
Noname manuscript No.
(will be inserted by the editor)

Consensus Strings with Small Maximum Distance
and Small Distance Sum

Laurent Bulteau · Markus L. Schmid

Received: date / Accepted: date

Abstract The parameterised complexity of various consensus string problems
(Closest String, Closest Substring, Closest String with Outliers)
is investigated in a more general setting, i. e., with a bound on the maximum
Hamming distance and a bound on the sum of Hamming distances between
solution and input strings. We completely settle the parameterised complexity
of these generalised variants of Closest String and Closest Substring,
and partly for Closest String with Outliers; in addition, we answer some
open questions from the literature regarding the classical problem variants with
only one distance bound. Finally, we investigate the question of polynomial
kernels and respective lower bounds.

Keywords Consensus String Problems · Closest String · Closest Substring ·
Parameterised Complexity · Kernelisation

1 Introduction

Consensus string problems have the following general form: given input strings
S = {s1, . . . , sk} and a distance bound d, find a string s with distance at most
d from the input strings. With the Hamming distance as the central distance
measure for strings, there are two obvious types of distance between a single
string and a set S of strings: the maximum distance between s and any string
from S (called radius) and the sum of all distances between s and strings from

Laurent Bulteau
Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
F-77454, Marne-la-Vallée, France
E-mail: laurent.bulteau@u-pem.fr

Markus L. Schmid
Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier,
54286 Trier, Germany
E-mail: mlschmid@mlschmid.de

2 Laurent Bulteau, Markus L. Schmid

S (called distance sum). The most basic consensus string problem is Clos-
est String, where we get a set S of k length-` strings and a bound d, and
ask whether there exists a length-` solution string s with radius at most d.
This problem is NP-complete (see [17]), but fixed-parameter tractable for many
variants (see [18]), including the parameterisation by d, which in biological ap-
plications can often be assumed to be small (see [13,19]). A classical extension
is Closest Substring, where the strings of S have length at most `, the solu-
tion string must have a given length m and the radius bound d is with respect
to some length-m substrings of the input strings. A parameterised complexity
analysis (see [14,15,22]) has shown Closest Substring to be harder than
Closest String. If we bound the distance sum instead of the radius, then
Closest String collapses to a trivial problem, while Closest Substring,
which is then called Consensus Patterns, remains NP-complete. Closest
String with Outliers is a recent extension, which is defined like Closest
String, but with the possibility to ignore a given number of t input strings
(see [6]).

The main motivation for consensus string problems comes from the im-
portant task of finding similar regions in DNA or other protein sequences,
which arises in many different contexts of computational biology, e. g., univer-
sal PCR primer design [10,19,21,25], genetic probe design [19], antisense drug
design [19,9], finding transcription factor binding sites in genomic data [27], de-
termining an unbiased consensus of a protein family [3], and motif-recognition [19,
23,24]. The consensus string problems are a formalisation of these computa-
tional tasks and most variants of them are NP-hard. However, due to their high
practical relevance, it is necessary to solve them despite their intractability,
which has motivated the study of their approximability, on the one hand, but
also their fixed-parameter tractability, on the other (see the survey [7] for an
overview of the parameterised complexity of consensus string problems). This
work is a contribution to the latter branch of research. In the following, we
motivate in more detail the research carried out in this paper.

From a theoretical point of view, these consensus string problems (as is
usually the case for string problems) have a large number of quite natural and
obvious numerical parameters, e. g., number of input strings, their lengths, al-
phabet size, the distance bounds and so on. Therefore, from a parameterised
complexity point of view, they have a somewhat different nature than the
typical graph problems, for which we have the obvious standard parameteri-
sations (usually some size bound that is part of the input, e. g., the clique-size
for Clique) or more complex structural parameters (like width-parameters
as treewidth and so on); on the other hand, obvious numerical parameters,
e. g., number of vertices or edges, are usually not interesting (with the degree
of a graph being an exception). Consequently, for string problems, the chal-
lenge is to discover among the rather large number of different combinations of
these obvious parameters those that yield fixed-parameter tractability; thus,
obtaining a complete “map of fixed-parameter tractability” of the problem.

From a more practical point of view, we note that for string problems,
which are usually motivated by tasks from computational biology, it is often

Consensus Strings with Small Maximum Distance and Small Distance Sum 3

the case that it is known which parameters can be considered to be small in
practical scenarios and which do not have this desirable property. This leads
to parameters (or parameter combinations) that are more important than
others. Consequently, the most pressing question is whether we can achieve
fixed-parameter tractability for these “small” parameters. Furthermore, the
knowledge of which parameters are important may guide an algorithmic en-
gineering process, e. g., if we have achieved fixed-parameter tractability with
respect to an important parameter, but the problem formalisation does not
quite cover the practical scenario, we can search for modifications of the prob-
lem that maintain the fixed-parameter tractability and are still suitable for
practical scenarios with small parameter values. For example, as explained
in [6], in practical applications of consensus string problems it cannot always
be avoided that the set of input strings includes a small number of strings that
are quite different from all the others. In order to still get a solution, we would
have to drastically increase the radius bound, which also leads to a solution
that is undesirable from a practical point of view. Instead, it makes much
more sense to directly cater for this presence of “outliers” by modifying the
problem formulation accordingly. This is the motivation for the outlier-variant
introduced in [6] (note that Closest String with Outliers parameterised
by the radius bound and number of outliers is fixed-parameter tractable [6]).
In particular, if we find a suitable solution string when some outliers are ex-
cluded, then it seems natural that the the initial decision of including these
strings needs to be revised (as pointed out in [6], this is another motivation
for the outlier-variant).

In this work, we propose a different modification, which leads to a general-
isation of all the consensus string problems mentioned above: we consider the
case where we have a radius bound and a distance sum bound at the same
time. From a theoretical point of view, this leads to the question which of
the fixed-parameter tractable cases of the variants with only one bound are
still fixed-parameter tractable if we consider both bounds. However, we believe
this problem can also be relevant from a practical point of view, since having
both a radius bound and a distance sum bound allows for a finer tuning of
the solutions (similar as the addition of outliers). We shall motivate this by
an example.

Assume that by solving the outlier-variant for a set of strings, we have
found out that our desired radius bound can only be met by declaring strings
as outliers that should not be outliers (i. e., strings for which we know for
certain that they should be included in the input set), or that a solution
string cannot be found for a number of outliers that is small enough that the
algorithm’s running time is still acceptable. In this case, slightly increasing the
radius bound seems inevitable, but it is still reasonable to require that this
larger distance to the solution string should be used to its full capacity only
by a small number of input strings. This requirement could be formulated by
adding a distance sum bound that is significantly smaller than the number
of input strings multiplied by the radius bound. It is also reasonable to think
about allowing both, a small number of outliers that handles strings that

4 Laurent Bulteau, Markus L. Schmid

should not be in the input set at all and a distance sum bound that takes care
of bounding the number of “high distance” input strings.

Next, we define more formally the consensus string problems considered in
this paper and then explain in full detail the respective known results in the
literature and our new contributions.

1.1 Problem Definition

Let Σ be a finite alphabet, Σ∗ be the set of all strings over Σ, including the
empty string ε and Σ+ = Σ∗ \ {ε}. For w ∈ Σ∗, |w| is the length of w and,
for every i, 1 ≤ i ≤ |w|, by w[i], we refer to the symbol at position i of w. For
every n ∈ N ∪ {0}, let Σn = {w ∈ Σ∗ | |w| = n} and Σ≤n =

⋃n
i=0Σ

i. By
�, we denote the substring relation over the set of strings, i. e., for u, v ∈ Σ∗,
u� v if v = xuy, for some x, y ∈ Σ∗. We use the concatenation of sets of
strings as usually defined, i. e., for A,B ⊆ Σ∗, A ·B = {uv | u ∈ A, v ∈ B}.

For strings u, v ∈ Σ∗ with |u| = |v|, dH(u, v) is the Hamming distance
between u and v. For a multi-set S = {ui | 1 ≤ i ≤ n} ⊆ Σ` and a string
v ∈ Σ`, for some ` ∈ N, the radius of S (with respect to v) is defined by
rH(v, S) = max{dH(v, u) | u ∈ S} and the distance sum of S (with respect to v)
is defined by sH(v, S) =

∑
u∈S dH(v, u).1

Next, we state the consensus string problems to be investigated. The most
basic one is (r, s)-Closest String (denoted by (r, s)-CloseStr in the fol-
lowing):

(r, s)-CloseStr

Instance: Multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ`, ` ∈ N,
and integers dr, ds ∈ N.

Question: Is there an s ∈ Σ` with rH(s, S) ≤ dr and sH(s, S) ≤ ds?

If we allow a given number of the input strings to be excluded and require
the bounds dr and ds to be satisfied with respect to the remaining strings,
we obtain the problem (r, s)-Closest String with Outliers (this will
also be called the outlier-variant (of (r, s)-CloseStr) and will be denoted
by (r, s)-CloseStr-wo):

(r, s)-CloseStr-wo

Instance: Multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ`, ` ∈ N,
and integers dr, ds, t ∈ N.

Question: Is there an s ∈ Σ` and S′ ⊆ S with |S′| = k − t
such that rH(s, S′) ≤ dr and sH(s, S′) ≤ ds?

For the problem (r, s)-Closest Substring (which will also be called the

1 Note that we slightly abuse notation with respect to the subset relation: for a multi-set
A and a set B, A ⊆ B means that A′ ⊆ B, where A′ is the set obtained from A by deleting
duplicates; for multi-sets A,B, A ⊆ B is defined as usual. Moreover, whenever it is clear
from the context that we talk about multi-sets, we also simply use the term set.

Consensus Strings with Small Maximum Distance and Small Distance Sum 5

substring-variant (of (r, s)-CloseStr) and is denoted by (r, s)-CloseSubstr),
the input words can have different lengths and we are asking for a string that
satisfies the bounds dr and ds with respect to some substrings of the input
strings (that all have the same given length):

(r, s)-CloseSubstr

Instance: Multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ≤`, ` ∈ N,
and integers dr, ds,m ∈ N.

Question: Is there an s ∈ Σm and S′ = {s′i | s′i� si, 1 ≤ i ≤ k} ⊆ Σm

with rH(s, S′) ≤ dr and sH(s, S′) ≤ ds?

See Figure 1 for an illustration of these problems. We next introduce some
convenient terminology.

By the terms (r)-CloseStr and (s)-CloseStr, we denote the variants
of (r, s)-CloseStr, where the only distance bound is dr or ds, respectively;
we shall also call them the (r)- and (s)-variant of CloseStr, the radius and
distance sum variant of CloseStr, or simply the single-bound variants if we
refer to either of them; the problem (r, s)-CloseStr will sometimes be referred
to as the general variant. We also use the term CloseStr (i. e., without the
prefixes (r, s)-, (r)- or (s)-) whenever we generally refer to all (or any) of these
different variants. Analogous terminology applies to the outlier-variant and
the substring-variant.

1.2 Parameterised Complexity Theory

We assume the reader to be familiar with the basic concepts of (classical)
complexity theory. Next, we shall briefly summarise the fundamentals of pa-
rameterised complexity (see also [12,16,8]).

A parameterised problem is a decision problem with instances (x, k), where
x is the actual input and k ∈ N is the parameter. By FPT, we denote the class
of fixed-parameter tractable problems, i. e., problems having an algorithm with
running-time O(g(k) · f(n)), for a computable function g and polynomial f ,
where n is the size of the instance and k is the parameter. In order to argue
about fixed-parameter intractability, we need the following kind of reductions.
A (classical) many-one reduction R from a parameterised problem to another is
an fpt-reduction, if the parameter of the target problem is bounded in terms of
the parameter of the source problem, i. e., there is a recursive function h : N→
N such that R(x, k) = (x′, k′) implies k′ ≤ h(k). Parameterised problems
that are hard (with respect to fpt-reductions) for the class W[1] are not in
FPT (under some complexity theoretical assumptions, see [12,16,8] for further
details). If a parameterised problem is NP-hard when the parameter is fixed to
a constant, then it is not in FPT, unless NP = P (thus; providing even stronger
evidence for fixed-parameter intractability than W[1]-hardness).

A kernelisation for a parameterised problem P is an algorithm that trans-
forms an instance (x, k) of P into a reduced instance (x′, k′) of P in time
polynomial in |x|+ |k| such that

6 Laurent Bulteau, Markus L. Schmid

s1 c b c a b a a

s2 c b c a b c b

s3 a b c c c c a

s4 c c c a b c a

s5 c b c a a c a

s6 c b c a a c a

s7 a b b a b a a

s8 b b c a a c a

s c b c a b c a

s1 c b c a b a a

s2 c b c a b c b

s3 a b c c c c a

s4 c c c a b c a

s5 c b c a a c a

s6 c b c a a c a

s7 a b b a b a a

s8 b b c a a c a

s a b c a b c a

(a) (b)

s1 a a c b c a b a a

s2 b c b c a b c b

s3 a a b c c

s4 c c c a b c a c

s5 c c b c a a c a

s6 a c b c a a

s7 a a b b a b a a

s8 b b b c a a c a c c b

s a b c a

s1 c b c a b a a

s2 c b c a b c b

s3 a b c c c c a

s4 c c c a b c a

s5 c b c a a c a

s6 c b c a a c a

s7 a b b a b a a

s8 b b c a a c a

s c b c a b c a

(c) (d)

Fig. 1 Illustrations of instances and solution strings for different variants of consensus string
problems (mismatches are highlighted by gray circles): (a) shows a CloseStr instance and
a solution string with radius 3 and distance sum 13, (b) shows the same instance, but with a
solution string with radius 2 and distance sum 16, (c) shows a CloseSubstr instance (with
m = 4) and a solution string with radius 1 and distance sum 7 (the corresponding substrings
are highlighted by gray rectangles), and (d) shows a CloseStr-wo instance (with t = 2)
and a solution string with radius 2 and distance sum 7 (s3 and s7 are declared outliers).

– |x′|+ k ≤ g(k) for some computable function g,
– (x, k) is a positive instance if and only if (x′, k′) is a positive instance.

For the sake of convenience, we also say that a parameterised problem has a
kernel in order to denote that there is a kernelisation as defined above. If the
kernlisation is such that the function g is a polynomial, then we say that the
problem has a polynomial kernel. It is a well-known fact that a parameterised
problem is fixed-parameter tractable if and only if it has a kernel. On the
other hand, many fixed-parameter tractable problems do not seem to have a
polynomial kernel.

Note that all these concepts from parameterised complexity theory natu-
rally extend to problems that are parameterised by several parameters at the
same time.

Consensus Strings with Small Maximum Distance and Small Distance Sum 7

The natural parameters that arise in the context of the consensus string
problems defined above are the following (we shall consistently use these pa-
rameter names throughout the remainder of the paper):

k number of input strings
` length of input strings
dr radius bound
ds distance sum bound
|Σ| alphabet size
m substring length (substring-variant)
t number of outliers (outlier-variant)
k − t number of inliers (outlier-variant)

For some parameters p1, p2, . . ., by (r, s)-CloseStr(p1, p2, . . .) we denote
the problem (r, s)-CloseStr parameterised by the parameters p1, p2, . . ., e. g.,
(r, s)-CloseStr(|Σ|, `) is the problem (r, s)-CloseStr parameterised by the
alphabet size and the length of the input strings. In particular, note that this
problem is trivially in FPT, since enumerating all strings in Σ` and checking for
each whether it is a solution string is an fpt-algorithm. Moreover, this variant
does not seem to have a polynomial kernel (in fact, it can be shown that,
under some complexity theoretical assumption, it does not have a polynomial
kernel; see Section 5), while (r, s)-CloseStr(k, `) trivially has a polynomial
kernel (the original input is of size `× k and therefore a polynomial kernel).

We use analogous terminology for the substring and outlier-variants and
also for the single-bound variants, e. g., (r)-CloseStr-wo(dr, t). Note that
we consider parameters t and k− t only for the outlier-variants, parameter m
only for the substring-variants, and parameters dr and ds only if they exist for
the problem, e. g., dr can only be a parameter for the general variants or the
(r)-variants, but not for (s)-variants.

1.3 Known Results

Some of the single-bound variants of the consensus string problems have al-
ready been considered in the literature, but under different names. More pre-
cisely, the names Closest String and Closest Substring are common
in the literature in order to denote the radius variants of CloseStr and
CloseSubstr, while the common term Consensus Patterns usually refers
to what we have defined as the distance sum variant of CloseSubstr (see,
e. g., [18,14,15,17,22]); the term Closest String with Outliers is used
in [6] (where the outlier-variant is also introduced for the first time) in order
to denote the radius variant of CloseStr-wo.

All the consensus string problems are NP-hard, except the distance sum
variant of CloseStr, which is trivial problem (choosing for every column
a symbol with majority always yields an optimal solution string). The pa-
rameterised complexity (with respect to the above mentioned parameters) of

8 Laurent Bulteau, Markus L. Schmid

the radius variants of CloseStr are completely settled (see [17,18]): param-
eterising by any of the single parameters k, dr and ` yields fixed-parameter
tractability, while the problem remains NP-hard if |Σ| = 2. To the knowl-
edge of the authors, the complexity of the variant (r, s)-CloseStr with both
bounds has not yet been investigated in the literature (an exception is [1],
where optimising both the radius and the distance sum has been considered
for the special case k = 3).

With respect to the substring-variants, all parameterisations of the ra-
dius variant have been settled, while for the distance sum variant all param-
eterisations but the single parameter ` (or (m, `), which, since we can as-
sume m ≤ `, is the same) have been settled (see [14,15,22]). These results
show that, at least for the single-bound variants, CloseSubstr is a much
harder problem than CloseStr. More precisely, fixed-parameter tractability
of (r)-CloseSubstr can only be achieved if parameterised by ` (see [14]) or
(m, |Σ|) (which is trivial), while all other parameterisations are W[1]-hard.
With respect to (s)-CloseSubstr, the only known fixed-parameter tractable
cases are with respect to (ds, |Σ|) (see [22]) and (m, |Σ|) (which is again
trivial), and the case of parameter ` is open. However, it has been shown
in [26] that if we consider the difference between the length of the input
strings and the length of the solution string, i. e., (` − m), as a parame-
ter, then adding any of the additional parameters k, dr, ` (which also make
(r)-CloseStr fixed-parameter tractable) yields fixed-parameter tractability
for (r)-CloseSubstr. On the other hand, for the distance sum variant, the
special parameter (` −m) only helps if additionally k or ds is also a param-
eter, while the case ((` −m) = 4, |Σ| = 4) is even NP-hard and the param-
eterisation ((` −m),m) is the same as `, which again leads to the open case
mentioned above (see [26] for details). As for CloseStr, the complexity of
(r, s)-CloseSubstr has not yet been investigated in the literature.

A parameterised complexity analysis of the radius variant of CloseStr-wo
has been started more recently in [6], where it is shown that the problem is
fixed-parameter tractable with respect to single parameter dr and the parame-
ters (|Σ|, k), while it is W[1]-hard with respect to (`, dr, k− t). The (s)-variant
or the general variant with both bounds has not yet been considered in the
literature.

Questions of kernelisations for consensus string problems have been re-
cently investigated in [2].

1.4 Our Contribution

The main contribution of this paper is to initiate the parameterised com-
plexity analysis of the general variants (i. e., with both the radius and the
distance bound) of the consensus string problems. In this regards, we are
able to completely settle (i. e., proving either fixed-parameter tractability or
W[1]-hardness for all parameterisations with respect to the parameters de-
fined in Section 1.2) the problems (r, s)-CloseStr and (r, s)-CloseSubstr

Consensus Strings with Small Maximum Distance and Small Distance Sum 9

(and their single-bound variants). Obviously, as indicated by the discussions
of Section 1.3, a large part of this complete picture is already provided in
the existing literature, namely almost all the single-bound variants. More-
over, some of the results for the general variants can be concluded with mod-
erate effort from results on the single-bound variants. What required more
effort was to close the gap that was left in the literature with respect to
(s)-CloseSubstr (see Section 1.3) and to carry over the fixed-parameter
tractability from (r)-CloseStr(k) to (r, s)-CloseStr(k).

With respect to the outlier-variant, we are able to settle some more open
problems from the literature, but the fixed-parameter tractability of many
parameterisations remain unsettled. Our main positive algorithmic result is
that (r, s)-CloseStr-wo(dr, t) (and therefore (r, s)-CloseStr(k)) is fixed-
parameter tractable, which is achieved by a non-trivial extension of a branch-
ing algorithm from [18] for (r)-CloseStr(dr). While the general branching
strategy is analogous to the one of [18], taking care of the distance sum
bound and of the outliers requires some new ideas and leads to a more in-
volved algorithm with a more complicated proof of correctness. While this is
interesting from a theoretical point of view, it is particularly interesting in
the light of the discussions at the beginning of Section 1 about the practical
relevance of parameters dr and t. In addition to several other simpler fixed-
parameter tractability result, we show, as the main negative result with respect
to the outlier-variant, that (s)-CloseStr-wo is W[1]-hard if parameterised by
(ds, `, k − t). In particular, this shows that unlike CloseStr, for which the
radius variant is hard and the distance sum variant is trivial, the outlier-
variant resembles the substring-variant where both single-bound variants are
hard (note that the general hardness of the (s)-variant of CloseStr-wo was
not known).

Finally, we investigate the question whether the fixed-parameter tractable
variants of the considered consensus string problems allow polynomial ker-
nels; thus, continuing a line of work initiated by Basavaraju et al. [2], in
which kernelisation lower bounds for (r)-CloseStr and (r)-CloseSubstr are
proved. Some results from [2] about the single-bound variants directly carry
over to the general variants; our main contribution is a cross-composition from
(r)-CloseStr into (r)-CloseStr-wo, which rules out a polynomial kernel for
(r, s)-CloseStr-wo(dr, ds, `, (k − t), |Σ|).

1.5 Organisation of the Paper

In Section 2, we settle all parameterisations of the problem (r, s)-CloseStr.
Then, in Section 3, we consider the general as well as the single-bound vari-
ants of the outlier-variant; this section also contains our main result, i. e., the
branching algorithm for (r, s)-CloseStr-wo(dr, t). The substring-variant will
then be investigated in Section 4 and questions about kernelisations will be
discussed in Section 5. Finally, in Section 6, we summarise and discuss our
results and mention the most interesting open problems.

10 Laurent Bulteau, Markus L. Schmid

2 Closest String with Radius and Distance Sum Bound

We shall first give some useful definitions. It will be convenient to treat a set
S = {si | 1 ≤ i ≤ k} ⊆ Σ` as a k× ` matrix with entries from Σ. By the term
column of S, we refer to the transpose of a column of the matrix S, which is an
element from Σk; thus, the introduced string notations apply, e. g., if c is the
ith column of S, then c[j] corresponds to sj [i]. A string s ∈ Σ` is a majority
string (for a set S ⊆ Σ`) if, for every i, 1 ≤ i ≤ `, s[i] is a symbol with
majority in the ith column of S. Obviously, sH(s, S) = min{sH(s′, S) | s′ ∈ Σ`}
if and only if s is a majority string for S. We call a string s ∈ Σ` radius
optimal or distance sum optimal (with respect to a set S ⊆ Σ`) if rH(s, S) =
min{rH(s′, S) | s′ ∈ Σ`} or sH(s, S) = min{sH(s′, S) | s′ ∈ Σ`}, respectively.

It is a well-known fact that (r)-CloseStr allows fpt-algorithms for any of
the single parameters k, dr or `, and it is still NP-hard for |Σ| = 2 (see [18]).
While the latter hardness result trivially carries over to (r, s)-CloseStr (by
setting ds = k dr), we have to modify the fpt-algorithms for extending the
fixed-parameter tractability results to (r, s)-CloseStr.

We start with parameter k, for which we can extend the ILP-approach that
is used in [18] to show (r)-CloseStr(k) ∈ FPT. Before we can formally do
this, we need a few more definitions.

We say that S ⊆ Σ` is normalised, if Σ = {a1, a2, . . . , ak}, every column
of S contains the symbols {a1, a2, . . . , ap}, for some p, 1 ≤ p ≤ k, and the first
occurrence of ai, 1 ≤ i ≤ p− 1, occurs before the first occurrence of ai+1. If S
is normalised, any two isomorphic columns are equal (i. e., if two columns are
not identical, then it is not possible to obtain one from the other by bijective
renaming of the symbols). It can be easily seen that any (r, s)-CloseStr in-
stance can be transformed into an equivalent one with normalised S (see [18]).
For both normalised and non-normalised S, we use the term column-types to
denote the different forms of columns, rather than the collection of all columns,
i. e., the set of column types of S is {c ∈ Σk | c occurs as a column in S}.

Theorem 1 (r, s)-CloseStr(k) ∈ FPT.

Proof We extend the ILP-approach that has been used in [18] to show that
(r)-CloseStr(k) ∈ FPT. Let S = {si | 1 ≤ i ≤ k} ⊆ Σ` with columns
ti, 1 ≤ i ≤ `, and dr, ds ∈ N be a (r, s)-CloseStr instance. Let S be nor-
malised, let T be the set of column types and, for every t ∈ T , let ψt =
|{i | 1 ≤ i ≤ `, ti has type t}|, i. e., the number of columns of type t. Note
that |T | ≤ B(k) ≤ k! (where B(k) is the Bell number). We extend the ILP
from [18] that has a solution if and only if the (r, s)-CloseStr instance has a
solution. For every column type t and every a ∈ Σ, the variable xt,a stands for
the number |{i | 1 ≤ i ≤ `, ti has type t, s[i] = a}|, where s is the hypothetical
solution string. Intuitively speaking, the number xt,a says how often a column
of type t is paired with an occurence of the symbol a in the solution string.
The equations of the ILP are as follows:

Consensus Strings with Small Maximum Distance and Small Distance Sum 11

xt,a ≥ 0, t ∈ T , a ∈ Σ (the number of pairings is
non-negative)∑

a∈Σ xt,a = ψt, t ∈ T (type t is paired as often as
it occurs in S)∑

t∈T
∑
a∈Σ\{t[i]} xt,a ≤ dr, 1 ≤ i ≤ k (mismatches caused by each

string bounded by dr)∑k
i=1

∑
t∈T

∑
a∈Σ\{t[i]} xt,a ≤ ds (total number of mismatches

bounded by ds)

Since we can assume |Σ| ≤ k, we have k ·B(k) variables and the result follows
from the fact that ILP parameterised by the number of variables is in FPT
(see [20]). ut

Next, we consider the parameter dr. For the (r)-variant of CloseStr, the
fixed-parameter tractability with respect to dr is shown in [18] by a branching
algorithm, which proved itself as rather versatile: it has successfully been ex-
tended in [6] to (r)-CloseStr-wo(dr, t) and in [26] to (r)-CloseSubstr(dr, (`−
m)). We shall next briefly sketch this algorithm from [18].

Let S = {s1, s2, . . . , sk} ⊆ Σ`, dr ∈ N be an (r)-CloseStr instance and
assume that there is a solution string s. If s′ = s1 is not a solution string, i. e.,
rH(s′, S) ≥ dr + 1, then there is some input string si with dH(s′, si) ≥ dr + 1.
Moreover, every set {j | 1 ≤ j ≤ `, si[j] 6= s′[j]} of cardinality dr + 1 must
contain at least one position j, such that si[j] = s[j] (otherwise dH(s, si) ≥ dr+
1, which is a contradiction). Obviously, in order to transform s′ to the solution
string, this position j of s′ must be changed to the one of si. Consequently,
arbitrarily choosing a set {j | 1 ≤ j ≤ `, si[j] 6= s′[j]} of cardinality dr +
1, branching over all these dr + 1 positions and changing them in s′ to the
corresponding positions in si yields a branching algorithm for (r)-CloseStr
(note that a branching depth of dr is sufficient, since it must be possible to
reach the solution string by changing at most dr positions of s1).

We propose an extension of the same branching algorithm, that allows for
a bound ds on the distance sum; thus, it works for (r, s)-CloseStr(dr). In
fact, we prove in Theorem 5 an even stronger result, where we also extend
the algorithm to exclude up to t outlier strings from the input set S, i. e.,
we extend it to the problem (r, s)-CloseStr-wo(dr, t). Since Theorem 2 can
therefore be seen as a corollary of this result by taking t = 0, we only give
an informal description of a direct approach that solves (r, s)-CloseStr(dr)
(and refer to Theorem 5 for a formal proof of correctness).

The main problem in extending the algorithm to the case of an additional
bound ds on the distance sum can be described as follows. If we start with some
input string as the first candidate string and then carry out the branching as
sketched above, then we have no guarantee that the resulting solution satisfies
the distance sum bound ds. On the other hand, if we start with some other
candidate string that is somehow tailored to the distance sum bound, we lose

12 Laurent Bulteau, Markus L. Schmid

s1 d b a b b b b

s2 d a a b c c d

s3 d a a b c c d

s4 a a c c c c d

s5 a a c b c c d

s6 a c a b d b d

sm d a a b c c d

s1 d b a b b b b

s2 d a a b c c d

s3 d a a b c c d

s4 a a c c c c d

s5 a a c b c c d

s6 a c a b d b d

s�m � a � b c � d

(a) (b)

Fig. 2 (a) A matrix of strings and its majority string. (b) The same matrix of strings, its
refined majority string and the disputed columns highlighted in grey.

the guarantee that a solution can be reached by a number of changes that only
depends on dr (which is trivially the case if we start with an input strings).

An obvious choice for a first candidate string for a branching algorithm
that also takes the distance sum bound into consideration is a majority string
(see Figure 2), since this is the “best” string with respect to the distance
sum bound. Starting with this string, we can apply the same branching strat-
egy in order to change it step by step into a string that satisfies the radius
bound. However, this can only result in a valid fpt-algorithm (with respect to
parameter dr), if the branching depth can be bounded by a function in dr,
which is done by the following lemma (that we also need later for the proof of
correctness of the algorithm for (r, s)-CloseStr-wo(dr, t)).

Lemma 1 Let S ⊆ Σ`, s ∈ Σ` such that rH(s, S) ≤ dr, and let sm be a
majority string for S. Then dH(sm, s) ≤ 2dr.

Proof Let d̂ = dH(sm, s) and k = |S|. Let i, 1 ≤ i ≤ `, with sm[i] 6= s[i] and let
p be the number of occurrences of sm[i] in the ith column of S. Obviously, if
p ≥ k

2 , then s[i] matches at most k−p ≤ k
2 entries of the ith column of S, and if

p < k
2 , then s[i] matches at most p entries of the ith column of S. Consequently,

for every i, 1 ≤ i ≤ `, if sm[i] 6= s[i], then |{j | 1 ≤ j ≤ k, s[i] 6= sj [i]}| ≥ k/2.

Summing over all i, 1 ≤ i ≤ `, this implies sH(s, S) ≥ d̂ k2 . Since rH(s, S) ≤ dr,
we have sH(s, S) ≤ kdr. Hence, kdr ≥ d̂ k2 , that is d̂ ≤ 2dr. ut

A branching algorithm for (r, s)-CloseStr(dr) can now be sketched as fol-
lows. We start with a majority string sm and apply the branching as described
above. The branching depth is bounded by 2dr (due to Lemma 1) and we cut
any branch where the distance sum goes beyond the threshold ds. If there
exists a solution that satisfies the dr bound, then there must be a path in the
branching tree in which all changes of single positions are necessary, and, since
we started with a majority string, all unchanged positions have a symbol that
causes the fewest additional mismatches (for a formal proof of correctness, we
refer to Theorem 5).

Consensus Strings with Small Maximum Distance and Small Distance Sum 13

k dr ds |Σ| ` Result Note/Ref.

p – – – – FPT Thm. 1
– p – – – FPT Thm. 2
– – p – – FPT Cor. 1
– – – 2 – NP-hard from (r)-variant [17]
– – – – p FPT Cor. 1

Table 1 Results for (r, s)-CloseStr.

Theorem 2 (r, s)-CloseStr(dr) ∈ FPT.

It only remains to take a look at the parameters ` and ds, for which con-
tainment in FPT follows easily from known results. More precisely, we can
assume dr ≤ ` and we can further assume that every column of S contains
at least two different symbols (all columns without this property could be re-
moved), which implies sH(si, S) ≥ ` for every s ∈ Σ`; thus, we can assume
` ≤ ds. Consequently, we obtain the following corollary:

Corollary 1

– (r, s)-CloseStr(`) ∈ FPT.
– (r, s)-CloseStr(ds) ∈ FPT.

This completely settles the parameterised complexity of (r, s)-CloseStr
with respect to parameters k, dr, ds, |Σ| and ` (see Table 1 for an overview of
the results). Recall that the (r)-variant is already settled, while the (s)-variant
is trivial.

3 The Outlier-Variant

In this section, we investigate (r, s)-CloseStr-wo and their (r)- and (s)-
variants. We first prove several fixed-parameter tractability results for the
general variant and we consider the (r)- and (s)-variants later on.

First, we note that solving an instance of (r, s)-CloseStr-wo(k) can be
reduced to solving f(k) many (r, s)-CloseStr(k) instances, which, due to the
fixed-parameter tractability of the latter problem, yields the fixed-parameter
tractability of the former.

Theorem 3 (r, s)-CloseStr-wo(k) ∈ FPT.

Proof Let S = {si | 1 ≤ i ≤ k} ⊆ Σ`, ` ∈ N, and integers dr, ds, t ∈ N be an
(r, s)-CloseStr-wo instance. We note that s ∈ Σ` and S′ ⊆ {s1, s2, . . . , sk}
with |S′| = k − t is a solution of this instance if and only if s is a solution
for the (r, s)-CloseStr instance S′, dr, ds. Consequently, we can solve the
(r, s)-CloseStr-wo instance by solving all the

(
k
k−t
)

many (r, s)-CloseStr

instances (S1, dr, ds), (S2, dr, ds), . . ., (Sm, dr, ds), where m =
(
k
k−t
)

and the
Si, 1 ≤ i ≤ m, are all subsets of {s1, s2, . . . , sk} with cardinality k − t. Since
(r, s)-CloseStr(k) ∈ FPT (see Theorem 1), this yields an fpt-algorithm for
(r, s)-CloseStr-wo(k). ut

14 Laurent Bulteau, Markus L. Schmid

We next show that if the number k − t of inliers exceeds ds, then an
(r, s)-CloseStr-wo instance becomes easily solvable; thus, k−t can be bounded
by ds. If in addition t is also a parameter, this implies that k is bounded, so
fixed-parameter tractability follows from Theorem 3.

Theorem 4 (r, s)-CloseStr-wo(ds, t) ∈ FPT.

Proof Let S = {si | 1 ≤ i ≤ k} ⊆ Σ` and dr, ds, t ∈ N be an (r, s)-CloseStr-wo
instance. If ds < k − t, then every solution string s must satisfy s = si, for
some i, 1 ≤ i ≤ k. Moreover, if si is a solution string, then it is a solution
string with respect to the set S′ ⊆ S containing the k − t strings with the
least Hamming-distance from si. Consequently, we can compute a solution
in polynomial-time. If, on the other hand, k − t ≤ ds, then k − t and t can
be considered parameters; thus, k is a parameter and the result follows from
(r, s)-CloseStr-wo(k) ∈ FPT (see Theorem 3). ut

We now turn to the parameter dr. As briefly mentioned in Section 2, the
algorithm introduced in [18] to prove (r)-CloseStr(dr) ∈ FPT has been ex-
tended in [6] with an additional branching that guesses whether a string sj
should be considered an outlier or not; thus, yielding fixed-parameter tractabil-
ity of (r)-CloseStr-wo(dr, t). Moreover, we already sketched how the algo-
rithm from [18] could be extended to (r, s)-CloseStr(dr). Next, we combine
these two approaches in a non-trivial way in order to obtain an fpt-algorithm
for (r, s)-CloseStr-wo(dr, t) (as explained in Section 2, this also provides a
formal proof of Theorem 2).

The main problem about the general approach sketched in Section 2, i. e.,
starting with the majority string as a first candidate, is that whether a certain
symbol is a majority symbol in a column depends on the choice of outliers. For
example, both a and d are majority symbols of the first column of the matrix
of Figure 2(a), but if t = 2 and s1 and s2 are declared as outliers, then, in
case that the first symbol is not changed by the branching modifications, it is
possible that d was a bad choice, since it causes more mismatches compared to
a (with respect to the matrix from which the outliers are removed). In order
to deal with this issue, we refine the concept of a majority string and tailor it
to the outlier-variant.

Let (S, ds, dr, t) be an instance of (r, s)-CloseStr-wo(dr, t) and let (S∗, s∗)
be a solution for this instance. We say that a character x is frequent in col-
umn i if it has at least as many occurrences as a majority character minus t
(thus, for any S′ ⊆ S, |S′| ≥ |S|− t, all majority characters for S′ are frequent
characters). A column i is disputed if it contains at least two frequent charac-
ters. Let � /∈ Σ be a new symbol and let sm be the majority string of S. The
refined majority string s�m ∈ (Σ ∪ {�})∗ (with respect to S and t) is defined
by s�m[i] = sm[i] if i is not a disputed column and s�m[i] = � if i is a disputed
column, for every i, 1 ≤ i ≤ ` (see Figure 2(b) for an example).

More generally, a string s′ ∈ (Σ∪{�})` is a lower bound for a solution s∗, if,
for every i such that s′[i] 6= s∗[i], either i is a disputed column and s′[i] = �, or
i is not disputed and s′[i] is the majority character for column i of S∗ (which

Consensus Strings with Small Maximum Distance and Small Distance Sum 15

is equal to the majority character for column i of S). Intuitively speaking,
whenever a character s′[i] differs from s∗[i], it is the majority character of its
column (except for disputed columns in which we use an “undecided” character
�). In particular, note that the refined majority string is by definition a lower
bound. A completion for S′ ⊆ S of a string s′ ∈ (Σ ∪ {�})∗ is the string
obtained by replacing each occurrence of � by a majority character of the
corresponding column in S′ (for example, in Figure 2(b), a possible completion
for {s3, s4, s5, s6} of the refined majority string s�m would be aacbccd).

The following lemma states that the number of disputed columns of S can
be bounded in terms of dr, which shall be a central building block of the
following branching algorithm.

Lemma 2 Let (S, ds, dr, t) be a positive instance of (r, s)-CloseStr-wo(dr, t)
with D disputed columns. If k ≥ 5t, then D ≤ 4dr.

Proof Let (S∗, s∗) be a solution for the instance (S, ds, dr, t). In a disputed
column i, no character occurs more than k+t

2 times, hence, among the k − t
strings of S∗, there are at least (k − t) − k+t

2 = k−3t
2 mismatches at position

i. The disputed columns thus introduce at least D k−3t
2 mismatches. Since

the overall number of mismatches is upper-bounded by dr(k − t), we have

D ≤ 2dr(k−t)
k−3t = 2dr

(
1 + 2t

k−3t

)
, and, with k ≥ 5t, the upper-bound D ≤ 4dr

follows. ut

We are now ready to present the fpt-algorithm for (r, s)-CloseStr-wo(dr, t)
and prove its correctness (an illustration of the algorithm is provided by Fig-
ure 3).

ALGORITHM 1: Solve CSO

Input : S′ ⊆ S, t ∈ N, s′ ∈ (Σ ∪ {�})`, d ∈ N
Output: a pair (S∗, s∗) or the symbol O

1 if t = 0 then
2 s′′ = completion of s′ in S′;
3 if sH(s′′, S′) ≤ ds, and rH(s′′, S′) ≤ dr then return (S′, s′′);
4 if d = 0 then return O;

5 Let sj ∈ S′ be such that dH(s′, sj) is maximal;
6 if t > 0 then
7 sol = Solve CSO(S′ \ {sj}, t− 1, s′, d);
8 if sol 6= O then return sol;

9 if d > 0 then
10 Let I ⊆ {1, . . . , `} contain dr + 1 indices i s. t. s′[i] 6= sj [i] (or all indices if

dH(sj , s
′) ≤ dr);

11 for i ∈ I do
12 s′′ = s′, s′′[i] = sj [i];
13 sol = Solve CSO(S′, t, s′′, d− 1);
14 if sol 6= O then return sol;

15 return O;

16 Laurent Bulteau, Markus L. Schmid

Theorem 5 (r, s)-CloseStr-wo(dr, t) ∈ FPT.

Proof Let (S, ds, dr, t) be an instance of (r, s)-CloseStr-wo(dr, t). We assume
that k ≥ 5t, since for all other instances, k can be considered as a parameter
and therefore they can be solved in fpt-time according to Theorem 3.

The algorithm is presented as Algorithm 1 and in the following, we denote
it by Solve CSO. The algorithm is formulated in a recursive way and in any
recursive call, it receives as input a set S′ of the remaining input strings (i. e.,
the initial input strings with some outliers removed), a number t′ that denotes
how many outlier-choices are left, a current candidate string s′ (over Σ ∪{�})
and a number d denoting how many branching steps are left.

We first show that any recursive call to Solve CSO(S′, t, s′, d) returns
after fpt-time with respect to dr, d and t.

Claim 1: Any call to the algorithm Solve CSO(S′, t′, s′, d) always returns

after time O∗((dr + 1)
d
2d+t

′
).

Proof of Claim 1: We prove this running time by induction: if d = t′ = 0,
then the function returns in Line 3 or 4; thus, it returns after polynomial
time. Otherwise, it performs at most dr + 1 recursive calls with parameters
(d− 1, t′), and one recursive call with parameters (d, t′− 1). By induction, the
complexity of this step is O∗((dr + 1)(dr + 1)d−12d+t

′−1 + (dr + 1)d2d+t
′−1) =

O∗((dr + 1)
d
2d+t

′
). (Claim 1) ut

In the following, we say that a tuple (S′, t′, s′, d) is valid if |S′| − t′ = |S| − t,
there exists an optimal solution (S∗, s∗) for which S∗ ⊆ S′, |S∗| = |S′| − t′,
dH(s′, s∗) ≤ d, and s′ is a lower bound for s∗ (in the sense defined above). A
call of the algorithm is valid if its parameters form a valid tuple, its witness
is the pair (S∗, s∗).

Claim 2: Any valid call to Solve CSO either directly returns a solution or
performs at least one recursive valid call.

Proof of Claim 2: Let S′ ⊆ Σ`, t′ ≥ 0, s′ ∈ (Σ ∪ {�})`, and d ≥ 0. Consider
the call to Solve CSO(S′, t′, s′, d). Assume it is valid, with witness (S∗, s∗).
We prove the statement of the claim by considering several cases:

Case 1: If d = t′ = 0, then s∗ = s′ and S∗ = S′. The completion s′′ of
s′ is exactly s′, and since (S′, s′) is a solution, it satisfies the conditions of
Line 3 and is returned on Line 3.

Case 2: If t′ = 0 and ∀s ∈ S′ : dH(s, s′) ≤ dr. Then S∗ = S′ and s′

is a lower bound for s∗. Let s′′ be the completion of s′. We show that
sH(s′′, S′) ≤ sH(s∗, S′) ≤ ds. Indeed, consider any column i with s′′[i] 6=
s∗[i]. Either s′[i] = �, in which case s′′[i] is the majority character for
column i of S′, or s′[i] 6= �, in which case by the definition of lower bound,
i is not a disputed column and s′[i] = s′′[i] contains the only frequent
character of this column, which is the majority character for S′. In both
cases, s′′[i] is a majority character for S′ in any column where it differs
from s∗; thus, it satisfies the upper-bound on the distance sum. Since it also

Consensus Strings with Small Maximum Distance and Small Distance Sum 17

satisfies the distance radius (by the case hypothesis: dH(s, s′′) ≤ dH(s, s′) ≤
dr for all s ∈ S′), it satisfies the conditions of Line 3; thus, solution (S′, s′′)
is returned on Line 3.

In the following cases, we can thus assume that the algorithm reaches Line 5.
Indeed, if it returns on Line 3 then it returns a solution, and if it returns on
Line 4 then we have d = t′ = 0, which is dealt in Case 1 above (the algorithm
may not return on this line when it has a valid input). We can thus define sj
to be the string selected in Line 5.

Case 3: sj ∈ S′ \ S∗. Then in particular t′ > 0; and since S∗ ⊆ S′ \ {sj},
the recursive call in Line 7 is valid, with the same witness (S∗, s∗).

Case 4: sj ∈ S∗, d = 0 and t′ > 0. Then s′ = s∗, let s′j be any string of
S′ \ S∗, and S+ = S∗ \ {s′j} ∪ {sj}. Then the pair (S+, s∗) is a solution,
since dH(s∗, s′j) ≤ dH(s∗, sj) by definition of sj . Thus the recursive call on
Line 7 is valid, with witness (S+, s∗).

Case 5: sj ∈ S∗, d > 0 and dH(sj , s
′) > dr. Consider the set I defined in

Line 10. I has size dr+1, hence there exists i0 ∈ I such that sj [i0] = s∗[i0].
Then the recursive call with parameters (S′, t, s′′, d − 1) in Line 13 with
i = i0 is valid with the same witness (S∗, s∗). Indeed, s′′ is obtained from
s′ by setting s′′[i0] = s∗[i0] 6= s′[i0], hence, all mismatches between s′′ and
s∗ already exist between s′ and s∗, which implies that s′′ is still a lower
bound for s∗. Moreover, dH(s′′, s∗) = dH(s′, s∗)− 1 ≤ d− 1.

From now on, we can assume that d > 0 and t′ > 0. Indeed, d = 0 is dealt
with in cases 1, 3 and 4, and t′ = 0, d > 0 is dealt with in cases 2 and 5.
Moreover, with cases 3 and 5, we can assume that sj ∈ S∗ and dH(sj , s

′) ≤ dr
(i.e. dH(s, s′) ≤ dr for all s ∈ S∗).

Case 6: There exists i0 such that sj [i0] = s∗[i0] 6= s′[i0]. Then again
consider the set I defined in Line 10. Since dH(sj , s

′) ≤ dr, we have i0 ∈ I,
and, with the same argument as in Case 5, there is a valid recursive call in
Line 13 when i = i0.

Case 7: For all i, sj [i] 6= s′[i]⇒ sj [i] 6= s∗[i]. In this case no character from
sj can be used to improve our current solution, so the character switching
procedure Line 13 will not improve the solution, but still sj is part of our
witness set S∗, so it is not clear a priori that we can remove sj from our
current solution, i.e. that the recursive call on Line 7 is valid.
We handle this situation as follows. Let s+ be obtained from s′ by filling
the �-positions of s′ with the corresponding symbols of s∗. We now show
that (S∗, s+) is a solution. To this end, let s ∈ S∗. For every i, 1 ≤ i ≤ `,
if s[i] 6= s+[i], then either s′[i] = � or s′[i] ∈ Σ with s′[i] = s+[i]. In
both cases, we have s[i] 6= s′[i], which implies dH(s, s+) ≤ dH(s, s′) ≤ dr,
i. e., the radius is satisfied. Regarding the distance sum, we note that if
s+[i] 6= s∗[i], then, since occurrences of � of s′ have been replaced by the
corresponding symbol from s∗, s′[i] 6= �, which, by the definition of lower

18 Laurent Bulteau, Markus L. Schmid

bound, implies that s+[i] = s′[i] is the majority character for column i
of S∗. Consequently,

∑
s∈S∗ dH(s+[i], s[i]) ≤

∑
s∈S∗ dH(s∗[i], s[i]), which

implies sH(s+, S∗) ≤ sH(s∗, S∗) ≤ ds.
Having defined a new solution string s+ (with respect to S∗), we now prove
that s+ is also a solution string with respect to S+ = (S∗ \ {sj}) ∪ {s′j},
where s′j is any string of S′ \ S∗. To this end, we prove that dH(s′j , s

+) ≤
dH(sj , s

+); together with the fact that dH(s′j , s
′) ≤ dr, this implies that

(S+, s+) is a solution. For two strings s1, s2 ∈ Σ`, let d�(s1, s2) be the
number of mismatches between s1 and s2 at positions i such that s′[i] = �,
and dΣ(s1, s2) be the number of mismatches at other positions. Clearly
dH(s1, s2) = d�(s1, s2) + dΣ(s1, s2). Comparing strings sj and s′j to s′,
we have d�(sj , s

′) = d�(s
′
j , s
′) (both distances are equal to the number of

occurrences of � in s′). Since dH(sj , s
′) is maximal, we have dΣ(s′j , s

′) ≤
dΣ(sj , s

′). Consider now s+. Since s+ is equal to s′ in every non-� charac-
ters, we have dΣ(s′j , s

+) ≤ dΣ(sj , s
+). Finally, for any i such that s′[i] = �,

by hypothesis of this case we have sj [i] 6= s∗[i] = s+[i], hence d�(sj , s
+) is

equal to the number of occurrences of � in s′, which is an upper bound for
d�(s

′
j , s

+). Overall, d(s′j , s
+) ≤ d(sj , s

+), and (S+, s+) is a solution.
Thus, (S+, s+) is a solution such that S+ ⊆ S′ \ {sj}, s′ is a lower bound
for s+, and dH(s′, s+) ≤ d, hence the recursive call in Line 7 is valid.

This concludes the proof of the claim. (Claim 2) ut
In Particular, Claim 2 implies that any valid call to Solve CSO returns a
solution. Indeed, if it does not directly return a solution, then it receives a
solution of a more constrained instance from a valid recursive call, which is
returned on Line 8 or 14.

Next, we show that starting the algorithm with parameters S′ = S, t′ = t,
s′ = s�m and d = 2dr + D (where D is the number of disputed columns) is a
valid call.

Claim 3: Solve CSO(S, t, s�m, 2dr +D) is a valid call.

Proof of Claim 3: Consider a solution (S∗, s∗). We need to check whether
dH(s∗, s�m) ≤ 2dr +D, and whether s�m is a lower bound of s∗. The latter fol-
lows by definition and has already been observed above. String s∗ can be seen
as a solution of (r, s)-CloseStr over S∗, dr, ds, thus, Lemma 1 implies that
the distance between s∗ and the majority string of S∗ is at most 2dr. Hence
there are at most 2dr mismatches between s�m and s∗ in non-disputed columns
(since in those columns, the majority characters are identical in S and S∗).
Adding the D mismatches from disputed columns, we get the 2dr +D upper
bound. (Claim 3) ut
Finally, we note that, according to Lemma 2 (recall that we initially made the
assumption k ≥ 5t), D ≤ 4dr. Consequently, the above claims imply that call-
ing Solve CSO with parameters S, t, s�m, 6dr solves the (r, s)-CloseStr-wo

instance in time O∗((dr + 1)
6dr26dr+t). ut

Next, we consider the (r)- and (s)-variants of CloseStr-wo. With respect
to (r)-CloseStr-wo, the fixed-parameter tractability with respect to k and

Consensus Strings with Small Maximum Distance and Small Distance Sum 19

Input: s1 = d b a d d c b c d b b d b b

dr = 5 s2 = d a a a a c b c d c c d b d

ds = 14 s3 = d a a d d a b c a c c d b d

t = 2 s4 = a a c d a c c d c c c a b d

s5 = a a c d a a b d a c c a d d

D = 10 s6 = a c a a a a b c d d b a d d

Step S′ t s′ d rH(s′, S′) action
1 {s1, s2, . . . , s6} 2 � a � � � � b � � c � � � d 20 13 s[3]← s1[3]
2 {s1, s2, . . . , s6} 2 � a a � � � b � � c � � � d 19 12 s[12]← s1[12]
3 {s1, s2, . . . , s6} 2 � a a � � � b � � c � d � d 18 11 remove s6
4 {s1, s2, . . . , s5} 1 � a a � � � b � � c � d � d 18 11 s[6]← s1[6]
5 {s1, s2, . . . , s5} 1 � a a � � c b � � c � d � d 17 10 remove s5
6 {s1, . . . , s4} 0 � a a � � c b � � c � d � d 17 10

s′′ = d a a d a c b c d c c d b d s[7]← s4[7]
7 {s1, . . . , s4} 0 � a a � � c c � � c � d � d 16 10

s′′ = d a a d a c c c d c c d b d return S′, s′′

Fig. 3 Example for Algorithm 1 on an instance of (r, s)-CloseStr-wo. The shown steps
correspond to one branch that yields a correct solution. The algorithm starts with the refined
majority string. At each step, the algorithm either inserts a character from an input string
at maximal distance from s′ (note that even non-disputed characters may be replaced), or
removes one such string. When t = 0, it is checked whether the completion s′′ of s′ is a
correct solution. At step 7, we return a solution with rH(s′′, S′) = 5 and sH(s′′, S′) = 14.

(|Σ|, dr, k − t) are reported as open problems in [6]. Since Theorem 3 also
applies to (r)-CloseStr-wo (by setting ds = kdr), the only open cases left
for the (r)-variant are the following:

Question 1 What is the fixed-parameter tractability of (r)-CloseStr-wo with
respect to (|Σ|, k − t), (|Σ|, dr) and (|Σ|, dr, k − t)?

We now turn to the (s)-variant of CloseStr-wo (which, to the knowledge
of the authors, has not yet been considered in the literature). We recall that
the (r)-variant of CloseStr is hard, while its (s)-variant is trivial. On the
other hand, for the substring-variant we have a quite different situation, since
both single-bound variants of CloseSubstr are hard. We shall see next that
the outlier-variant resembles the substring-variant in this regard, i. e., both
single-bound variants are hard (for the (r)-variant this is known [6], while for
the (s)-variant this is established by the following theorem).

We use a reduction from the problem Multi-Coloured Clique (which
is W[1]-hard, see [11]). The problem Multi-Coloured Clique is identical
to the standard parameterisation of Clique (i. e., we want to find a clique of
a given size kc, and kc is also the parameter), but the input graph G = (V,E)
has a partition V = V1 ∪ . . . ∪ Vkc , such that every Vi, 1 ≤ i ≤ kc, is an
independent set (we denote the parameter by kc to avoid confusion with the
number of input strings k).

Let G = (V1∪. . .∪Vkc , E) be a Multi-Coloured Clique instance. With-
out loss of generality, we assume that, for some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q},
1 ≤ i ≤ kc, i. e., each vertex has an index depending on its colour-class and its

20 Laurent Bulteau, Markus L. Schmid

a

b

c

d

e

f

a c �1
a d �2
a �3 e

b c �4
b �5 e

�6 c f

�7 d e

a c �1
a d �2
a �3 e

b c �4
b �5 e

�6 c f

�7 d e

a d e

$ a c e (×36)

$ b d f (×36)

$ � a c �
$ � a d �
$ � a � e

$ � b c �
$ � b � e

$ � � c f

$ � � d e

$ a d e

(a) (b) (c) (d)

Fig. 4 Illustration of the reductions of Theorems 6 and 7: (a) is an example instance of
Multi-Coloured Clique (with kc = 3, q = 2 and colour classes {a, b}, {c, d} and {e, f}),
(b) is the (s)-CloseStr-wo instance obtained from the graph by the reduction of Theorem 6

(where Γ = {�i | 1 ≤ i ≤ 7}, t = |E|−
(kc
2

)
= 7−3 = 4, ds =

(kc
2

)
(kc−2) = 3), (c) is the same

instance, but with the appropriate outliers crossed out and a solution string representing
a kc-clique, and (d) shows the (s)-CloseSubstr instance obtained from the graph by the

reduction of Theorem 7 (where m = kc+1 = 4, ds = (|E|(kc+2)+1)qkc+|E|kc− kc(kc−1)
2

=
234; note that by definition, each of the the first q = 2 strings, i. e., the strings Vj , is repeated
|E|(kc + 2) + 1 = 36 times), the appropriate substrings of length kc + 1 highlighted in grey
and a solution string representing a kc-clique.

rank within its colour-class. Let Σ = V ∪ Γ , where Γ is some alphabet with
|Γ | = |E|(kc−2). For every e = (vi,j , vi′,j′) ∈ E, let se ∈ Σkc with se[i] = vi,j ,
se[i
′] = vi′,j′ and all other non-defined positions are filled with symbols from

Γ such that each x ∈ Γ has exactly one occurrence in the strings se, e ∈ E.
We set S = {se | e ∈ E}, t = |E| −

(
kc
2

)
and ds =

(
kc
2

)
(kc − 2). See Fig-

ure 4(a), (b) and (c) for an illustration of the reduction and the following
proof.

Theorem 6 (s)-CloseStr-wo(ds, `, k − t) is W[1]-hard.

Proof We prove that the reduction defined above is a parameterised reduction
from Multi-Coloured Clique to (s)-CloseStr-wo(ds, `, k − t). To this
end, let G = (V1 ∪ . . .∪ Vkc , E) be a Multi-Coloured Clique instance and
let S, t and ds be obtained from G by the reduction. We first note that ` = kc,
ds =

(
kc
2

)
(kc − 2) and k − t =

(
kc
2

)
, which shows that the parameters of the

(s)-CloseStr-wo instance are all bounded by a function in kc. It remains
to prove that G has a clique of size kc if and only if the (s)-CloseStr-wo
instance has a solution.

Let K be a clique of G of size kc, let s ∈ Σkc be defined by {s[i]} = K∩Vi,
1 ≤ i ≤ kc, and let S′ = {se | e ⊆ K}. Since dH(s, s′) = kc−2, for every s′ ∈ S′,
sH(s, S′) = ds. Consequently, S′ and s is a solution for the (s)-CloseStr-wo
instance S, t, ds.

Consensus Strings with Small Maximum Distance and Small Distance Sum 21

Now let s ∈ Σkc and S′ ⊆ S with |S′| =
(
kc
2

)
be a solution for the

(s)-CloseStr-wo instance S, t, ds. If, for some s′1 ∈ S′, dH(s′1, s) ≥ kc − 1,
then there is an s′2 ∈ S′ with dH(s′2, s) ≤ kc − 3. Thus, for some i, 1 ≤ i ≤ kc,
s[i] = s′2[i] and s′2[i] ∈ Γ , which implies that replacing s[i] by s′1[i] does not
increase sH(s, S′). Moreover, after this modification, dH(s′1, s) has decreased by
1, while dH(s′2, s) ≤ kc − 2. By repeating such operations, we can transform s
such that dH(s′, s) ≤ kc−2, s′ ∈ S′. Next, assume that, for some i, 1 ≤ i ≤ kc,
there is an S′′ ⊆ S′ with |S′′| = kc and, for every s′ ∈ S′′, s[i] = s′[i]. Since
dH(s′, s) ≤ kc − 2 for every s′ ∈ S′′, pigeon-hole principle implies that there
are s′1, s

′
2 ∈ S′′ with s′1[i′] = s′2[i′] = s[i′], for some i′, 1 ≤ i′ ≤ kc, and i′ 6= i,

which, by the structure of the strings of S, is a contradiction. Consequently, for
every i, 1 ≤ i ≤ kc, s matches with at most kc − 1 strings from S′ at position
i. Since there are at least 2

(
kc
2

)
= kc(kc − 1) matches, we conclude that, for

every i, 1 ≤ i ≤ kc, s[i] matches exactly kc − 1 times with the ith position of
a string from S′. Hence, s[i] ∈ Vi, 1 ≤ i ≤ kc, i. e., s = v1,r1v2,r2 . . . vkc,rkc

,
for some rj ∈ {1, 2, . . . , q}, 1 ≤ j ≤ kc. Let K = {v1,r1 , v2,r2 , . . . , vkc,rkc

}.
For every s′ ∈ S′, by definition of the strings se, we have dH(s, s′) ≥ kc − 2,
combining with the lower-bound proved ealier, we conclude dH(s, s′) = kc− 2,
for every s′ ∈ S. Now let e = (vi,j , vi′,j′) ∈ E be such that se ∈ S′. From
dH(s, se) = kc − 2 its follows that s[i] = vi,j and s[i′] = vi′,j′ , which implies

e ⊆ K. Since |S| =
(
kc
2

)
, there are

(
kc
2

)
edges connecting vertices from K; thus,

K is a clique. ut

We note that the reduction used in the proof of Theorem 6 can also be
used in order to obtain a simpler proof for the W[1]-hardness of the problem
(r)-CloseStr-wo(dr, `, k− t) shown in [6]. More precisely, this is achieved by
simply setting dr = kc−2 instead of ds =

(
kc
2

)
(kc−2). On the other hand, the

reduction used in [6] to show the W[1]-hardness of (r)-CloseStr-wo(dr, `, k−
t) (which is from the Clique problem instead of Multi-Coloured Clique)
does not work for the (s)-variant (more precisely, the reduction produces an
instance the distance sum of which is not bounded in terms of the clique size).

These results, together with the known results from [6], settle a large num-
ber of parameterisations of the different outlier-variants of CloseStr. How-
ever, many cases are still open; see Table 2 for a summary. This is due to
the fact that, unlike for CloseStr, not even the single-bound variants are
completely settled, and there are more parameters to be considered. We shall
discuss the most interesting respective open cases in Section 6.

4 The Substring-Variant

In this section, we consider the substring-variants of CloseStr, i. e., the
different variants of the problem CloseSubstr. Similar to CloseStr, all
parameterisations of the (r)-variant, and almost all parameterisations of the
(s)-variant are already settled in the literature (while the variant with both
bounds has not yet been considered in the literature). As has been done in

22 Laurent Bulteau, Markus L. Schmid

k t |Σ| ` dr ds k − t Result Note/Ref.

p – – – – – – FPT Thm. 3, Open Prob. in [6]
– 0 2 – – – – NP-hard even for dr-var., but P for ds-var.
– p – p – – – FPT dr ≤ `
– p – – p – – FPT Thm. 5, and [6] for dr-var.
– p – – – p – FPT Thm. 4
– p – – – – p FPT k = t+ (k − t)
– – p p – – – FPT trivial
– – p – ? ? ? Open param. |Σ| and some of dr, ds, k − t
– – – p p p p W[1]-hard even for dr-var. [6] and ds-var. (Thm. 6)

Table 2 Results for (r, s)-CloseStr-wo, including (r)- and (s)-variants.

Section 2 for (r, s)-CloseStr, we are able to classify all parameterisations
of (r, s)-CloseSubstr (and its single-bound variants) with respect to the
parameters `, k, m, dr, ds and |Σ| into either fixed-parameter tractable or
W[1]-hard (thus, also solving the case left open in the literature with respect
to (s)-CloseSubstr).

With respect to the (s)-variant, the status of (s)-CloseSubstr(`) is un-
known, which is mentioned as open problem in [26]. We shall first close this
gap by proving this parameterisation to be W[1]-hard.

We devise a reduction from Multi-Coloured Clique. Let G = (V1 ∪
. . .∪Vkc , E) be a Multi-Coloured Clique instance. We again assume that,
for some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc, i. e., each vertex has an
index depending on its colour-class and its rank within its colour-class. Let
Σ = V ∪ {$, �}. For every j, 1 ≤ j ≤ q, we list all jth elements of the colour-
classes as a string Vj = $v1,jv2,j . . . vkc,j . For every edge e = (vi,j , vi′,j′) with

i < i′, we define a string Ee = $�ivi,j�i
′−i−1vi′,j′�kc−i

′−1. Note that Ee = $�E ′e,
where |E ′e| = kc, the positions i and i′ of E ′e are vi,j and vi′,j′ , respectively, and
all remaining positions are �. The (s)-CloseSubstr instance is now defined as
follows. Let S containN = |E|(kc+2)+1 occurrences of each Vj , 1 ≤ j ≤ q, and
one occurrence of each Ee, e ∈ E, and let m = kc + 1. See Figure 4(a) and (d)
for an illustration of the reduction.

For proving the correctness of the reduction, we first extend the notation of
radius optimal and distance sum optimal to sets S ⊆ Σ≤` and strings s ∈ Σm

in the natural way by taking all sets S′ of length-m substrings of the string
in S into account. The next lemma shows that distance sum optimal strings
(with respect to S and m) are basically lists of vertices from each colour-class.

Lemma 3 If s ∈ Σk+1 is distance sum optimal with respect to S, then s ∈
{$} · V1 · V2 · . . . · Vk.

Proof We first note that a string s ∈ Σkc+1 is a majority string of {Vj | 1 ≤
j ≤ q} if and only if s ∈ {$} · V1 · V2 · . . . · Vkc . More precisely, the first column
of {Vj | 1 ≤ j ≤ q} is $q and, for every i, 2 ≤ i ≤ kc + 1, the ith column of
{Vj | 1 ≤ j ≤ q} contains every vertex from Vi exactly once, so every v ∈ Vi
has majority in column i.

Now let s ∈ Σkc+1 be such that s is not a majority string for {Vj | 1 ≤
j ≤ q}, which implies that s is not distance sum optimal with respect to

Consensus Strings with Small Maximum Distance and Small Distance Sum 23

{Vj | 1 ≤ j ≤ q}. Since every Vj , 1 ≤ j ≤ q, has N = |E|(kc+2)+1 occurrences
in S, any majority string for {Vj | 1 ≤ j ≤ q}, in comparison with s, causes at
least |E|(kc + 2) + 1 fewer mismatches with respect to all occurrences of the
strings {Vj | 1 ≤ j ≤ q}. Since the total number of symbols of the remaining
strings in {Ee | e ∈ E} is |E|(kc+2), this cannot be compensated, which means
that a majority string for {Vj | 1 ≤ j ≤ q} has lower distance sum than s and
therefore s is not distance sum optimal with respect to S and m. ut

Now let s be distance sum optimal with respect to S andm. From Lemma 3,
we can conclude that s = $v1,r1v2,r2 . . . vkc,rkc

, for some rj ∈ {1, 2, . . . , q},
1 ≤ j ≤ kc. Let K be the corresponding set of vertices induced by s, i. e.,
K = {v1,r1 , v2,r2 , . . . , vkc,rkc

}.

Lemma 4 Let e ∈ E. The optimal distance between s and a length-(kc + 1)
substring of Ee is kc − 1 if e ⊆ K, and kc otherwise.

Proof We first recall that s[1] = $, s[i + 1] ∈ Vi, 1 ≤ i ≤ kc, and s has
no occurrences of �. Now let e = (vi,j , vi′,j′). The string Ee has two length-
m substrings: Ee[1..kc + 1] and Ee[2..kc + 2]. The string Ee[1..kc + 1] starts
with $, has vi,j and vi′,j′ at positions i + 2 and i′ + 2 (if i′ + 2 ≤ kc + 1),
respectively, and � at every other position. Consequently, due to the structure
of s, the strings s and Ee[1..kc + 1] only match at position 1, which implies
dH(s, Ee[1..kc + 1]) = kc.

On the other hand, the string Ee[2..kc + 2] starts with �, has vi,j and
vi′,j′ at positions i+ 1 and i′ + 1, respectively, and � at every other position.
Consequently, the only possible matching positions between s and Ee[2..kc+2]
are i+ 1 and i′ + 1. We note that both of these positions match if and only if
s[i+1] = vi,j and s[i′+1] = vi′,j′ , which means that dH(s, Ee[2..kc+2]) = kc−1
if and only if e ⊆ K. If only one or none of these positions match, then
dH(s, Ee[2..kc + 2]) ≥ kc. ut

Using the lemmas from above, we can now show the correctness of the
reduction.

Theorem 7 (s)-CloseSubstr(`,m) is W[1]-hard.

Proof We first note that ` = kc + 2 and m = kc + 1; thus, the parameters are
bounded by a function in kc.

Let s ∈ Σkc+1 be distance sum optimal with respect to S and m, and let
K be the corresponding set of vertices. We first note that the total distance
from s to the N copies of the strings Vj , 1 ≤ j ≤ q, is exactly Nqkc. According
to Lemma 4, for every e ∈ E, the optimal distance sum between s and the
respective substring of Ee is kc−1 if e ⊆ K, and kc otherwise. Hence, the total
distance sum from s to the respective substrings of Ee, e ∈ E, is |E|kc − r,
where r = {e ∈ E | e ⊆ K}, and the total distance sum between s and S is
therefore Nqkc+|E|kc−r. This implies that the distance sum between s and S

is Nqkc+ |E|kc− kc(kc−1)
2 if and only if r = kc(kc−1)

2 if and only if K is a clique
of size kc. Consequently, the above reduction, with the addition of ds = Nqkc+

24 Laurent Bulteau, Markus L. Schmid

` k m ds |Σ| Result Reference

– – p – p FPT trivial
p – – – p FPT [26]
p p – – – FPT [26]
p – – p – FPT [26]
– – – p p FPT [22]
– p – – 2 W[1]-hard [15]
– p p p – W[1]-hard [15]
p – p – – W[1]-hard Thm. 7

Table 3 Results for (s)-CloseSubstr.

|E|kc− kc(kc−1)
2 , is a parameterised reduction from Multi-Coloured Clique

to (s)-CloseSubstr(`,m). ut

Theorem 7 together with known results from the literature completely
settle the parameterised complexity of (s)-CloseSubstr. See Table 3 for an
illustration.2

Moving on to the problem (r, s)-CloseSubstr, we first observe that reduc-
ing (s)-CloseSubstr to (r, s)-CloseSubstr by setting dr = m is a parame-
terised reduction from (s)-CloseSubstr(`,m) to (r, s)-CloseSubstr(`,m, dr),
which implies the following corollary:

Corollary 2 (r, s)-CloseSubstr(`,m, dr) is W[1]-hard.

Next, we consider several fixed-parameter tractable variants of the prob-
lem (r, s)-CloseSubstr. To this end, we first observe the following obvious
parameter dependencies:

Remark 1 For (r, s)-CloseSubstr, without loss of generality, we can assume
the following dependencies between the parameters:

1. m ≤ `,
2. |Σ| ≤ ` k,
3. ds < k implies that every solution string is identical to some length-m

substring of some input string.

Theorem 8 All of the following problems are in FPT:

– (r, s)-CloseSubstr(m, |Σ|),
– (r, s)-CloseSubstr(`, k),
– (r, s)-CloseSubstr(`, |Σ|),
– (r, s)-CloseSubstr(`, ds).

Proof The problem (r, s)-CloseSubstr(m, |Σ|) is obviously in FPT, since
there are only |Σ|m possible candidates for solution strings. With Points 1

2 For a corresponding table of the already known results for (r)-CloseSubstr, see,
e. g., [26, Table 1].

Consensus Strings with Small Maximum Distance and Small Distance Sum 25

` k m dr ds |Σ| Result Reference

– – p – – p FPT Thm. 8
p p – – – – FPT Thm. 8
p – – – p – FPT Thm. 8
p – – – – p FPT Thm. 8
p – p p – – W[1]-hard Cor. 2, Open Prob. in [26]
– p – p p p W[1]-hard [22]
– p p p p – W[1]-hard [15]

Table 4 Results for (r, s)-CloseSubstr.

and 2 of Remark 1, this directly implies (r, s)-CloseSubstr(`, k) ∈ FPT and
(r, s)-CloseSubstr(`, |Σ|) ∈ FPT.

Finally, we consider (r, s)-CloseSubstr(`, ds). If k ≤ ds, then ` and k
are parameters, a variant for which containment in FPT is already shown. If,
on the other hand, ds < k, then, by Point 3 of Remark 1, it is sufficient to
check all substrings of the input strings si, 1 ≤ i ≤ k, which can be done in
polynomial-time. ut

From these new results presented in this section and the existing results
for the single-bound variants, it follows that all remaining parameterisations of
(r, s)-CloseSubstr are W[1]-hard. More precisely, it is known that the prob-
lem (r)-CloseSubstr is W[1]-hard for parameterisations (k, dr, |Σ|) (see [22])
and (k,m, dr) (see [15]). Hence, the obvious reduction, i. e., setting ds =
k dr, shows that (r, s)-CloseSubstr is W[1]-hard for the parameterisations
(k, dr, ds, |Σ|) and (k,m, dr, ds). As can be checked with the help of Table 4,
this now classifies all parameterised variants of (r, s)-CloseSubstr.

5 Kernelisation

Before we can discuss kernelisations results for the consensus string problems,
we need a few more preliminary concepts and results. First, we recall the
concept of a polynomial parameter transformation from [5]. A polynomial pa-
rameter transformation from a parameterised problem P1 to a parameterised
problem P2 is a polynomial-time computable function f that maps P1 in-
stances to P2 instances and a polynomial p, such that, for every P1 instance
(x, k) with f(x, k) = (x′, k′), we have

– (x, k) is a positive instance if and only if (x′, k′) is a positive instance,
– k′ ≤ p(k).

Theorem 9 ([5]) Let P1 and P2 be parameterised problems, and let P̂1 and

P̂2 be the corresponding classical problems derived from P1 and P2. Moreover,
assume that P̂1 is NP-complete, P̂2 ∈ NP and there is a polynomial parameter
transformation from P1 to P2. If P2 has a polynomial kernel, then P1 has a
polynomial kernel.

26 Laurent Bulteau, Markus L. Schmid

While Theorem 9 allows to carry over the existence of a polynomial kernel
from one problem to another, it also allows to show that a problem most likely
does not have a polynomial kernel. More precisely, if a parameterised prob-
lem P has no polynomial kernel (with respect to some complexity theoretical
assumption) and there is a polynomial parameter transformation from P to
some parameterised problem P ′, then also P ′ has no polynomial kernel (with
respect to the same assumption).

Next, we recall the concept of a polynomial equivalence relation from [4].
Let R be an equivalence relation over ∆∗. The relation R is a polynomial
equivalence relation if the following conditions are satisfied:

– For given x, y ∈ ∆∗, we can decide whether x and y are R-equivalent in
polynomial time.

– For every finite X ⊆ ∆∗ the relation R partitions S into a number of classes
that is polynomially bounded in max{|x| | x ∈ X}.

Finally, we recall the concept of a cross composition from [4]. Let K ⊆ ∆∗

be a problem (interpreted as a language), let R be a polynomial equivalence
relation on ∆∗ and let P ⊆ (∆∗ × N) be a parameterised problem. A cross-
composition from K into P (with respect to R) is an algorithm that, given
instances x1, x2, . . . , xq ∈ ∆∗ of K that belong to the same R-equivalence class,
takes time polynomial in

∑q
i=1 |xi| and produces an instance (y, k) ∈ ∆∗ × N

such that the following holds:

– k is polynomial bounded in max{|xi|+ log q | 1 ≤ i ≤ q}.
– (y, k) is a positive P instance if and only if at least one xi, 1 ≤ i ≤ q, is a

positive K instance.

The purpose of cross-decompositions is demonstrated by the following the-
orem:

Theorem 10 ([4]) If there is a cross-composition of an NP-hard problem into
a parameterised problem P , then P does not have a polynomial kernel, unless
coNP ⊆ NP/Poly.

Note that coNP ⊆ NP/Poly implies a collapse of the polynomial hierar-
chy and is considered unlikely. We are now ready to present the kernelisation
results, which shall be proved by applying the framework provided above.

For the (dr)-variants of CloseStr and CloseSubstr, the question whether
the fixed-parameter tractable variants have a polynomial kernel has already
been investigated in [2]. We restate the results relevant for us:

Theorem 11 ([2]) The parameterised problems (r)-CloseStr(dr, `, |Σ|) and
(r)-CloseSubstr(k,m, dr, |Σ|) do not admit a polynomial kernel unless coNP ⊆
NP/Poly.

From these results (in addition to some simple observations and other
known results), we can directly conclude some results about polynomial kernels
with respect to (r, s)-CloseStr and (r, s)-CloseSubstr.

Consensus Strings with Small Maximum Distance and Small Distance Sum 27

Proposition 1

– (r, s)-CloseStr(dr, `, |Σ|) has no polynomial kernel unless coNP ⊆ NP/Poly.
– (r, s)-CloseStr(k, dr) has a kernel of size O(k2dr log k).
– (r, s)-CloseStr(ds) has a kernel of size O((ds)

3 log ds).

Proof Transforming an (r)-CloseStr instance into an (r, s)-CloseStr in-
stance by setting ds = kdr is a polynomial parameter transformation from the
problem (r)-CloseStr(dr, `, |Σ|) to (r, s)-CloseStr(dr, `, |Σ|); thus, Theo-
rem 11 implies the first statement of the proposition.

The O(k2dr log k) kernel for (r)-CloseStr(k, dr) (see [18]) is also a kernel
for (r, s)-CloseStr(k, dr); which proves the second statement.

If k > ds, then the only possible solution strings are the input strings,
which can be checked in polynomial-time (and the instance can accordingly
be reduced to a trivial positive or negative kernel of constant size). Thus, we
can assume that k ≤ ds. Moreover, if dr > ds, then we can set dr = ds, which
results in an equivalent instance, since sH(S, s) ≥ rH(S, s) for any set of strings
S. Thus, we can assume that dr ≤ ds. Consequently, it follows from the second
statement that we can construct a kernel of size O(k2dr log k) = O(d3s log ds).
This proves the third statement. ut

With respect to (r, s)-CloseStr, this leaves the case open where only k
(or k and |Σ|, which, due to the dependency |Σ| ≤ k (see [18]), is the same
question) is a parameter (regarding this case, note that for (r)-CloseStr(k)
no combinatorial kernel or combinatorial fpt-algorithm is known).

Question 2 Does (r, s)-CloseStr(k) allow a polynomial kernel?

Next, we take a look at kernelisation questions for (r, s)-CloseSubstr.

Proposition 2

– (r, s)-CloseSubstr(k,m, dr, ds, |Σ|) has no polynomial kernel unless coNP ⊆
NP/Poly.

– (r, s)-CloseSubstr(`, k) has a kernel of size O(`k).
– (r, s)-CloseSubstr(`, ds) has a kernel of size O(`ds).

Proof Transforming an (r)-CloseSubstr instance into a (r, s)-CloseSubstr
instance by setting ds = kdr is a polynomial parameter transformation from
(r)-CloseSubstr(k,m, dr, |Σ|) to (r, s)-CloseSubstr(k,m, dr, ds, Σ); thus,
Theorem 11 implies the first statement of the proposition.

Since we can assume that dr, ds ≤ `k, any (r, s)-CloseSubstr(`, k) in-
stance has size O(`k), which proves the second point.

If ds < k, then the solution string must be a substring of an input string
(see Remark 1), which can be checked in polynomial-time (and the instance
can accordingly be reduced to a trivial positive or negative kernel of constant
size). If, on the other hand, k ≤ ds, then the instance has size O(`ds). ut

With respect to the different variants of CloseSubstr, the following cases
are left open.

28 Laurent Bulteau, Markus L. Schmid

Question 3 Which of the following problems allow a polynomial kernel?

– (r, s)-CloseSubstr(`, |Σ|),
– (r)-CloseSubstr(`),
– (r)-CloseSubstr(`, dr),
– (r)-CloseSubstr(`, |Σ|),
– (s)-CloseSubstr(m, |Σ|),
– (r)-CloseSubstr(ds, |Σ|).

For the outlier-variant, no kernelisation lower bounds are known so far.
However, the following can be concluded from [2].

Proposition 3 The following problems have no polynomial kernel unless coNP ⊆
NP/Poly.

– (r)-CloseStr-wo(dr, `, t, |Σ|).
– (r, s)-CloseStr-wo(dr, `, t, |Σ|).

Proof Reducing (r)-CloseStr to (r)-CloseStr-wo by setting t = 0 is a poly-
nomial parameter transformation from the problem (r)-CloseStr(dr, `, |Σ|)
to (r)-CloseStr-wo(dr, `, t, |Σ|); thus, Theorem 11 implies the first statement
of the proposition.

Transforming an (r)-CloseStr instance into an (r, s)-CloseStr instance
by setting ds = kdr is a polynomial parameter transformation from the prob-
lem (r)-CloseStr-wo(dr, `, t, |Σ|) to (r, s)-CloseStr-wo(dr, `, t, |Σ|); thus,
the second statement of the proposition follows.

ut

As our main contribution to the question of kernelisation hardness of con-
sensus string problems, we present a cross-composition from (r)-CloseStr
into (r)-CloseStr-wo, which allows us to rule out a polynomial kernel for
the parameterisation (dr, ds, `, (k − t), |Σ|) of (r)-CloseStr-wo.

Theorem 12 (r, s)-CloseStr-wo(dr, ds, `, (k−t), |Σ|) does not admit a poly-
nomial kernel unless coNP ⊆ NP/Poly.

Proof We prove the result by a cross-composition of (r)-CloseStr (over the
alphabet Σ = {0, 1}) into (r)-CloseStr-wo(dr, ds, `, (k − t), |Σ|) (note that
(r)-CloseStr is NP-complete for binary alphabets [17]). We first recall that
a (r)-CloseStr instance is a tuple (S, dr) with S = {si | 1 ≤ i ≤ k} ⊆ Σ` for
some ` ∈ N, and dr ∈ N; in the following, we denote its total size by |(S, dr)|.
We note that |(S, dr)| = O(k` log(|Σ|) + log(dr)) = O(k`) (since we assume
|Σ| = 2 and dr ≤ `).

We define an equivalence relation ∼ over the set of (r)-CloseStr instances
as follows. For j ∈ {1, 2}, let Sj = {sj,i | 1 ≤ i ≤ kj} ⊆ Σ`j and dr,j ∈
N be two (r)-CloseStr instances. Then (S1, dr,1) ∼ (S2, dr,2) if k1 = k2,
`1 = `2 and dr,1 = dr,2. For any two instances (S1, dr,1) and (S2, dr,2), it
can be checked in time polynomial in |(S1, dr,1)| + |(S2, dr,2)| whether or not
(S1, dr,1) ∼ (S2, dr,2). Let X be a finite set of (r)-CloseStr instances with

Consensus Strings with Small Maximum Distance and Small Distance Sum 29

k̂, ̂̀ and d̂r being the largest number of strings, lengths of strings and radius
bound that occur in any instances of X (note that these parameters can occur
in different instances). Obviously, the number of equivalence classes of X (with

respect to relation ∼) is bounded by (k̂ ̂̀d̂r). Moreover, each of k̂, ̂̀ and d̂r
is bounded by max{|x| | x ∈ X} (note that d̂r is bounded by max{|x| |
x ∈ X} since we can assume dr ≤ ` for all instances). This implies that
∼ partitions X into at most (max{|(S, dr)| | (S, dr) ∈ X})O(1) equivalence
classes. Consequently, ∼ is a polynomial equivalence relation.

Now let (S1, dr), (S2, dr), . . . , (Sq, dr) be ∼-equivalent (r)-CloseStr in-
stances, where, for the sake of convenience, Si = {si,1, si,2, . . . , si,k} ⊆ Σ`,
1 ≤ i ≤ q. For every i, 1 ≤ i ≤ q, let Bi denote the binary represen-
tation of i with exactly dlog(q)e bits, and let Ci = (Bi)

2dr+1 (i. e., Ci is
the (2dr + 1)-fold repetition of the binary string Bi). Moreover, for every
i, 1 ≤ i ≤ q, let S′i = {s′i,1, s′i,2, . . . , s′i,k}, where, for every j, 1 ≤ j ≤ k,
s′i,j = si,jCi. Finally, let the (r, s)-CloseStr-wo instance be (S′, d′r, d

′
s, t)

with S′ =
⋃q
i=1 S

′
i, d
′
r = dr, d

′
s = kdr and t = (q− 1)k. Note that (S′, d′r, d

′
s, t)

is a valid (r, s)-CloseStr-wo instance with k′ = qk input strings that are all
of the same length `′ = `+ (2dr + 1)dlog(q)e. This construction can clearly be
computed in polynomial time and, in order to show that it is a correct cross-
composition of (r)-CloseStr into (r, s)-CloseStr-wo(d′r, d

′
s, `
′, (k′− t), |Σ|),

we have to prove the following claims.

Claim 1: Each of the parameters d′r, d
′
s, `
′, (k′ − t) and |Σ| are bounded by a

polynomial in max{|(Si, dr)| | 1 ≤ i ≤ q}+ log(q).

Proof of Claim 1: We first note that max{|(Si, dr)| | 1 ≤ i ≤ q} + log(q) =
k` + log q and recall that |Σ| = 2, d′r = dr ≤ ` and d′s = kdr ≤ k`. Moreover,
(k′ − t) = qk − (q − 1)k = k and `′ = ` + (2dr + 1)dlog(q)e = O(` log(q)).
(Claim 1) ut
Claim 2: (S′, d′r, d

′
s, t) is a positive (r, s)-CloseStr-wo(d′r, d

′
s, `
′, (k′ − t), |Σ|)

instance if and only if there is an i, 1 ≤ i ≤ q, such that (Si, dr) is a positive
(r)-CloseStr instance.

Proof of Claim 2: We first prove the only if direction and let (S′, d′r, d
′
s, t) be a

positive (r, s)-CloseStr-wo(d′r, d
′
s, `
′, (k′− t), |Σ|) instance. This means that

there is a set A ⊆ S′ with |A| = (k′−t) = k and a string s such that rH(s,A) ≤
d′r = dr. For the sake of concreteness, let A = {s′i1,j1 , s

′
i2,j2

, . . . , s′ik,jk}. If,
for some p, p′, 1 ≤ p < p′ ≤ q, ip 6= ip′ , then dH(sip,jp , sip′ ,jp′) ≥ 2d′r + 1,
since dH(Bip , Bip′) ≥ 1 and sip,jp , sip′ ,jp′ have suffixes Cip , Cip′ , respectively.

Consequently, rH(s′, A) > d′r, for every s′ ∈ Σ`′ , which is a contradiction.
Hence, i1 = i2 = . . . = ik, which implies that A = S′i, for some i, 1 ≤ i ≤ q.
Since all strings in S′i have the same length-((2dr + 1)dlog(q)e) suffix Ci and
since we obtain the strings of Si if we remove this common suffix, we conclude
that rH(s[1..`], Si) ≤ rH(s, S′i) ≤ d′r = dr, which implies that (Si, dr) is a
positive (r)-CloseStr instance.

In order to prove the if direction, let, for some i, 1 ≤ i ≤ q, (Si, dr) be a
positive (r)-CloseStr instance, i. e., there is an s ∈ Σ` with rH(s, Si) ≤ dr.

30 Laurent Bulteau, Markus L. Schmid

Hence, rH(sCi, S
′
i) ≤ dr, which, in particular, implies that sH(sCi, S

′
i) ≤ kdr =

d′s. Consequently, (S′, d′r, d
′
s, t) is a positive (r, s)-CloseStr-wo(d′r, d

′
s, `
′, (k′−

t), |Σ|) instance with respect to inlier-set S′i ⊆ S′ and solution string sCi.
(Claim 2) ut

This concludes the proof. ut

6 Conclusions

In this section, we discuss our results and state the most interesting open
problems that are left for further research.

Our main positive algorithmic result is the branching algorithm from The-
orem 5. It demonstrates that the fixed parameter tractability of CloseStr
with respect to the practically most relevant parameter dr is robust in the
sense that we can afford to also exclude outliers (as long as their number
is also treated as a parameter) and add a distance sum bound (see also the
motivation for such a problem variant at the beginning of Section 1).

Moreover, we provide a complete “fixed-parameter tractability map” for
the problems CloseStr and CloseSubstr, i. e., their general variants and
their single-bound variants, for all possible combinations of the parameters
k, `, dr, ds, |Σ| and m. This is done by complementing the existing work
with respect to the single-bound variants and by adapting these results to the
general variant.

In this regard, (r, s)-CloseStr shows the same positive tractability results
as the (r)-variant, i. e., it is fixed-parameter tractable for all single parameters
except |Σ|. With respect to the substring-variant, our results demonstrate
that adding a distance sum bound may increase the complexity. For example,
while parameter ` is sufficient for fixed-parameter tractable with respect to the
radius variant, we get a W[1]-hard problem if we add a distance sum bound,
even if we additionally take m and dr as parameters. In order to maintain
fixed-parameter tractability, we would have to also treat the distance sum
bound as a parameter, or to take k as a parameter. In general, for the general
or single-bound variants of the substring-variant, things do not look good fpt-
wise.

The only questions left open with respect to CloseStr and CloseSubstr
are about whether the fixed parameter tractable variants allow polynomial
kernels. More precisely, it is unknown whether the general or the radius vari-
ant of CloseStr(k) allows a polynomial kernel and for the substring-variant
several cases are open, which are summarised in Question 3. With respect to
(r)-CloseStr(k), there is a more important question still open: the only fixed-
parameter tractability results rely on integer linear programming and a combi-
natorial fpt-algorithm is still unknown. This has already been reported in [18]
and is explicitly stated as an open problem in the survey [7]. In particular, we
stress the fact that several of our fixed-parameter tractability results extend
or directly use the ILP approach from [18] and therefore have the same issue;

Consensus Strings with Small Maximum Distance and Small Distance Sum 31

namely, this is the case for (r, s)-CloseStr(k) and (r, s)-CloseStr-wo(k)
and their single-bound variants.

With respect to the outlier-variant, our “fixed-parameter tractability map”
is still rather incomplete (see also Table 2), both in the sense that for several
parameterisations fixed-parameter tractability is unknown and for some fixed-
parameter tractability variants it is unknown whether they allow polynomial
kernels. The existing results show that, for fixed-parameter tractability, the
single parameter k is sufficient (although based on ILP) and parameterising
by the number of outliers t is also enough if at least one of the parameter
`, dr, ds or k − t is taken into consideration as well. Unfortunately, t and
|Σ| is not enough and, surprisingly, for any other combination containing |Σ|
(except the trivial one (|Σ|, `)), we were not able to prove fixed-parameter
tractability or W[1]-hardness. This is wort pointing out, since the parameter
|Σ| is rather important due to the fact that in practical scenarios it can often be
assumed to be of rather small constant size. Consequently, the most important
open question with respect to the outlier-variant is whether fixed-parameter
tractability can be achieved by coupling |Σ| with any of the parameters dr, ds
or k − t (see Question 1).

References

1. Amir, A., Landau, G.M., Na, J.C., Park, H., Park, K., Sim, J.S.: Efficient algorithms
for consensus string problems minimizing both distance sum and radius. Theoretical
Computer Science 412, 5239–5246 (2011)

2. Basavaraju, M., Panolan, F., Rai, A., Ramanujan, M.S., Saurabh, S.: On the kerneliza-
tion complexity of string problems. Theor. Comput. Sci. 730, 21–31 (2018)

3. Ben-Dor, A., Lancia, G., Ravi, R., Perone, J.: Banishing bias from consensus sequences.
In: Proc. 8th Annual Symposium on Combinatorial Pattern Matching, CPM 1997,
LNCS, vol. 1264, pp. 247–261 (1997)

4. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-
composition. SIAM Journal of Discrete Mathematics 28(1), 277–305 (2014)

5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint
paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

6. Boucher, C., Ma, B.: Closest string with outliers. BMC Bioinformatics 12, S55 (2011)
7. Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate algorithmics

for NP-hard string problems. Bulletin of the EATCS 114, 31–73 (2014)
8. Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,

M., Saurabh, S.: Parameterized Algorithms. Springer (2015)
9. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic design of drugs without side-effects.

SIAM Journal of Computing 32(4), 1073–1090 (2003)
10. Dopazo, J., Rodrguez, A., Siz, J., Sobrino, F.: Design of primers for PCR amplification

of highly variable genomes. Computer Applications in the Biosciences 9(2), 123–125
(1993)

11. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer Science & Business
Media (2012)

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer (2013)

13. Evans, P.A., Smith, A., Wareham, H.T.: The parameterized complexity of p-center
approximate substring problems. Technical Report TR01-149, Faculty of Computer
Science, University of New Brunswick, Canada (2001)

14. Evans, P.A., Smith, A.D., Wareham, H.T.: On the complexity of finding common ap-
proximate substrings. Theoretical Computer Science 306, 407–430 (2003)

32 Laurent Bulteau, Markus L. Schmid

15. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif
search problems. Combinatorica 26, 141–167 (2006)

16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
17. Frances, M., Litman, A.: On covering problems of codes. Theory of Computing Systems

30, 113–119 (1997)
18. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest

string and related problems. Algorithmica 37, 25–42 (2003)
19. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection

problems. Information and Computation 185, 41–55 (2003)
20. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of

Operations Research 8(4), 538–548 (1983)
21. Lucas, K., Busch, M., Mssinger, S., Thompson, J.A.: An improved microcomputer pro-

gram for finding gene- or gene family-specific oligonucleotides suitable as primers for
polymerase chain reactions or as probes. Computer Applications in the Biosciences
7(4), 525–529 (1991)

22. Marx, D.: Closest substring problems with small distances. SIAM Journal on Computing
38, 1382–1410 (2008)

23. Pavesi, G., Mauri, G., Pesole, G.: An algorithm for finding signals of unknown length
in DNA sequences. Bioinformatics 17, S207–S214 (2001)

24. Pevzner, P., Sze, S.: Combinatorial approaches to finding subtle signals in DNA strings.
In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular
Biology, ISMB 2000, pp. 269–278 (2000)

25. Proutski, V., Holmes, E.C.: Primer master: a new program for the design and analysis
of PCR primers. Computer Applications in the Biosciences 12(3), 253–255 (1996)

26. Schmid, M.L.: Finding consensus strings with small length difference between input and
solution strings. TOCT 9(3), 13:1–13:18 (2017)

27. Tompa, M., Li, N., Bailey, T.L., Church, G.M., Moor, B.D., Eskin, E., Favorov, A.V.,
Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S., Pavesi, G.,
Pesole, G., Rgnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert,
M., Weng, Z., Workman, C., Ye, C., Zhu, Z.: Assessing computational tools for the
discovery of transcription factor binding sites. Nature Biotechnology 23(1), 137–144
(2005)

