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Extended Regular Expressions with Backreferences (REGEX)

REGEX are a combination of regular expressions and the concept of
homomorphic replacement.
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Practical Relevance of REGEX

REGEX are intensely applied in practice...

Traditional and Modern grep

vi

Modern sed

GNU Emacs

Perl

Python

Java

.Net

...even though their membership problem is NP-complete.
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A More Complex Example
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A Fairly Involved Example

(1 a
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Aim of This Paper

Regular expressions on the one hand and homomorphic
replacement on the other a well understood concepts in
language theory.

In REGEX, these two concepts seem inherently entangled and
it seems di�culty to treat them separately.

Our approach: Study REGEX by investigating alternative ways
to combine regular expressions and homomorphic
replacement...

...without exceeding the expressive power of REGEX languages.

Informally: Take regular expressions, take some mechanism of
homomorphic replacement, combine them and see how much
of the class of REGEX languages we actually get.
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(Typed) Pattern languages

Pattern: A word containing terminals (e. g. Σ = {a, b, c}) and
variables (X := {x1, x2, x3, . . .}).

α = x1 x2 b x1 x2 x1

LΣ(α) = {w | w = u v b u v u, u, v ∈ Σ∗}.

A type for α: T := (Tx1 ,Tx2)

LT (α) = {w | w = u v b u v u, u ∈ Tx1 , v ∈ Tx2}.
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(Typed) Pattern languages

PAT := (Σ ∪ X )+.

var(α): Set of variables occurring in α.
E. g. var(x1abx2bax1x2cx3) = {x1, x2, x3}.

For any language class L,
LL(PAT) := {LT (α) | α ∈ PAT, T ∈ L| var(α)|}.

Proposition

LREG(PAT) ⊆ L(REGEX).
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(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



(Typed) Pattern languages

Idea:

L1 := LREG(PAT),

L2 := LL1(PAT),

L3 := LL2(PAT),
...

Proposition

For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

Hence, the aspect of regular expressions cannot be limited to the
type languages.

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Patterns with Regular Operators

PATro := {α | α is a regular expression over (Σ ∪ X )}. Every
α ∈ PATro is a pattern with regular operators.

LT (α) := LT (β1) ∪ LT (β2) ∪ LT (β3) ∪ . . ., where

T is a type for α and

L(α) = {β1, β2, β3, . . .}.

Example: L(L(b∗))((x1c)+) =
L(L(b∗))(x1c) ∪ L(L(b∗))(x1cx1c) ∪ L(L(b∗))(x1cx1cx1c) ∪ . . . =
{(bnc)m | n ≥ 0,m ≥ 1}.
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Expressive Power

Theorem

L{Σ∗}(PAT) ⊂ LREG(PAT) ⊂ LREG(PATro).
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Iteratively Typing Patterns with Regular Operators

Lro,0 := REG,

Lro,1 := LLro,0(PATro) = LREG(PATro),

Lro,2 := LLro,1(PATro),

Lro,3 := LLro,2(PATro),
...

Lro,∞ :=
⋃∞

i=0
Lro,i .

Theorem

Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆ . . . .
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Pattern Expressions

Introduced by Câmpeanu and Yu, 2004.

A pattern expression is a tuple

(x1 → r1, x2 → r2, . . . , xn → rn) ,

where

var(r1) = ∅,
var(r2) ⊆ {x1},
var(r3) ⊆ {x1, x2},
var(r4) ⊆ {x1, x2, x3},
...

The set of all pattern expressions is denoted by PE.
Example: q := (x1 → a

∗, x2 → x1(c | d)x1, x3 → x1cx2).
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Pattern Expression Languages

Proposition

[Campeanu and Yu] For every p ∈ PE, Lit(p) is a REGEX language.

Theorem

Lro,∞ = Lit(PE).
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Iterated vs. Uniform Substitution

Proposition

Let p := (x1 → r1, . . . , xm → rm) ∈ PE.

Luni(p) ⊆ Lit(p),

if, for every i , j , 1 ≤ i < j ≤ m, var(ri ) ∩ var(rj) = ∅, then
Lit(p) ⊆ Luni(p).

Theorem

Lit(PE) ⊂ Luni(PE).
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Notation

A REGEX r is star-free initialised i� every referenced subexpression
does not occur under a star.

((1(a | b)∗)1b\1)∗b\1
(1(a | b)∗)1\1(2c

∗)2(d\1\2)∗

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



Notation

A REGEX r is star-free initialised i� every referenced subexpression
does not occur under a star.

((1(a | b)∗)1b\1)∗b\1
(1(a | b)∗)1\1(2c

∗)2(d\1\2)∗

Markus L. Schmid, Loughborough University, UK

Inside the Class of REGEX Languages



PE w. r. t. uniform subst. vs. star-free initialised REGEX

Lemma

For every pattern expression p, there exists a star-free initialised

REGEX r with Luni(p) = L(r).

Lemma

For every star-free initialised REGEX r, there exists a pattern

expression p with L(r) = Luni(p).

Theorem

L(REGEXs�) = Luni(PE).
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L{Σ∗}(PAT) REG

Luni(PE) L(REGEXs�) L(REGEX)

Lit(PE) H∗(REG,REG)Lro,∞

Lro,1 Lro,2

Lro,3

...

LREG(PAT)

subset
proper subset

equality
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