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Abstract

We investigate the complexity of the solvability problem for restricted classes of word
equations with and without regular constraints. The solvability problem for unrestricted
word equations remains NP-hard, even if, on both sides, between any two occurrences
of the same variable no other different variable occurs; for word equations with regular
constraints, the solvability problems remains NP-hard for equations whose sides two sides
share no variables or with two variables, only one of which is repeated. On the other hand,
word equations with only one repeated variable (but an arbitrary number of variables) and
at least one non-repeated variable on each side, can be solved in polynomial-time.

1 Introduction

A word equation is a symbolic equality α = β, such that α and β are words over an alphabet
Σ ∪ X, where Σ is a finite alphabet of constants and X = {x1, x2, x3, . . .} is an enumerable
set of variables. A solution to a word equation α = β is a morphism h : (Σ ∪ X)∗ → Σ∗ that
satisfies h(α) = h(β) and h(b) = b for every b ∈ Σ. For example, xaby = byxa is a word
equation with variables x, y, constants a, b and h with h(x) = bab, h(y) = aba is a solution,
since h(xaby) = babababa = h(byxa).

The solvability problem for word equations, i. e., to decide whether or not a given word
equation has a solution, has a long history with the most prominent landmark being Makanin’s
algorithm [12] from 1977, which showed the solvability problem to be decidable (see Chapter
12 of [11] for a survey). While the complexity of Makanin’s original algorithm was very high,
it is nowadays known that the solvability problem is in PSPACE (see [9, 14]) and NP-hard (in
fact, it is even believed to be in NP). Word equations with only a single variable can be solved
in linear time [8] and equations with two variables can be solved in time O(n5) [3]; it is not
known whether there exist polynomial-time algorithms solving word equations with k variables,
for k ≥ 3.

If we require β ∈ Σ∗, i. e., only one side of the equation is allowed to contain variables,
then we obtain the pattern matching problem with variables (or simply matching problem, for
short), where the term pattern refers to the part α that can contain variables. The matching
problem is NP-complete and, compared to the solvability problem for word equations, many more
tractability and intractability results are known (see [5,6,15]). More precisely, while restrictions
of numerical parameters (e. g., number of variables, number of occurrences per variable, length
of substitution words, alphabet size, etc.) make the problem either polynomial-time solvable in
a trivial way (e. g., if the number of variables is bounded by a constant) or result in strongly
restricted, but still NP-complete variants (see [5]), structural restrictions of the pattern (e. g., of
the order of the variables) are more promising and can yield rich classes of patterns for which
the matching problem can be solved in polynomial-time (see [15]). For example, the matching
problem remains NP-complete if |Σ| = 2, every variable has at most two occurrences in α and
every variable can only be replaced by the empty word or a single symbol. Nevertheless, efficient
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polynomial-time algorithms exist (see [4]), if the patterns are regular (i. e., every variable has
at most one occurrence), the patterns are non-cross (i. e., between any two occurrences of the
same variable x no other variable different from x occurs) or the patterns have a bounded scope
coincidence degree (i. e., the maximum number of scopes of variables that overlap is bounded,
where the scope of a variable is the interval in the pattern where it occurs).

Technically, all these results can be seen as tractability and intractability results for restricted
variants of the solvability problem for word equations (in fact, as it seems, all NP-hardness lower
bounds for restricted variants of the solvability problem in the literature are actually NP-hardness
lower bounds for the matching problem). However, these results are disappointing in terms of
how much they provide us with a better understanding of the complexity of word equations,
since in the matching problem the most crucial feature of word equations, of having variables
on both sides, is missing.

The aim of this paper is to look into the complexity of the solvability problem for word
equations, whose hardness is not derived from the hardness of the matching problem. In partic-
ular, we investigate whether the structural restrictions mentioned above, which are beneficial for
the matching problem, can be extended, with a comparable positive impact, to classes of word
equations that have variables on both sides. We pay special attention to regular constraints,
i. e., each variable x is accompanied by a regular language Lx from which h(x) must be selected
in a solution h. While Makanin’s algorithm still works in the presence of regular constraints, it
turns out that for more restricted classes of equations, the addition of regular constraints can
drastically increase the complexity of the solvability problem.

2 Definitions

Let Σ be a finite alphabet of constants and let X = {x1, x2, x3, . . .} be an enumerable set of
variables. For any word w ∈ (Σ ∪ X)∗ and z ∈ Σ ∪ X, we denote by |w|z the number of
occurrences of z in w, by var(w) the set of variables occurring in w and, for every i, 1 ≤ i ≤ |w|,
w[i] denotes the symbol at position i in w. A morphism h : (Σ ∪X)∗ → Σ∗ with h(a) = a for
every a ∈ Σ is called a substitution. A word equation is a tuple (α, β) ∈ (Σ ∪X)+ × (Σ ∪X)+

(for the sake of convenience, we also write α = β) and a solution to a word equation (α, β)
is a substitution h with h(α) = h(β), where h(α) is the solution word (defined by h). A word
equation is solvable if there exists a solution for it and the solvability problem is to decide for a
given word equation whether or not it is solvable.

A word α ∈ (Σ ∪ X)∗ is usually called pattern, and L(α) = {h(α) | h is a substitution} is
the pattern language of α. We say that α is regular1, if, for every x ∈ var(α), |α|x = 1; e. g.,
ax1bax2cx3bcax4ax5bb is regular. The word α is non-cross if between any two occurrences of
the same variable x no other variable different from x occurs, e. g., ax1bax1x2ax2x2x3x3bx4 is
non-cross, whereas x1bx1x2bax3x3x4x4bcx2 is not. A word equation (α, β) is regular or non-
cross, if both α and β are regular or both α and β are non-cross, respectively.

An equation (α, β) is variable disjoint if var(α) ∩ var(β) = ∅.
For a word equation α = β and an x ∈ var(αβ), a regular constraint (for x) is a regular

language Lx and a solution h for α = β satisfies the regular constraint Lx if h(x) ∈ Lx.
The solvability problem for word equations with regular constraints is to decide on whether an
equation α = β with regular constraints Lx, x ∈ var(αβ), given as NFA, has a solution that
satisfies all regular constraints. The size of the regular constraints is the sum of the number of
states of the NFA. If the regular constraints are all of the form Γ∗, for some Γ ⊆ Σ, then we call
them word equations with individual alphabets. A word equation α = β along with an m ∈ N is
a bounded word equation. The problem of solving a bounded word equation is then to decide on
whether there exists a solution h for α = β with |h(x)| ≤ m for every x ∈ var(αβ).

1The usage of the term regular in this context has historical reasons: the matching problem has been first
investigated in terms of pattern languages, which are regular languages if α is regular.
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3 Regular and Non-Cross Word Equations

For the matching problem, the restriction of regularity implies that every variable has only one
occurrence in the equation, which makes the solvability problem trivial (in fact, it boils down
to the membership problem for a very simple regular language). However, word equations in
which both sides are regular can still have repeated variables, although the maximum number of
occurrences per variable is 2 (i. e., regular equations are restricted variants of quadratic equations
(see, e. g., [16])) and these two occurrences must occur on different sides. Unfortunately, we are
neither able to show NP-hardness nor to find a polynomial-time algorithm for the solvability
problem of regular word equations.

Open Problem 1. Can regular word equations be solved in polynomial-time?

As we shall see later, solving a system of two regular equations is NP-hard (Corollary 1),
solving regular equations with regular constraints is even PSPACE-complete (Theorem 3), and
solving bounded regular equations or regular equations with individual alphabets is NP-hard
(Corollaries 3 and 4, respectively), as well.

On the positive side, it can be easily shown that regular word equations can be solved in
polynomial-time, if we additionally require them to be variable disjoint (no variable is repeated
in the whole equation). More precisely, in this case, we only have to check emptiness for the
intersection of the pattern languages described by the two sides of the equations (which are
regular languages).

Next, we show that polynomial-time solvability is still possible if at most one variable is
repeated, and each side contains at least one non-repeating variable.

Theorem 1. Word equations with only one repeated variable, and each side containing at least
one non-repeating variable, can be solved in polynomial time.

Proof. Let us consider a word equation α = β such that α and β contain the repeated variable x
and α contains, in order from left to right, the variables y1, . . . , yk (each appearing exactly once)
while β contains, in order from left to right, the variables z1, . . . , zp (each appearing exactly
once), with k, p ≥ 1. We can also assume without losing generality that at least one of α and β
starts with a variable and that they have an empty common prefix; also, assume that at least
one of α and β ends with a variable and that they have an empty common suffix. For simplicity,
if the equation α = β has a solution, let wt be the image of the variable t under the solution-
substitution h, for t ∈ {x} ∪ {y1, . . . , yk} ∪ {z1, . . . , zp}. Let us sketch the strategy we use to
solve such equations, and show it works in polynomial time.

For the ease of presentation, we treat first the case k, p ≥ 2. Let α′ be the prefix of α
occurring before y1 and let β′ be the prefix of β occurring before z1. Let α′′ be the suffix of α
occurring after yk and let β′′ be the suffix of β occurring after zp.

Let us assume that α′ is empty. If neither of α′′ and β′′ is empty we proceed as in the next
case (when neither α′ nor β′ is empty), and consider the mirrored equation αR = βR instead of
the original one (where wR is the mirror image of the word w). So we assume that at least one
of α′′ and β′′ is empty. If α′′ is empty we solve the equation as follows: wy1 = h(w), where w is
the prefix of β occurring before zp, wzp = h(v), where v is the factor of α occurring between y1
and yk, and wyk = h(β′′), while the other variables are defined arbitrarily. If β′′ is empty then
we only define wy1 = h(w), where w is defined as above, and wzp = h(vykα

′), again v is defined
as above; the other variables are defined arbitrarily. The case when β′ is empty can be treated
analogously: just exchange α and β.

We now look at the case when neither α′ nor β′ is empty. Let us assume that α′ starts with
x (the case when β′ starts with x is similar: we exchange α and β to reach the case when the
prefix of the left hand side starts with x).

If β′ contains an x, then we let u be the prefix of β′ that contains no variable. We get that
(in a solution) wx can either be a prefix of u or it can be expressed as rsr′ where r is a primitive
prefix of u and r′ is a prefix of r and s ≥ 1 (r is uniquely determined: its length is the period
of u, and r is a prefix of u). Let s0 be the smallest s such that |rs| > max{|α|, |β|}. For each
wx prefix of u or wx ∈ {rsr′ | s ≤ s0, r′ prefix of r}, we replace each occurrence of x in α and β
by wx and check if the obtained equation has a solution. For s ≥ s0 we do the following. For
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each r′ prefix of r we replace each occurrence of x by rsr′ (symbolically, not explicitly, as we do
not know s). However, this still allows us to compare which of the prefixes β′ and α′ is shorter
and to reduce the equations such that at least on of them starts with a variable (if the shorter
of β′ and α′ is also a prefix of the longer one). We do the same with α′′ and β′′ and then obtain
a new equation (γ, δ), that only contains y and z variables and where the former occurrences of
x were replaced by rsr′. Such an equation has always a solution. For instance, if γ = y1vykv

′

where v′ contains only constants, and δ = w′z1wzp, where w′ contains only constants. then
wy1 = h(w′z1w), while wzp = h(vykv

′), and all the other images can be defined arbitrarily. The
other cases can be treated analogously.

If β′ contains no x, then wx is either a prefix of β′ (and we treat this case exactly like the
above when wx was a prefix of u) or has β′ as a prefix. We replace everywhere the occurrences
of x by β′x to get a new equation; we then reduce the β′ occurring at the beginning of both
sides of this equation to get another equation (γ, δ), where both γ and δ start with variables y
and, respectively, z. Now we can solve the mirrored equation just like the above.

The cases k ≥ 2, p = 1 and k = p = 1 can be solved analogously: we just first try to reduce
the prefixes that occur before the first y and z variables, respectively, as well as the suffixes
that occur after the last y and z variables, respectively. If this is possible, we can easily define
a substitution for the y and z variables. The cases when k = 1 and p ≥ 1 can be solved by
exchanging the sides of the equation.

If we allow an arbitrary number of occurrences of each variable, but require them to be sorted
on both sides on the equation, where the sorting order might be different on the two sides, then
we arrive at the class of non-cross word equations. The matching problem for non-cross patterns
can be solved efficiently but, as we shall see next, for non-cross equations, the solvability problem
becomes NP-hard.

Theorem 2. Solving non-cross word equations is NP-hard.

We prove this theorem by a reduction from a graph problem, for which we first need the
following definition.

Let G = (V,E) be a graph with V = {t1, t2, . . . , tn}. A vertex s is the neighbour of a vertex
t if {t, s} ∈ E and the set NG [t] = {s | {t, s} ∈ E} ∪ {t} is called the (closed) neighbourhood of
t. If, for some k ∈ N, every vertex of G has exactly k neighbours, then G is k-regular. A perfect
code for G is a subset C ⊆ V with the property that, for every t ∈ V , |NG [t] ∩C| = 1. Next, we
define the problem to decide whether a 3-regular graph has a perfect code, which is NP-complete
(see [10]):

3-Regular Perfect Code (3RPerCode)
Instance: A 3-regular graph G.
Question: Does G contain a perfect code?

We now define a reduction from 3RPerCode. To this end, let G = (V,E) be a 3-regular
graph with V = {t1, t2, . . . , tn} and, for every i, 1 ≤ i ≤ n, Ni is the neighbourhood of ti.
Since the neighbourhoods play a central role, we shall define them in a more convenient way.
For every r, 1 ≤ r ≤ 4, we use a mapping ℘r : {1, 2 . . . , n} → {1, 2 . . . , n} that maps an
i ∈ {1, 2 . . . , n} to the index of the rth vertex of neighbourhood Ni, i. e., for every i, 1 ≤ i ≤ n,
Ni = {t℘1(i), t℘2(i), t℘3(i), t℘4(i)}. Obviously, the mappings ℘r, 1 ≤ r ≤ 4, imply a certain order
on the vertices in the neighbourhoods, but, since our constructions are independent of this actual
order, any order is fine.

We transform G into a word equation with variables {xi,j | 1 ≤ i, j ≤ n}∪{yi, y′i | 1 ≤ i ≤ n}
and constants from Σ = {?, �, �,�,#, a}. For every i, j, 1 ≤ i, j ≤ n, the variable xi,j represents
ti ∈ Nj . For every i, 1 ≤ i ≤ n, we define

αi = x℘1(i),i . . . x℘4(i),i, α′i = # a8 # # ,

βi = a, β′i = yi #(xi,℘1(i))
2 . . . (xi,℘4(i))

2 # y′i, and

u = α1 ? . . . ? αn ? � � α′1 � . . . � α′n ,

v = β1 ? . . . ? βn ? � � β′1 � . . . � β′n .
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Proposition 1. The words u and v are non-cross and can be constructed from G in polynomial
time.

Proof. In order to see that u and v are non-cross it is sufficient to note that, for every i, j,
1 ≤ i ≤ j ≤ n, i 6= j, the factors αi and β′i are non-cross and, furthermore, var(αi)∩ var(αj) = ∅
and var(β′i) ∩ var(β′j) = ∅. It is obvious that G can be transformed into (u, v) in polynomial
time.

Lemma 1. The graph G has a perfect code if and only if (u, v) has a solution.

Proof. For the sake of convenience, let u = u1�u2 and v = v1� v2. We start with the only
if direction. For a perfect code C of G, we construct a substitution h with h(u) = h(v) in the
following way. For every i, 1 ≤ i ≤ n, we define h(xi,℘r(i)) = a, 1 ≤ r ≤ 4, if ti ∈ C, and
h(xi,℘r(i)) = ε, otherwise. Thus, for every i, 1 ≤ i ≤ n, h((xi,℘1(i))

2 . . . (xi,℘4(i))
2) ∈ {a8, ε},

which implies that h(yi) and h(y′i) can be defined such that h(β′i) = h(α′i). Consequently,
h(v2) = h(u2). Since C is a perfect code, for every i, 1 ≤ i ≤ n, there is an r, 1 ≤ r ≤ 4, such
that t℘r(i) ∈ C and t℘r′ (i)

/∈ C, 1 ≤ r′ ≤ 4, r 6= r′. Therefore, h(x℘1(i),ix℘2(i),ix℘3(i),ix℘4(i),i) =
h(x℘r(i),i) = a, which means that h(αi) = h(βi). Since this particularly implies h(u1) = h(v1),
we can conclude h(u) = h(v).

In order to prove the if direction, we assume that there exists a solution h.

Claim: If h(u1) = h(v1) and h(u2) = h(v2), then G has a perfect code.

Proof of Claim: From h(u1) = h(v1), we can directly conclude that, for every i, 1 ≤ i ≤ n,
h(αi) = βi, which means that exactly one of the variables x℘1(i),i, x℘2(i),i, x℘3(i),i, x℘4(i),i is
mapped to a, while the others are mapped to ε. From h(v2) = h(u2) it follows that, for
every i, 1 ≤ i ≤ n, h(β′i) = α′i. Next, we observe that, for every i, 1 ≤ i ≤ n, due to
the symbols # in β′i and α′i, h((xi,℘1(i))

2 . . . (xi,℘4(i))
2) ∈ {a8, ε}. Since each of the variables

xi,℘1(i), xi,℘2(i), xi,℘3(i), xi,℘4(i) are mapped to either a or ε, this implies that either all of these
variables are erased or all of them are mapped to a. Let C be the set of exactly the vertices
ti ∈ V for which h(xi,℘1(i)) = h(xi,℘2(i)) = h(xi,℘3(i)) = h(xi,℘4(i)) = a. For every neighbourhood
Vj = {t℘1(j), t℘2(j), t℘3(j), t℘4(j)}, 1 ≤ j ≤ n, h(x℘1(j),j x℘2(j),j x℘3(j),j x℘4(j),j) is mapped to a,
which implies that for some r, 1 ≤ r ≤ 4, h(x℘r(j),j) = a; thus, t℘r(j) ∈ C. Furthermore,
h(x℘r′ (j),j

) = ε, 1 ≤ r′ ≤ 4, r 6= r′, which means that t℘r′ (j)
/∈ C, 1 ≤ r′ ≤ 4, r 6= r′.

Consequently, C is a perfect code. This concludes the proof of the Claim.

It remains to show that a solution h necessarily satisfies h(u1) = h(v1) and h(u2) = h(v2). Let
w be the solution word of h. We first recall that, since v1, u2 ∈ Σ∗, h(v1) = v1 and h(u2) = u2,
which particularly means that v1� is a prefix and �u2 is a suffix of w. If |w|� = 1, then
w = v1�u2 and therefore h(u1) = h(v1) and h(u2) = h(v2). If, on the other hand, |w|� ≥ 2,
then w = v1� γ�u2. If γ = ε, then w = v1��u2, which is a contradiction, since w must
contain the factor ?��. From h(u2) = u2 and h(v1) = v1 it follows that h(u1) = v1� γ = and
h(v2) = γ�u2. The factor v2 starts with an occurrence of � and since γ is a non-empty prefix
of h(v2), this means that |γ|� = k ≥ 1. Moreover, γ is also a suffix of h(u1) and since |u1|� = 0,

this implies that there are variables z1, z2, . . . , z` ∈ var(u1), 1 ≤ ` ≤ k, with
∑`
i=1 |h(zi)|� ≥ k.

Since each of these variables zi, 1 ≤ i ≤ `, is repeated twice in v2 and since |v2|� = 1, we can
conclude that |h(v2)|� ≥ 2k + 1. In the suffix �u2 of h(v2), there is only one occurrence of �,
which implies that |γ|� ≥ 2k. Since k ≥ 1, this is clearly a contradiction to |γ|� = k.

The equation obtained by the reduction from above has the form u1�u2 = v1� v2, where in
a solution h, h(u1) = h(v1) and h(u2) = h(v2). In order to achieve this synchronisation between
the two left parts and between the two right parts, we need to repeat variables in v2. However,
we can as well represent u1�u2 = v1� v2 as a system of two equations u1 = v1 and u2 = v2
and, since the synchronisation of the left parts and the right parts is now enforced by the fact
that we regard them as two separate equations, we can get rid of the repeated variables in v2,
which makes the two equations regular.

Corollary 1. The problem of checking solvability of a system of 2 regular word equations α1 =
β1, α2 = β2 with β1, β2 ∈ Σ∗ is NP-hard.
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Proof. Following the reduction used in the proof of Theorem 2, let u1 = α1 ? . . . ? αn, v1 =
β1 ? . . . ? βn, u2 = α′1 � . . . �α′n and v2 = β′1 � . . . �β′n be defined in the same way as in the proof
of Lemma 1, with the only difference that α′i = # a4 # # and β′i = yi #xi,℘1(i) . . . xi,℘4(i) # y′i.
Obviously, u1, u2, v1 and v2 are regular. Analogously to the proof of Lemma 1, it can now be
easily verified that the system u1 = v1, u2 = v2 has a solution if and only if G has a perfect
code.

We conclude this section by stressing the fact that the non-cross equation from the reduction
above is “almost regular”, i. e., one side is regular, while for the other the maximum number of
occurrences per variable is 2. However, we were not able to get rid of these repeated variables,
which suggests that a hardness reduction for the regular case needs to be substantially different.

4 Word Equations with Regular Constraints

In practical scenarios, it seems rather artificial that we only want to find just any solution
for a word equation and we are fine with whatever sequence of symbols the variables will be
substituted with. It is often more realistic that the variables have a well-defined domain from
which we want the solution to select the words. This motivates the addition of regular constraints
to word equations, as defined in Section 2, for which we investigate the solvability problem in
this section.

As mentioned in Section 1, regular constraints can be easily incorporated into algorithms
for the general solvability problem. However, while it is open whether solving general word
equations is hard for PSPACE, for word equations with regular constraints, this can be easily
shown, even for regular equations.

Theorem 3. Solving word equations with regular constraints is PSPACE-complete, even for
regular equations.

Proof. We can reduce the PSPACE-hard intersection emptiness problem for NFA, i. e., deciding
for given NFA Mi, 1 ≤ i ≤ n, whether or not

⋂n
i=1 L(Mi) = ∅. To this end, let M1, . . . ,Mn

be NFA over some alphabet Σ with # /∈ Σ. We define α = x1#x2# . . .#xn−1 and β =
x2#x3# . . .#xn, and we define the regular constraints Lxi

= L(Mi). We note that the equation
α = β is regular.

If there exists a word w ∈
⋂n
i=1 L(Mi), then h with h(xi) = w, 1 ≤ i ≤ n, is a solution

for α = β, since h(α) = (w#)n−2w = h(β), and, furthermore, h satisfies the regular con-
straints. Let h be a solution for α = β that satisfies the regular constraints. This implies that
h(x1)#h(x2)# . . .#h(xn−1) = h(x2)#h(x3)# . . .#h(xn) and, since |h(xi)|# = 0, 1 ≤ i ≤ n,
h(x1) = h(x2) = . . . = h(xn) follows. Thus, h(x1) ∈

⋂n
i=1 L(Mi).

Further we show that word equations without repeated variables can be solved in polynomial
time also when regular constraints are used.

Theorem 4. Solving word equations with regular constraints and without repeated variables can
be done in polynomial time.

Proof. Let α = β be a word equation without repeated variables and let Lx, x ∈ var(αβ), be
regular constraints. Let Kα = Kα,1 · Kα,2 · · ·Kα,|α|, where Kα,i = Lα[i], if α[i] ∈ var(α), and
Kα,i = {α[i]}, otherwise. Let Kβ be defined analogously. Since var(α)∩var(β), there is a solution
for α = β that satisfies the regular constraints if and only if Kα ∩Kβ 6= ∅. NFA Mα and Mβ for
Kα and Kβ , respectively, can be easily constructed from the NFA for Lx, x ∈ var(αβ). Moreover,
the size of Mα and Mβ is polynomial in |αβ| and the size of the NFA for Lx, x ∈ var(αβ). Thus,
we can construct an NFA M for Kα ∩Kβ of polynomial size and check L(M) = ∅ in time that
is polynomial in the number of states of M .

Word equations with only one variable can be solved in linear time (see Jeż [8]); their solv-
ability problem is still in P when regular constraints are added.

Theorem 5. Solving word equations with regular constraints and with only one variable can be
done in polynomial time.
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Proof. Let α = β be a word equation with only one variable x and with regular constraint Lx,
represented by an NFA Mx. For every u ∈ Σ∗, let hu be the substitution defined by h(x) = u.
By [2,8,13], we can obtain in polynomial time an NFA MS accepting S = {u | hu(α) = hu(β)}.
Indeed, we know that S may consist of an infinite family of the form (pq)+p where pq is a
primitve word, which occurs as a prefix of α, and another O(log n) solutions whose length is
O(n), and we can obtain S in polynomial time. Then we just produce in polynomial time the
NFA accepting Lx ∩ S and check if it accepts the empty language or not.

Word equations with two variables can be solved in polynomial-time (see [3]). We shall
see next that for word equations with regular constraints this is no longer the case (assuming
P 6= NP). More precisely, solving equations with two variables and regular constraints is NP-
hard, even if only one variable is repeated and the equations are variable disjoint. Moreover, we
can show that the existence of an algorithm solving word equations with two variables and with
regular constraints in time 2o(n+m) (where n is the length of the equation and m is the size of
the regular constraints) is very unlikely, since it would refute the well-known exponential-time
hypothesis (ETH, for short).

We conduct a linear reduction from 3-Sat to the problem of solving word equations with
regular constraints.2 Let C = {c1, c2, . . . , cm} be a Boolean formula in conjunctive normal form
(CNF) with 3 literals per clause over the variables {v1, v2, . . . , vn}. We first transform C into a
CNF C ′ such that C is satisfiable if and only if C ′ has an assignment that satisfies exactly one
literal per clause (in the following, we call such an assignment a 1-in-3 assignment). For every
i, 1 ≤ i ≤ m, we replace ci = {y1, y2, y3} by 5 new clauses

{y1, z1, z2}, {y2, z2, z3}, {z1, z3, z4}, {z2, z5, z6}, {y3, z5} ,

where zi, 1 ≤ i ≤ 6, are new variables.3 We note that C ′ has 5m clauses and n+ 6m variables.
Next, we obtain C ′′ from C ′ by adding, for every i, 1 ≤ i ≤ n, a new clause {vi, v̂i}, where v̂i is
a new variable, and we replace all occurrences of vi (i. e., the variable vi in negated form) by v̂i.
The following proposition is immediate.

Proposition 2. There is a satisfying assignment for C if and only if C ′′ has a 1-in-3 assignment.
Furthermore, C ′′ has no negated variables, C ′′ has 5m+ n clauses and 2n+ 6m variables.

For the sake of convenience, we set n′ = 2n+ 6m, m′ = 5m+ n, C ′′ = {c′1, c′2, . . . , c′m′} and
let {v′1, v′2, . . . , v′n′} be the variables of C ′′. Furthermore, for every i, 1 ≤ i ≤ n′, let ki be the
number of occurrences of variable v′i in C ′′.

Next, we transform C ′′ into a word equation with regular constraints as follows. Let Σ =
{v′1, v′2, . . . , v′n′ ,#} and let the equation α = β be defined by α = (x1 #)n

′−1 x1 and β = x2. For
the variables x1 and x2, we define the following regular constraints over Σ:

Lx1 = {w | |w| = m′, w[i] ∈ c′i, 1 ≤ i ≤ m′} ,
Lx2 = {u1#u2# . . .#un′ | ui ∈ (Σ \ {#})∗, |ui|v′i ∈ {ki, 0}, 1 ≤ i ≤ n

′} .

Proposition 3. There are DFA Mx1
and Mx2

accepting the languages Lx1
and Lx2

, respectively,
with 5m+ n+ 2 and 21m+ 5n+ 1 states, respectively.

Proof. To construct a DFA for Lx1
with m′+ 2 = 5m+n+ 2 states is trivial (note that we need

a trap state). A DFA for Lx2
needs to count k1 occurrences of v′1 with allowing occurrences of

Σ \ {v′1,#} to be read in between, then the same happens with respect to v′2 and so on. The
automaton can move from one such counting part to the next with a transition that reads #
and, as long as no occurrences of v′i have been read (i. e., in the very first state of a counting
part), the automaton can also read an occurrence of # and move to the next counting part, which
implements the case that an ui contains no occurrence of v′i. Each counting part has ki+1 states

and we need one trap state; thus, the automaton has (
∑n′

i=1 ki+1)+1 = 3m′+n′+1 = 21m+5n+1
states.

2In order to prove NP-hardness, a simpler production would suffice, but we need a linear reduction in order
to obtain the ETH lower bound.

3Note that this is just the reduction used by Schaefer [17] in order to reduce 3-Sat to 1-in-3 3Sat. We recall
it here to observe that this reduction is linear.
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By definition, only NFA are required to represent the regular constraints, but our use of DFA
here points out that the following hardness result (and the ETH lower bound) also holds for the
case that we require the regular constraints to be represented by DFA. So the hardness of the
problem does not result from the fact that NFA can be exponentially smaller than DFA.

Lemma 2. The Boolean formula C ′′ has a 1-in-3 assignment if and only if α = β has a solution
that satisfies the regular constraints Lx1 and Lx2 .

Proof. We start with the only if direction. To this end, let π : {v′1, v′2, . . . , v′n} → {0, 1} be
a 1-in-3 assignment for C ′′, where, for every i, 1 ≤ i ≤ m′, yi is the unique variable with
yi ∈ c′i and π(yi) = 1. Let h be a substitution defined by h(x1) = y1y2 . . . ym′ and h(x2) =
(h(x1) #)n−1 h(x1). Obviously, h is a solution for α = β, h(x1) ∈ Lx1 and, since every v′i has
either 0 occurrences in h(x1) (in case that π(v′i) = 0) or ki occurrences (in case that π(v′i) = 1),
also h(x2) ∈ Lx2

.
For the if direction, let h be a solution for α = β that satisfies the regular constraints.

Consequently, h(x1) = y1y2 . . . ym′ , where yi ∈ c′i, 1 ≤ i ≤ m′, and, furthermore, for every i,
1 ≤ i ≤ n, |h(x2)|v′i ∈ {ki, 0}. This directly implies that π : {v′1, v′2, . . . , v′n} → {0, 1}, defined by
h(v′i) = 1 if |h(x2)|v′i = ki and h(v′i) = 0 if |h(x2)|v′i = 0, is a 1-in-3 assignment for C ′′.

The exponential-time hypothesis, mentioned above, roughly states that 3-Sat cannot be
solved in subexponential-time. For more informations on the ETH, the reader is referred to
Chapter 14 of the textbook [1]. For our application of the ETH, it is sufficient to recall the
following result.

Theorem 6 (Impagliazzo et al. [7]). Unless ETH fails, 3-Sat cannot be solved in time 2o(n+m),
where n is the number of variables and m is the number of clauses.

The reduction from above implies that a subexponential algorithm for solving word equations
with two variables and regular constraints can be easily turned into a subexponential algorithm
for 3-Sat; thus, the existence of such an algorithm contradicts ETH.

Theorem 7. Solving word equations with two variables and with regular constraints is NP-hard,
even if only one variable is repeated and the equations are variable disjoint. Furthermore, unless
ETH fails, such word equations cannot be solved in time 2o(n+m) (where n is the length of the
equation and m is the size of the regular constraints).

Proof. Since the reduction from above can be carried out in time O(n+m) (where n and m is
the number of variables and clauses, respectively), Lemma 2 together with the fact that 3-Sat
is NP-hard shows that solving word equations with two variables and with regular constraints is
NP-hard, even if only one variable is repeated and the equations are variable disjoint.

In order to prove the second statement, we assume to the contrary that there is an algorithm
solving word equations over two variables with regular constraints in time 2o(n+m), where n is
the size of the equation and m is the sum of the states of the DFA. Then an algorithm that,
given a 3-CNF formula with k variables and ` clauses, first carries out the reduction from above
in order to obtain a word equation of size 4k + 12` with regular constraints of size 26`+ 6k + 3
and then solves the solvability problem for this word equation in time 2o(10k+38`+3) = 2o(k+`) is
an algorithm that solves 3-Sat in time 2o(k+`), where ` is the number of clauses and k is the
number of variables.

4.1 Bounded Word Equations

We first note that bounded word equations can be considered as a special case of word equations
with regular constraints, since the bound m functions as regular constraints of the form {w ∈ Σ∗ |
|w| ≤ m} for every variable. However, there is an important difference: the length of a binary
encoding of m is logarithmic in the size of an NFA for {w ∈ Σ∗ | |w| ≤ m}; thus, NP-hardness
of a class of bounded word equations does not necessarily carry over to word equations with
regular constraints. The solvability problem for a class of bounded word equations is NP-hard
in the strong sense, if the NP-hardness remains if m is given in unary. The following results are
strongly connected to (but cannot be directly derived from) the results of [16].
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Theorem 8. Solving bounded word equations is NP-hard (in the strong sense), even for equations
α = β satisfying | var(α)| = 1, var(α) ∩ var(β) = ∅ and β is regular.

Proof. We reduce from the shortest common superstring problem, i. e., deciding for given k ∈ N
and strings v1, v2, . . . , vn ∈ Σ∗ whether there is a string u with |u| ≤ k that contains each vi
as a factor. Let v1, v2, . . . , vn ∈ Σ∗, k ∈ N be an instance of the shortest common superstring
problem. Furthermore, let # be a new symbol, i. e., # /∈ Σ. We construct a word equation
α = β, where

α = x # x # . . . # x ,

β = y1v1y
′
1 # y2v2y

′
2 # . . . # ynvny

′
n .

Furthermore, we let k be the upper bound on the substitution word lengths.
If there exists a word w ∈ Σ∗ with |w| ≤ k and, for every i, 1 ≤ i ≤ n, w = uiviu

′
i, then we

define a substitution h by h(x) = w, h(yi) = ui and h(y′i) = u′i, 1 ≤ i ≤ n. Obviously, h satisfies
the length bound and, for every i, 1 ≤ i ≤ n, h(x) = h(yiviy

′
i); thus, h(α) = h(β).

Let h be a solution for α = β that satisfies the length bound. We observe that since h(β)
contains every vi as a factor, also h(α) = h(x)#h(x)# . . .#h(x) contains every vi as a factor
and, furthermore, since |vi|# = 0, 1 ≤ i ≤ n, every vi is also a factor of h(x). Thus, |h(x)| ≤ k
and h(x) contains every vi, 1 ≤ i ≤ n, as a factor.

For the shortest common superstring problem, we can assume that k ≤
∑n
i=1 |vi|, since

otherwise v1v2 . . . vn would also be a solution. Consequently, we can assume that k is given in
unary, so solving bounded word equations of the form mentioned in the statement of the theorem
is NP-hard in the strong sense.

Due to the strong NP-hardness in Theorem 8, we can conclude the following.

Corollary 2. Solving word equations with regular constraints is NP-hard, even for equations
α = β satisfying | var(α)| = 1, var(α) ∩ var(β) = ∅ and β is regular.

By using 1 as the bound on the substitution words and by a minor modification of the
reduction for Theorem 2, we can obtain a hardness reduction for bounded regular word equations.

Corollary 3. Solving bounded regular word equations is NP-hard.

Proof. We modify the reduction from Section 3 as follows. Let

u = α1 ? . . . ? αn ?(�k) �α′1 � . . . �α′n ,
v = β1 ? . . . ? βn ?(�k) �β′1 � . . . �β′n ,

where, αi and βi, 1 ≤ i ≤ n, are defined as in the original reduction, α′i = �# a4 # # and
β′i = yi,1yi,2yi,3yi,4yi,5 #xi,℘1(i) . . . xi,℘4(i) # y′i, 1 ≤ i ≤ n, and k = 13n. As length bound on the
substitution words, we define m = 1.

A perfect code for G translates into a solution for u = v in an analogous way as in the proof
of Lemma 1 (the only difference is that, because of the length bound 1, we need the 5 variables
yi,1yi,2 . . . yi,5 in order to simulate variable yi).

For the other direction, we show that a solution h for u = v that satisfies the length bound m
must also satisfy h(u1) = h(v1) and h(u2) = h(v2), where u1 = α1 ? . . . ? αn ?, u2 = �α′1 � . . . �α′n,
v1 = β1 ? . . . ? βn ? and v2 = �β′1 � . . . �β′n. It follows then in the same way as in the proof of
Lemma 1 that a perfect code for G exists.

We first note that any solution h for u = v that satisfies the bound m must also satisfy
|h(u1)| ≤ 5n and |h(v2)| ≤ 13n. Since w = (�k)u2 is a constant suffix and w′ = v1(�k) is a
constant prefix of h(u) = h(v) and both have length at least 13n, h(u1) must be a prefix of w′

and h(v2) must be a suffix of w. Since |w|? = 0 and |w|� = 0, we can conclude that |h(xi,j)|? = 0
and |h(xi,j)|� = 0, 1 ≤ i, j ≤ n. Moreover, h(u1) is a prefix of v1(�k) = a ? . . . ? a ?(�k), which

means that |h(u1)|� ≥ 1 implies that h(u1) = a ? . . . ? a ?(�k′), with 1 ≤ k′ ≤ k, which is a
contradiction. Consequently h(xi,j) ∈ {a, ε}. This directly implies that h(u1) = h(v1) and
h(u2) = h(v2).
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4.2 Individual Alphabets

The least restrictive regular constraints are probably constraint languages of the form Γ∗ for
some Γ ⊆ Σ, i. e., word equations with individual alphabets, which we shall investigate in this
section.

We first note that if |Σ| = 1, then general word equations and word equations with individual
alphabets coincide and, furthermore, the solvability problem for word equations can be solved
in polynomial-time, if |Σ| = 1.

Theorem 9. Solving word equations can be done in polynomial time if |Σ| = 1.

Proof. Let Σ = {a} and let α = β be a word equation. Since |Σ| = 1, the order of the constants
and variables in α and β does not matter and, furthermore, for every x ∈ var(α) ∩ var(β), we
can simply remove min{|α|x, |β|x} occurrences of x from both α and β. Consequently, we can
reduce α = β to an equation of the form (Π`

i=1(yi)
mi)ak = (Π`′

i=1(zi)
m′

i)ak
′
, where all yi, zj ,

1 ≤ i ≤ `, 1 ≤ j ≤ `′, are distinct variables. Moreover, we can also replace every (yi)
mi and

(zi)
m′

i by a single variable yi and zi and regular constraints Lyi = {ak | k mod mi = 0} and
Lzi = {ak | k mod m′i = 0}, respectively. This yields an equations with regular constraints
and without repeated variables, which, according to Theorem 4, can be solved in polynomial-
time.

However, if Σ = {a, b} and {a} is used as individual alphabet for all variables, then solving
word equations becomes NP-hard again, simply because the matching problem is already NP-
hard for this case (as can be easily concluded from the reduction of Lemma 5 in [6]).

By using individual alphabets, the reduction for Theorem 2 can be easily transformed to a
hardness reduction for the solvability problem of regular equations with individual alphabets.

Corollary 4. Solving regular word equations with individual alphabets is NP-hard.

Proof. We modify the reduction from Section 3 as follows. Let

u = α1 ? . . . ? αn ?��α′1 � . . . �α′n ,
v = β1 ? . . . ? βn ?��β′1 � . . . �β′n ,

where, αi, and βi, 1 ≤ i ≤ n, are defined as in the original reduction, α′i = �# a4 # # and
β′i = yi #xi,℘1(i) . . . xi,℘4(i) # y′i, 1 ≤ i ≤ n. As individual alphabets, we choose {a} for the
variables xi,j , 1 ≤ i, j,≤ n, and {#, a} for the variables yi, y

′
i, 1 ≤ i ≤ n. We note that the

solution h obtained from a perfect code in the proof of Lemma 1 is also a solution for the modified
equation u = v that also satisfies the individual alphabets. On the other hand, any solution
h for u = v that satisfies the individual alphabets satisfies in particular |h(x)|? = |h(x)|� =
|h(x)|� = 0, for every x ∈ var(uv), which implies h(α1 ? . . . ? αn ?) = h(β1 ? . . . ? βn ?) and
h(�α′1 � . . . �α′n) = h(�β′1 � . . . �β′n) and therefore the existence of a perfect code for G follows
in the same way as in the proof of Lemma 1.

5 Conclusions

We conclude this work by summarising our main results and by suggesting some further research
directions.

Firstly, the polynomial-time decidability of the matching problem for non-cross patterns does
not carry over to non-cross equations (which also means that the concept of the scope coincidence
degree, briefly mentioned in Section 1, will not help, since it is a generalisation of the non-cross
concept), while for regular equations, this is still open, which constitutes the most important
question left open here.

If we allow regular constraints, it is possible to prove hardness results for strongly restricted
variants of the solvability problem, often including the regular case. More precisely, for general
regular constraints, the solvability problem is PSPACE-complete, even for regular equations
(Theorem 3), and NP-hard for variable disjoint equations with only one repeated variable and
two variables in total (Theorem 7). Especially this latter result points out a drastic difference
in terms of complexity between general word equations and equations with regular constraints:
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both the tractable cases of equations with only two variables or with only one repeated variable
and at least one non-repeated variable on both sides (Theorem 1) become NP-hard if we allow
regular constraints.4 Moreover, the case with only one repeated variable remains intractable,
even if the constraints are only bounding the length of the substitution words (Theorem 8). In
particular, even if it turns out that, for some k, k ≥ 3, or even for all constant k, general word
equations with at most k variables can be solved in polynomial-time, Theorem 7 severely limits
their practical application, since it shows that these polynomial-time algorithms cannot cope
with regular constraints (unless P = NP).

As for regular equations, allowing a system of only two equations (and no further constraints),
allowing bounds on the substitution words or allowing individual alphabets is enough to make
the solvability problem NP-hard.

Our choice of restrictions for word equations is motivated by polynomial-time solvable cases
of the matching problem. In order to obtain tractable classes of word equations, it might be
worthwhile to strengthen the concept of non-cross and regularity by requiring αβ to be regular
or non-cross, instead of only requiring this for α and β separately. Another possible further
restriction would be to require the order of the variables on the left and on the right side to
be the same (e. g., x1abx2cx3 = x1cx3 is ordered regular, while x1abx2cx3 = x3cx2 is not). In
this regard, it is interesting to note that the patterns produced by the reduction of Theorem 2
are not ordered non-cross (and not ordered regular for the corresponding corollaries), while
Theorem 3, the PSPACE-completeness of solving word equations with regular constraints, also
holds for ordered regular equations. Additionally requiring var(α) = var(β) for ordered regular
equations would be a further restriction that might be useful.
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