lro,3 := LLro,2(PATro),
...

Lro,∞ :=
⋃∞

i=0
Lro,i .

Theorem

Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Iteratively Typing Patterns with Regular Operators

Lro,0 := REG,

Lro,1 := LLro,0(PATro) = LREG(PATro),

Lro,2 := LLro,1(PATro),

Lro,3 := LLro,2(PATro),
...

Lro,∞ :=
⋃∞

i=0
Lro,i .

Theorem

Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.

A pattern expression is a tuple

(x1 → r1, x2 → r2, . . . , xn → rn) ,

where

var(r1) = ∅,
var(r2) ⊆ {x1},
var(r3) ⊆ {x1, x2},
var(r4) ⊆ {x1, x2, x3},
...

The set of all pattern expressions is denoted by PE.
Example: q := (x1 → a

∗, x2 → x1(c | d)x1, x3 → x1cx2).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.

A pattern expression is a tuple

(x1 → r1, x2 → r2, . . . , xn → rn) ,

where

var(r1) = ∅,
var(r2) ⊆ {x1},
var(r3) ⊆ {x1, x2},
var(r4) ⊆ {x1, x2, x3},
...

The set of all pattern expressions is denoted by PE.
Example: q := (x1 → a

∗, x2 → x1(c | d)x1, x3 → x1cx2).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.

A pattern expression is a tuple

(x1 → r1, x2 → r2, . . . , xn → rn) ,

where

var(r1) = ∅,
var(r2) ⊆ {x1},
var(r3) ⊆ {x1, x2},
var(r4) ⊆ {x1, x2, x3},
...

The set of all pattern expressions is denoted by PE.

Example: q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.

A pattern expression is a tuple

(x1 → r1, x2 → r2, . . . , xn → rn) ,

where

var(r1) = ∅,
var(r2) ⊆ {x1},
var(r3) ⊆ {x1, x2},
var(r4) ⊆ {x1, x2, x3},
...

The set of all pattern expressions is denoted by PE.
Example: q := (x1 → a

∗, x2 → x1(c | d)x1, x3 → x1cx2).
Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ x1 (c | d) x1 x1 c x2

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ x1 (c | d) x1 x1 c x2

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ x1 (c | d) x1 x1 c x2

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) x1 c x2aaa aaa

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) x1 c x2aaa aaa

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) x1 caaa aaa aaacaaa

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) x1 caaa aaa aaacaaa

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) caaa aaa a aaacaaa

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) caaa aaa a aaacaaa

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) caaa aaa a aaacaaa

Lit(q) = {akcamuam | k ,m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to iterated substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ x1 (c | d) x1 x1 c x2

Luni(q) = {amcamuam | m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to uniform substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ x1 (c | d) x1 x1 c x2

Luni(q) = {amcamuam | m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to uniform substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ x1 (c | d) x1 x1 c x2

Luni(q) = {amcamuam | m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to uniform substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) c x2aaa aaa aaa

Luni(q) = {amcamuam | m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to uniform substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) c x2aaa aaa aaa

Luni(q) = {amcamuam | m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to uniform substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) caaa aaa aaa aaadaaa

Luni(q) = {amcamuam | m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to uniform substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) caaa aaa aaa aaadaaa

Luni(q) = {amcamuam | m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to uniform substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

q := (x1 → a
∗, x2 → x1(c | d)x1, x3 → x1cx2),

a
∗ (c | d) caaa aaa aaa aaadaaa

Luni(q) = {amcamuam | m ∈ N0, u ∈ {c, d}} is the language

generated by q with respect to uniform substitution.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Pattern Expression Languages

Proposition

[Campeanu and Yu] For every p ∈ PE, Lit(p) is a REGEX language.

Theorem

Lro,∞ = Lit(PE).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Iterated vs. Uniform Substitution

Proposition

Let p := (x1 → r1, . . . , xm → rm) ∈ PE.

Luni(p) ⊆ Lit(p),

if, for every i , j , 1 ≤ i < j ≤ m, var(ri ) ∩ var(rj) = ∅, then
Lit(p) ⊆ Luni(p).

Theorem

Lit(PE) ⊂ Luni(PE).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Iterated vs. Uniform Substitution

Proposition

Let p := (x1 → r1, . . . , xm → rm) ∈ PE.

Luni(p) ⊆ Lit(p),

if, for every i , j , 1 ≤ i < j ≤ m, var(ri ) ∩ var(rj) = ∅, then
Lit(p) ⊆ Luni(p).

Theorem

Lit(PE) ⊂ Luni(PE).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Notation

A REGEX r is star-free initialised i� every referenced subexpression
does not occur under a star.

((1(a | b)∗)1b\1)∗b\1
(1(a | b)∗)1\1(2c

∗)2(d\1\2)∗

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Notation

A REGEX r is star-free initialised i� every referenced subexpression
does not occur under a star.

((1(a | b)∗)1b\1)∗b\1
(1(a | b)∗)1\1(2c

∗)2(d\1\2)∗

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



PE w. r. t. uniform subst. vs. star-free initialised REGEX

Lemma

For every pattern expression p, there exists a star-free initialised

REGEX r with Luni(p) = L(r).

Lemma

For every star-free initialised REGEX r, there exists a pattern

expression p with L(r) = Luni(p).

Theorem

L(REGEXs�) = Luni(PE).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



PE w. r. t. uniform subst. vs. star-free initialised REGEX

Lemma

For every pattern expression p, there exists a star-free initialised

REGEX r with Luni(p) = L(r).

Lemma

For every star-free initialised REGEX r, there exists a pattern

expression p with L(r) = Luni(p).

Theorem

L(REGEXs�) = Luni(PE).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



PE w. r. t. uniform subst. vs. star-free initialised REGEX

Lemma

For every pattern expression p, there exists a star-free initialised

REGEX r with Luni(p) = L(r).

Lemma

For every star-free initialised REGEX r, there exists a pattern

expression p with L(r) = Luni(p).

Theorem

L(REGEXs�) = Luni(PE).

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



L{Σ∗}(PAT) REG

Luni(PE) L(REGEXs�) L(REGEX)

Lit(PE) H∗(REG,REG)Lro,∞

Lro,1 Lro,2

Lro,3

...

LREG(PAT)

subset
proper subset

equality

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



LREG(PAT)

L{Σ∗}(PAT) REG

Luni(PE) L(REGEXs�) L(REGEX)

Lit(PE) H∗(REG,REG)Lro,∞

Lro,1 Lro,2

Lro,3

...

subset
proper subset

equality

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Lro,∞

Lro,1 Lro,2

Lro,3

...

LREG(PAT)

L{Σ∗}(PAT) REG

Luni(PE) L(REGEXs�) L(REGEX)

Lit(PE) H∗(REG,REG)

subset
proper subset

equality

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Lit(PE) Lro,∞

Lro,1 Lro,2

Lro,3

...

LREG(PAT)

L{Σ∗}(PAT) REG

Luni(PE) L(REGEXs�) L(REGEX)

H∗(REG,REG)

subset
proper subset

equality

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Lit(PE) H∗(REG,REG)Lro,∞

Lro,1 Lro,2

Lro,3

...

LREG(PAT)

L{Σ∗}(PAT) REG

Luni(PE) L(REGEXs�) L(REGEX)

subset
proper subset

equality

Albert, Wegner, 1981

Bordihn et al., 2010

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Luni(PE)

Lit(PE) H∗(REG,REG)Lro,∞

Lro,1 Lro,2

Lro,3

...

LREG(PAT)

L{Σ∗}(PAT) REG

L(REGEXs�) L(REGEX)

subset
proper subset

equality

Albert, Wegner, 1981

Bordihn et al., 2010

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Luni(PE) L(REGEXs�)

Lit(PE) H∗(REG,REG)Lro,∞

Lro,1 Lro,2

Lro,3

...

LREG(PAT)

L{Σ∗}(PAT) REG

L(REGEX)

subset
proper subset

equality

Albert, Wegner, 1981

Bordihn et al., 2010

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Luni(PE) L(REGEXs�) L(REGEX)

Lit(PE) H∗(REG,REG)Lro,∞

Lro,1 Lro,2

Lro,3

...

LREG(PAT)

L{Σ∗}(PAT) REG

subset
proper subset

equality

Albert, Wegner, 1981

Bordihn et al., 2010

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages


	Introduction
	Patterns with Regular Operators and Types
	Pattern Expressions
	`39`42`"613A``45`47`"603AREGEX

