Finding Shuffle Words that Represent Optimal Scheduling of Shared Memory Access

Daniel Reidenbach, **Markus L. Schmid**, Loughborough University, UK

LATA 2011

- Extended regular expressions (and pattern languages (introduced by Angluin in 1980))
- NP-complete membership problem
- Nontrivial subclasses with polynomial membership problem
- Automata as general algorithmic frameworks

$$x_1\cdot x_2\cdot x_2\cdot x_1\cdot x_3\cdot x_3\cdot x_4\cdot x_4\cdot x_3\cdot x_4\cdot x_1\cdot x_2$$

$$x_1\cdot x_2\cdot x_2\cdot x_1\cdot x_3\cdot x_3\cdot x_4\cdot x_4\cdot x_3\cdot x_4\cdot x_1\cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

2 1 2 1 4 3 4

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

1 2 2 1 2 1 3 3 4 4

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

1 2 2 1 3 3 4

2 1 1 2 2 1 1 2 2 2 1 4 3 1 3 3 2 1 3 4 4 4 3 4

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

2 1 1 2 2 1 1 2 2 2 1 4 3 1 3 3 2 1 3 4 4 4 3 4 2 1 1 2 2 1 1 2 2 2 1 1 2 1 4 3 3 3 3 4 4 4 3 4

Motivation

$$x_1 \cdot x_2 \cdot x_2 \cdot x_1 \cdot x_3 \cdot x_3 \cdot x_4 \cdot x_4 \cdot x_3 \cdot x_4 \cdot x_1 \cdot x_2$$

2 1 1 2 2 1 1 2 2 2 1 4 3 1 3 3 2 1 3 4 4 4 3 4 2 1 1 2 2 1 1 2 2 2 1 1 2 1 4 3 3 3 3 3 4 4 4 3 4

Process 1: a b a c b

Memory:

Process 1: a b a c b

Memory: a b

Process 1: a b a c b c

Memory: c b

Process 1: a b a c b

Process 2: a b c

Memory:

Process 1: a b a c b c

Process 2: a b c

Memory: a b

Process 1:	a	b	a	С	b	
------------	---	---	---	---	---	--

Process 2: a b c

Memory:

Process 1: a b a c b c

Process 2: a b c

Memory: a b

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

```
w_1 :=  a b a c b c a b c w_2 :=  a b a a b c b c c
```


- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

```
w_1 := \begin{bmatrix} a & b & a & c & b & c & a \end{bmatrix} b c
w_2 := \begin{bmatrix} a & b & a & a & b & c & b & c & c \end{bmatrix} c
```

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

$$w_1 := \begin{bmatrix} a & b & a & c & b & c & a & b \end{bmatrix}$$
 c
 $w_2 := \begin{bmatrix} a & b & a & a & b & c & b & c & c \end{bmatrix}$

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

- The *scope* of symbol a coincides with the scope of symbol b in $w \in \Sigma^*$ iff $w = \cdots a \cdots b \cdots a \cdots$ or $w = \cdots b \cdots a \cdots b \cdots$.
- Let $w \in \Sigma^*$. scd(w) denotes the maximum number of symbols in w, the scopes of which are pairwise coinciding.

Generalised Problem on Shuffle Words

$SWminSCD_{\Sigma}$

INPUT: $(w_1, \ldots, w_k) \in (\Sigma^+)^k$, for some $k \in \mathbb{N}$. OUTPUT: $w \in w_1 \sqcup \ldots \sqcup w_k$ such that there exists no $w' \in w_1 \sqcup \ldots \sqcup w_k$ with $\operatorname{scd}(w') < \operatorname{scd}(w)$.

 $w_1 \sqcup w_2$ denotes the *shuffle* of $w_1, w_2 \in \Sigma^*$.

Naive approach to $SWminSCD_{\Sigma}$

Let $w_1, w_2, \ldots, w_k \in \Sigma^*$, where $n := |w_1 \cdot w_2 \cdot \ldots \cdot w_k|$.

$$|w_1 \sqcup w_2 \sqcup \ldots \sqcup w_k| \le \binom{n}{|w_1|,\ldots,|w_k|} = \frac{n!}{|w_1|! \times \ldots \times |w_k|!}$$
.

Computing Shuffle Words Step by Step

Let $w_1, w_2, \ldots, w_k \in \Sigma^*$ be an input SWminSCD $_{\Sigma}$.

- $u_1 := \mathsf{SWminSCD}_{\Sigma}(w_1, w_2),$
- $u_2 := \mathsf{SWminSCD}_{\Sigma}(u_1, w_3),$
- $u_3 := \mathsf{SWminSCD}_{\Sigma}(u_2, w_4),$
- . . .

Computing Shuffle Words Step by Step

Let $w_1 := aa$, $w_2 := bb$ and $w_3 := ba$.

- $aabb \in w_1 \sqcup w_2$ is optimal.
- For every $u \in aabb \sqcup w_3$, scd(u) = 1.
- bbbaaa $\in w_1 \sqcup w_2 \sqcup w_3$ with scd(bbbaaa) = 0.

Main Result

SWminSCD_{Σ} on input $(w_1, w_2, ..., w_k)$ can be solved in time $O(|w_1 \cdot w_2 \cdot ... \cdot w_k| \times k^{|\Sigma|})$.

The idea of the algorithm:	
	и
	v
	W

a	и
	V
	W

The idea of the algorithm:

u

v

a

The idea of the algorithm:

	u_1	и
V ₁		Ιν
		, <i>v</i>
W_1		И

a

The idea of the algorithm:

					ι
V ₁				_	١.
- 1					
w_1					V

a *u*₁

 u_1

	и
	<i>v</i>
	\neg w
-	

The idea of the algorithm:

 $a u_1 v_1 w_1$

 u_1

 u_1

The idea of the algorithm:

 v_1

The idea of the algorithm:

 a
 u_1 v_1 w_1 b
 u_2 v_2 w_2 c
 u_3 v_3

End

Thank you for your attention.