Computing Equality-Free and Repetitive String
Factorisations™

Markus L. Schmid

Trier University, Fachbereich IV — Abteilung Informatikwissenschaften,
D-5/4286 Trier, Germany

Abstract

For a string w, a factorisation is any tuple (ug, ug, ..., uy) of strings that satisfies
w=uy - us---ug. A factorisation is called equality-free if each two factors are
different, its size is the number of factors (counting each occurrence of repeating
factors) and its width is the maximum length of any factor. To decide, for a
string w and a number m, whether w has an equality-free factorisation with a
size of at least (or a width of at most) m are NP-complete problems. We further
investigate the complexity of these problems and we also study the converse
problems of computing a factorisation that is to a large extent not equality-free,
i.e., a factorisation of size at least (or width at most) m such that the total
number of different factors does not exceed a given bound k.

Keywords: String factorisations, NP-hard string problems, parameterised
complexity, multivariate algorithmics
2000 MSC: 68Q17, 68Q25, 68W32

1. Introduction

Many classical hard string problems can be defined in terms of factorisations
of strings that satisfy certain properties. For example, the well-known problem
of computing the shortest common superstring of given strings wy, ..., wy (see,
e.g., Bulteau et al. [I]) asks whether there exists a short string « that, for every
i, 1 < i < k, has a factorisation wu; - w; - v;. Since a string w is a subsequence
of a string v if v has a factorisation vy - vo--- v and w has a factorisation
Vi, - Vip -0, with 1 <43 < ... < 4, < Kk, the famous LONGEST COMMON
SUBSEQUENCE and SHORTEST COMMON SUPERSEQUENCE problems can as well
be described in terms of factorisations. Another example of a string problem
that has recently attracted much attention is the problem to decide for two
words z and y and a given k whether they have factorisations uy - us - - - ug and
vy Vg - - - Uy, respectively, such that (uq,...,ux) is a permutation of (vy,...,vg),

* A preliminary version [I2] of this paper was presented at the conference CiE 2015.
Email address: MSchmid@uni-trier.de (Markus L. Schmid)

Preprint submitted to Theoretical Computer Science July 12, 2017

i.e., the MINIMUM COMMON STRING PARTITION problem. See Bulteau et al. [I]
for a survey on the multivariate analysis of NP-hard string problems.

In this paper we are concerned with so-called equality-free factorisations, re-
cently introduced by Condon et al. [2,[3]. A factorisation uy-us - - uy is equality-
free if every factor is distinct, i.e., |[{u1,uz,...,ux}| = k. Condon et al. [2] 3]
investigate the problem of deciding whether a given string w has an equality-free
factorisation of width at most m, where the width is the maximum length of
any factor. This problem is also mentioned by Bulteau et al. [I]; furthermore,
Gagie et al. [0] investigate the hardness of computing an equality-free factori-
sation with only palindromes as factors. A motivation for this problem comes
from gene synthesis. Since it is only possible to artificially produce short pieces
of DNA (so-called oligo fragments), longer DNA sequences are usually obtained
by a self-assembly of many oligos into the desired DNA sequence; thus, the task
is to find the right oligos for successful self-assembly. Computing equality-free
factorisations with bounded width is an abstraction of this problem: the width
bound represents the necessity for short oligos and the equality-freeness models
the condition that each two oligos must not be too similar in order to not hy-
bridise with each other (see Condon et al. [2| [3] for more details). This problem
is NP-complete, even if the width bound is 2 or the alphabet is binary (see
Condon et al. [3]). We revisit this problem and show that it is fixed-parameter
tractable if both the width bound and the alphabet size are parameters.

If instead of a small width, we are looking for an equality-free factorisation
with a large size, i.e., a large number of factors, then we obtain a different NP-
complete problem (see Fernau et al. [4]). This variant is motivated by injective
pattern matching with variables (which is identical to the special case of solving
word equations (see Lothaire [I0]), where the left side of the equation does not
contain variables and different variables must be replaced by different words),
see Fernau et al. [4] for more details. We show that computing equality-free
factorisations with large size is fixed-parameter tractable if parameterised by
the size bound. However, the question whether the problem remains hard for
fixed alphabets is still open.

We also consider the converse of computing equality-free factorsations, i. e.,
computing factorisations that are to a large extent not equality-free (or repet-
itive). Our measure of repetitiveness is the number of different factors in the
factorisation. If this number is small (in comparison to the size or width of
the factorisation), then many factors are repeated. This yields an interesting
combinatorial question in its own right: how many different words are needed
in order to cover a given word? Furthermore, it is motivated by data compres-
sion, since a factorisation with many repeated factors can be used in order to
compress a word, e.g., by using a dictionary of the different factors. We can
show that deciding on whether a word w has a factorisation of width at most
m and with at most k different factors is NP-complete, even if m = 2. On the
other hand, if & or the alphabet size is a constant, then the problem can be
solved in polynomial time. In contrast to this, if m is a lower bound on the size
of the factorisation, then the problem can be solved in polynomial time if either
m, k or the alphabet size is a constant, but it is open, whether the problem is

NP-complete in general.

As a tool for proving some of our main results, we also investigate the prob-
lem of deciding whether a given word w has an equality-free factorisation with
only factors from a given finite set F' of words. It turns out that this problem
is NP-complete even for binary alphabets. However, it is in FPT if |F| is a
parameter and in P if we drop the equality-freeness condition.

This paper is organised as follows. In Section [2 we define the central con-
cepts of this work, the problems to be investigated, and we make some basic
observations. In Section [3] we consider the problem of finding a factorisation
that only uses factors from a given set. Then, in Sections {4| and we in-
vestigate the problems of computing equality-free factorisations and repetitive
factorisations, respectively. Finally, we conclude this work in Section [6] where
we categorise the investigated problems in terms of parameterised complexity
and discuss open problems.

2. Preliminaries

We start this section with some general and standard notations about words.
Then we shall define the central concepts, i.e., equality-free and repetitive fac-
torisations, and the computational problems to be investigated in this work.

Let N={1,2,3,...}. By |A|, we denote the cardinality of a set A. Let ¥ be
a finite alphabet of symbols. A word or string (over X) is a sequence of symbols
from X. For any word w over X, |w| denotes the length of w and e denotes the
empty word, i.e., || = 0. The symbol X7 denotes the set of all non-empty words
over ¥ and ©* = XT U {e}. For the concatenation of two words wy, wy we write
w1 - way or simply wywsy. For every symbol a € X, by |w|, we denote the number
of occurrences of symbol a in w. We say that a word v € X* is a factor of a
word w € X* if there are uq,us € X* such that w = ujvus. If uy =€ or us = ¢,
then v is a prefiz (or a suffiz, respectively) of w. For every i, 1 < i < |w|, by
w([l..n] we denote the prefix of w with length n. As a convention, in this work
every set of words is always a finite set.

By the term trie, we refer to the well-known ordered tree data structure for
representing sets of words.

2.1. Factorisations

For any word w € ¥, a factorisation of w is a tuple p = (u1,us,...,us) €
(EH)E ¢ € N, with w = ujug---up. Every word u;, 1 < i < £, is called a
factor (of p). For the sake of readability, we sometimes represent a factorisation
(u1,uz,...,up) in the form uy 1ug 1+ 1uyp.

Let p = (u1,us,...,ug) be an arbitrary factorisation. We define several
parameters of the factorisation p:

e the set of factors sf(p) = {uy,uz, ..., ue},
e the size s(p) = ¢,

e the cardinality c(p) = |sf(p)],

e the width w(p) = max{|u;| | 1 <1i < ¢},

A factorisation p is equality-free if s(p) = c(p) and if p is not equality-free, then
we call it repetitive.

2.2. Problems

We now define the different problems to be investigated in this work. The
first problem is to check whether a given word can be factorised by an equality-
free factorisation that only uses factors from a given set of words.

EQUALITY-FREE FACTOR COVER (EFFC)

Instance: A word w and a set F' of words represented as a trie.
Question: Does there exist an equality-free factorisation p of w with sf(p) C F'?

We investigate this problem, since it naturally arises in the context of this work.
Furthermore, EFFC and its variant where we are looking for any factorisation
instead of an equality-free one (denoted by FC) shall be important later on in
Sections [and

Next, we define the problem of computing an equality-free factorisation, of
which there are two different variants, i. e., either we are looking for an equality-
free factorisation with a large size or with a small width (note that asking for a
small size or a large width does not make sense, since (w) is always a factorisation
of a word w with maximum width and minimum size).

MaxiMuM EQUALITY-FREE FACTORISATION SIZE (MAXEFF-s)

Instance: A word w and a number a, 1 < a < |w|.
Question: Does there exist an equality-free factorisation p of w with s(p) > «?

The problem MINEFF-w is identical to MAXEFF-s, but instead of a lower
bound « on the size of the factorisation, we get an upper bound § on the width
of the factorisation.

We also investigate the problems of computing a factorisation of a word w
with as few different factors as possible (and with either a large size or a small
width). In a sense, factorisations of this kind are to a large extent repetitive,
since if the number of different factors is very small (with respect to the bound
on the size or width), then many factors must be repeated.

MAXIMUM REPETITIVE FACTORISATION S1ZE (MAXRF-s)
Instance: A word w, numbers o, 1 < o < |w|, and k, 1 < k < |w|.
Question: Does there exist a factorisation p of w with s(p) > a and c(p) < k?

Similar as before, the problem MINRF-w is identical to MAXRF-s, but instead
of a lower bound « on the size of the factorisation, we get an upper bound g on
the width of the factorisation.

In the remainder of the paper, the symbols «, § and k are exclusively used
as bounds on the size, width and cardinality of factorisations, respectively, as
introduced in the problem definitions above. For any problem K from above
and any fixed alphabet ¥, K, denotes the problem K, where the input word is
over X.

We shall now illustrate these definitions with an example.

Ezxample 1. Let p = aabibaicbaiaabibaiaab be a factorisation. We note that
sf(p) = {aab, ba, cba}, s(p) = 6, c(p) = 3 and w(p) = 3. Furthermore, p is not
equality-free, since, e. g., the factor aab has three occurrences.

The word abbcbaabbc has an equality-free factorisation of size 6, namely
aibbicibaiabibec, i.e., (abbcbaabbe,6) € MAXEFF-s. On the other hand,
(abbcbaabbe, 7) ¢ MAXEFF-s, which can be easily verified by observing that
any factorisation of size 7 of abbcbaabbc needs at least 4 factors of size 1 and
therefore cannot be equality-free.

The instance (aabbccaabbec, §) is a positive MINEFF-w instance if and
only if 8 > 2, whereas (aabbccaabbccaabbece, §) € MINEFF-w if and only if
B> 3.

2.8. Parameterised Complezity Theory

We assume the reader to be familiar with the basic concepts of complexity
theory (for unexplained notions, see Papadimitriou [I1]). Since we are also using
the framework of parameterised complexity, we shall briefly define the concepts
relevant for our results (for detailed explanations on parameterised complexity,
the reader is referred to Flum and Grohe [5]).

We consider decision problems as languages over some alphabet I'. A pa-
rameterisation (of T') is a polynomial-time computable mapping £ : I'* — N
and a parameterised problem is a pair (@,), where @ is a problem (over T')
and k is a parameterisation of I'. We usually define x implicitly by describing
which part of the input is the parameter. A parameterised problem (Q, k) is
fized-parameter tractable if there is an fpt-algorithm for it, i.e., an algorithm
that solves @ on input z in time f(x(x)) x p(|z|) for recursive f and polynomial
p. The class of fixed-parameter tractable problems is denoted by FPT.

Let (Q, k) be a parameterised problem. Then, for every ¢ € N, we can obtain
a classical decision problem (Q, k)¢ by only considering those instances z of @
that satisfy x(z) = £, i.e, (Q,k)e = {z | z € Q,k(x) = ¢}. The class XP
is the class of all parameterised problems (Q,), such that, for every ¢ € N,
(Q, k)¢ € P. Equivalently, (Q, k) € XP if @ can be solved by an algorithm with
running time O(|z|*(*)); note that this is a weaker condition than the existence
of an fpt-algorithm (note that FPT C XP obviously holds).

While the membership to FPT (or to XP) of a parameterised problem (Q, k)
is demonstrated by finding an fpt-algorithm (or an algorithm with running time
O(|z|*®)), respectively), the framework of parameterised complexity provides
several ways of arguing (under complexity theoretical assumptions) that a pa-
rameterised problem is not in FPT, or, in other words, that it is fized-parameter
intractable. A rather robust way of doing so is to show that, for at least
one ¢ € N, (Q, k), is NP-hard, since then, under the assumption P # NP,
(Q, k) ¢ XP, which implies (Q,) ¢ FPT.

We shall present all our results in terms of classical complexity, i.e., we
present algorithms with running time estimations in the usual way, as well as
NP-hardness reductions. Then, at the end of this paper, in Section [0} we give a
detailed interpretation of our results in terms of parameterised complexity.

2.4. Basic Observations

In this section, we make some simple observations that shall be helpful for
proving our main results. In this regard, we first note that every equality-
free factorisation p can be transformed into an equality-free factorisation of the
same word with one less factor (i.e., its size decreases by 1). More precisely,
this is achieved by joining one of the longest factors with one of its neighbours.
In particular, this means that in order to solve an instance of MAXEFF-s, it
is sufficient to check whether there exists an equality-free factorisation of size
exactly a.

Observation 1. A word w has an equality-free factorisation p with s(p) > «,
a € N, if and only if it has an equality-free factorisation p’ with s(p’) = «a.

Given some factorisation, it is not a hard task to check whether or not it
is equality-free: we simply insert all factors in a trie, while checking for each
factor if it is already contained in the trie.

Observation 2. Let w € X1 and let p be a factorisation of w. It can be decided
in time O(|w|) whether or not p is equality-free.

Similarly, we can check, for a factorisation p and a set F' of words given as
a trie, whether or not sf(p) C F.

Observation 3. Let w € X7, let p be a factorisation of w and let F' be a set of
words over ¥ represented as a trie. It can be decided in time O(Jw|) whether or
not sf(p) C F.

Any word w has only f(|w]|) factorisations, for a function f; thus, the fol-
lowing result is straightforward, although it contributes to our understanding
of the complexity of the considered problems.

Proposition 1. The problems EFFC, MAXEFF-s, MINEFF-w, MAXRF-s
and MINRF-w are in FPT with respect to parameter |w|.

3. Computing (Equality-Free) Factorisations From Given Factors

As mentioned in the introduction, the problem EFFC is not our main con-
cern. However, its investigation, as we shall see, yields some valuable insights
with respect to equality-free factorisations and we also obtain an algorithm
that shall be used later in order to prove tractability results with respect to the
problems MAXRF-s and MINRF-w.

We first show that EFFC is NP-complete, even for fixed binary alphabets,
by a simple reduction from MINEFF-w.

Theorem 2. Let ¥ be an alphabet with |3| = 2. Then EFFCy is NP-complete.

Proof. Since we can guess a factorisation p and check in polynomial-time both
whether it is equality-free and whether sf(p) C F, EFFCy is in NP. In order
to prove hardness, we reduce MINEFF-wy, to EFFCy. To this end, let (w,)
be an instance of MINEFF-wy, and let F' be the set of all factors of w of length

at most 5. We note that |F| < Zle |lw| — (i — 1) < B x|w| and F can be
constructed in time O(|F| x 8). The word w has an equality-free factorisation
p with w(p) < 8 (i.e., (w, 8) € MINEFF-wy) if and only it has an equality-free
factorisation p’ with sf(p’) C F (i.e., (w, F) € EFFCy). Since MINEFF-wy; is
NP-complete (see Condon et al. [3]), EFFCy is NP-complete as well. O

In addition to the alphabet size, the cardinality of the given set F' of factors
is another natural parameter and it can be easily seen that the hardness is not
preserved if we bound |F| by a constant (in contrast to bounding |X|). More
precisely, if there is an equality-free factorisation p of a word w with sf(w) C F'
for a set of factors F, then s(p) < ¢ = min{|w|, |F|}. Regardless of whether
¢ = |w| or £ = |F|, enumerating all factorisations p of w with s(p) < ¢ and
checking whether sf(p) C F' (see Observations [3)) and whether p is equality-free
(see Observations [2)) can be done in time O(|w|/F1+1).

However, by dynamic programming, we can conduct another algorithm for
EFFC that is also exponential only in |F|, but that is even an fpt-algorithm
with respect to the parameter |F|.

Theorem 3. The Problem EFFC can be solved in time O(|F| x |w|? x 2IF1).

Proof. Let w € ¥* and F C ¥* be an instance of EFFC. We describe a
dynamic programming algorithm that computes, for every i, 1 < ¢ < |w|, and
every F' C F, whether or not w[l..7] has an equality-free factorisation p with
sf(p) = F.

First, for every u € F, we set T[lu|,{u}] = 1 if w is a prefix of w and
T[lu|,{u}] = 0 otherwise. Then, for every i, 1 < i < |w|, and every F' C F with
|F'| > 2, we set T[i, F'] = 1 if there exists a u € F’ with T[i — |u|, F" \ {u}] =1
and w[i—|u|+1..4] = u, and T[i, F'] = 0 otherwise. Any T'[i, F'] with 1 <4 < |w|
and F/ C F can be computed in time O(|F| x |w]|); thus, the overall running
time of this procedure is O(|F| x |w|? x 2!F1). O

Next, we investigate the impact of the equality-freeness condition itself, i.e.,
we consider the problem FC (recall that FC is identical to EFFC with the
only difference that the factorisation p of w with sf(p) C F does not need
to be equality-free). This problem is similar to the problem ExacT BLOCK
COVER (recently investigated by Jiang et al. in []]), which differs from FC only
in that instead of a set we are given a sequence of factors and every factor
of the sequence has to be used exactly once (in particular, this coincides with
the variant of MINIMUM COMMON STRING PARTITION where the partition of
one of the two strings is already fixed). While ExacT BLocKk COVER is NP-
complete (see Jiang et al. []]), FC can be solved in polynomial-time by dynamic
programming. This demonstrates that it is really the equality-freeness condition
that makes EFFC hard and, in addition, we obtain a useful tool to devise
algorithms for solving variants of the problems MAXRF-s and MINRF-w later
on in Section

Theorem 4. The problem FC can be solved in time O(|F| x |wl|?).

Proof. We define a dynamic programming algorithm. Let w be a word and F =
{uy,uz,...,us}. Forevery n,m, 1 <m < n < |w|, let T[n,m] = 1 if there exists
a factorisation p of size m of w[l..n] with sf(p) C F and T'[n,m] = 0 otherwise.
Obviously, (w, F') is a positive instance of FC if and only if T[|w|,m] = 1 for
some m, 1 < m < |w|. We can now solve FC on instance (w, F') by computing
all the T[n,m], 1 <m < n < |wl|, in the following way.

In time O(Jw| x | F|), we first construct a table S with |w| rows and ¢ columns
with S[n,i] =0,1 <n < |w|, 1 <i < ¢ Then, by using the Knuth-Morris-Pratt
algorithm [9], for every i, 1 <i < ¢, we set S[n,i] = 1 if u; is a suffix of w[l..n].
Since the Knuth-Morris-Pratt algorithm has running time O(|w|+ |u;|), building
up this table can be done in time Zle(|w\ + |ug|) < Zle 2w| = O(|F| x |w]).
Then, for every n,m, 1 < m < n < |w|, we initialise T'[n,m] = 0, which
requires time O(|w|?), and, for every i, 1 < i < £, we set T[lu;|,1] = 1 if
Sllui|,7] = 1, which requires time O(|F|). We note that, for every n,m with
2<m<n<|wl, T[n,m] =1 if and only if there exists a word u; € F that is
a suffix of w([l..n] (i.e., S[n,i] = 1) with T[n — |u;|,m — 1] = 1. Thus, for every
n,m, 2 <m <n < |w|, we can compute T'[n,m] in time O(|F|), provided that
all T[n',m — 1], n’ < n, have already been computed, which is satisfied if we
iterate over m, 2 < m < |wl, in an outer loop and over n, m < n < |w|, in an
inner loop. Hence, all the elements T'[n,m], 1 < m < n < |w|, are computed in
time O(|F| x |w|?). O

In the next two sections, we investigate the central problems of this work,
i.e., computing equality-free and repetitive factorisations with either a large size
or a small width.

4. Computing Equality-Free Factorisations

We now investigate the problems MINEFF-w and MAXEFF-s. Their NP-
completeness is established by Condon et al. [2] and by Fernau et al. [4], respec-
tively, but in [3] it is additionally shown that MINEFF-w remains NP-complete
even if the bound on the width is 2 or the alphabet is fixed and binary. However,
as pointed out by the following result, there is an fpt-algorithm for MINEFF-w
with respect to the parameters 8 and the alphabet size. In particular, this shows
that the NP-completeness is not preserved if both 8 and |X| are bounded.

Theorem 5. MINEFF-wy, can be solved in time O(|%]7 x |w|? x 22|Z‘ﬁ).

Proof. Let (w,) be an instance of MINEFF-wy. We first define F<g = {u €
¥* | Ju| < B} and note that every equality-free factorisation p of w with w(p) <
B satisfies sf(p) C F<g. Consequently, we can solve MINEFF-wy, by running
the algorithm from the proof of Theorem [3[on input w and F<g. Since |F<g| =
2521 |S|¢ < 2 x |£}P, this algorithm has a running time of O(|F<g| x |w|? x
2lF<sl) = O(IZ]8 x Jw]? x 22717). O

We wish to point out that it is also possible to express |w| in the running time
of Theoremin terms of |¥| and 3, i.e., we can assume that |w| < 8 x 2 x |S|P,

since otherwise clearly no equality-free factorisation with a width of at most 8
can exist.

For the problem MAXEFF-s, i.e., deciding on the existence of an equality-
free factorisation with a size of at least « (instead of a width of at most), we
encounter a slightly different situation. First of all, it is still an open problem
whether MAXEFF-s remains NP-complete if the alphabet is fixed:

Open Problem 1. Let X be an alphabet. Is MAXEFF-sy, NP-complete?

From an intuitive point of view, for the problem MINEFF-w, the bound on
the width can conveniently be exploited in order to design gadgets for encoding
an NP-hard problem (see Condon et al. [3] and also the proof of Theorem
Section . A lower bound on the size seems to provide fewer possibilities
for controlling the structure of the factorisation, which makes it difficult to
express another NP-complete problem by MAXEFF-s (especially if we have only
a constant number of symbols at our disposal). On the other hand, a constant
alphabet does not seem to help in order to find an equality-free factorisation
with a size of at least « in polynomial-time.

However, if we consider « as a constant, then the problem is not NP-complete
anymore (in fact, it is even fixed-parameter tractable with respect to a):

Theorem 6. The problem MAXEFF-s can be solved in time (’)((az’% —1)%).

Proof. Let (w, @) be an instance of MAXEFF-s. If |w| > X¢ i = "‘22"’0‘, then
the factorisation (u1,us, ..., uq) of w with |u;| =4, 1 <i < a—1, and |us| =
|w| — |ugusg - - uq—1| is equality-free, since each two factors have a different
length. If, on the other hand, |w| < 0‘2% — 1, then we can enumerate all
factorisations of size o of w in time O(|w|*~1) and, by Observation [2} check in
time O(|w|) for each such factorisation whether or not it is equality-free. Since
w has an equality-free factorisation of size at least « if and only if it has an
equality-free factorisation of size exactly « (see Observation , this solves the

problem MAXEFF-s in time O(jw|) = (9((0‘2% —1)%). O

5. Computing Repetitive Factorisations

In this section, we investigate the problem of finding a factorisation of a
word w with as few different factors as possible, i.e., with cardinality at most
k, for a given k (and with a large size or a small width). We first consider the
variant, where we want to find a factorisation with a large size.

Theorem 7. The problem MAXRF-s can be solved in time O(k x |w|?k+3).

Proof. Let (w, a, k) be an instance of MAXRF-s. Let F,, = {u | u is a factor of w}.
For every F' C F,, with |F| < k, we run the algorithm for the problem FC de-
fined in the proof of Theorem [4on input (w, F'). There exists an ¢, o < £ < |w],
with T[Jwl|,] = 1 if and only if there is a factorisation p of w with s(p) > «a,
sf(p) C F and, since |F| < k, also c(p) < k. To carry out this procedure,
we have to enumerate all subsets F' C F,, with |F| < k. Since |F,| < |w|?,

for every £, 1 < ¢ < k, there are at most |F,|* < |w|? subsets F C F,
with |[F| = £. Thus, there are Y% | |w|? < 2 x |w|?* subsets to investigate.
For each subset F, we run the algorithm of the proof of Theorem [4 in time
O(|F| x |w|?), and check for every ¢, a < ¢ < |w|, whether or not T'[|w|,] = 1,
which requires time O(|w]|). Hence, the total running time of this procedure is
O(|w|* x k x |w|?) = O(k x |w|?*+3). O

From Theorem [7l we can conclude with moderate effort that MAXRF-s can
also be solved in time that is exponential only in |Z| or a.

Theorem 8. Let 3 be an alphabet.
e The problem MAXRF-sy can be solved in time O(|%]? x |w|?ZI+1).
e The problem MAXRF-s can be solved in time O(a? x|w|?*T1).

Proof. Let (w, a, k) be an instance of MAXRF-sy, with w = biby -+ - by, b € X,
1 <@ < |w|. If [¥] <k, then the factorisation p = (b1, b, ..., bj,|) satisfies
s(p) = |w| > a and c(p) = |¥| < k. If, on the other hand, k£ < |3|, then we
can solve MAXRF-sy with the algorithm of the proof of Theorem [7] in time
O(K? x [uf2+3) = O((|S] — 1)? x |uw2(Z-D13) — (|52 x [w]2P1+1),
Analogously, if & < k, then any factorisation p of w of size « satisfies c(p) <
a < k; thus, (w, a, k) is a positive instance of MAXRF-s. If, on the other hand,
k < «, then solving MAXRF-s with the algorithm of the proof of Theorem
leads to a running time of O((a —1)? x |w|>® ~D+3) = O(a? x|w|?**1). O

Theorems [7] and [8] show that MAXRF-s can be solved in polynomial-time,
as long as at least one of k, |X| or « are bounded by a constant. However, the
probably most interesting question, which, unfortunately, is still open is whether
the general version of MAXRF-s can also be solved in polynomial-time.

Open Problem 2. Is MAXRF-s NP-complete?

We now turn to the problem MINRF-w, i. e., computing repetitive factorisa-
tions with a small width. In an analogous way as done in the proof of Theorem
we can show that MINRF-w can be solved in time exponential only in &, too.
The only difference is that instead of running the algorithm of Theorem [] for
every subset of the set of all factors of w, it is sufficient to only consider all
subsets of the set of all factors of w that have a length of at most 3.

Theorem 9. MINRF-w can be solved in time O(k? x ¥ x|w|F+3).

Proof. We solve MINRF-w on an instance (w, £, k) in an analogous way as we
solved MAXRF-s in the proof of Theorem [7] More precisely, instead of the
set of all factors of w, we use the set Fzg = {u | u is a factor of w, |w| < S}
Then, for all its subsets of size at most k, we run the algorithm defined in the
proof of Theorem [4] and, since we do not have a lower bound on the size of the
factorisation, we have to check for all £, 1 < ¢ < |w|, whether T[jw|,] = 1.
Since |Fj| < Zle lw] — (i — 1) < B x|w|, for every ¢, 1 < ¢ < k, there are
at most |Fjg|* < % x|w|’ subsets F' C Fs with |F| = £. Consequently, there are

10

Zle B x|w| < k x B* x|w|* subsets to investigate. In the same way as in the

proof of Theorem |7} this leads to a total running time of O(k x 5’“ x|w|F x k x
lw|? x |w|) = O(k? x BF x|w|k+3). O

In a similar way as the first part of Theorem [§] follows from Theorem[7] i.e.,
by bounding & in terms of |3|, we can conclude from Theorem@the next result.

Theorem 10. Let X be an alphabet. Then the problem MINRF-wy can be
solved in time O(|%]? x B(m*l) x|w| I E1+2).

Proof. Let (w, 8, k) be an instance of MINRF-wy, with w = biby - - - by, b € X,
1 <4 < Jw|. If [¥] < k, then the factorisation p = (b1,b2,...,b)y|) satis-
fies w(p) = 1 < B and c(p) = |¥| < k. If, on the other hand, k£ < |3,
then we can solve MINRF-wy, with the algorithm of the proof of Theorem [9] in
time O(k2 x B° x|w|F3) = O((|Z] — 1)2 x BUEITY x|w|(Z=D+3) = (D x
B(IZ*U X|w||2‘+2). N

While for problem MAXRF-s it was also possible to bound k in terms of «,
for MINRF-w, we can only observe that (w, 8, k) must be a positive instance if
k> [%1, but in case k < [‘%l], the algorithm of the proof of Theorem|§|has a
running time exponential in |w| and it does not seem possible to solely bound
k in terms of 5. We now justify this intuition by showing that MINRF-w is
NP-complete, even if § = 2.

First, we recall the following well-known problem, from which we shall con-
duct a reduction to MINRF-w.

HiTtTING SET (HS)
Instance: U = {z1,...,2z¢}, S1,...,5, CU and ¢ € N.
Question: Does there exist T C U with |T| < gand TNS; #0, 1 <i < n?

A set T C U with the property T NS; # 0 is called a hitting set, since it hits
each of the input sets S;. We now define a reduction from HS to MINRF-w
with 8 = 2. To this end, let (U, S1,...,Sn,q) be an instance of HS. We
assume that, for every ¢,7, 1 < i < j < n, |S;| = |S;| = r. This is not a
loss of generality, since HS reduces to the variant where all sets S; have the
same cardinality r by adding r — |\S;| new elements to every S;. For the sake
of concreteness, we assume S; = {¥;1,Yi2,---,Yirt, 1 < i < n. We define an
alphabet X =U U {x;; |1 <i<n,1<j<r—1}U{o} and a word

W=900 U O Vg OOV, &, with

Vi =Yi1 ki1 Yi2 ki 2 kir—1 Yy, fOr every i,1 <i<mn.

We have to formally prove the correctness of this reduction. The following
lemma states that a hitting set of size ¢ translates into a factorisation of w with
a width of 2 and a cardinality of at most n(r —1)+4¢+1. Intuitively, this is done
by grouping each y; ; with a x-neighbour, except the ones that are elements of
the hitting set, which are left as individual factors of size 1.

11

Lemma 11. If there exists a set T C U with |T| < qand TNS; #0,1 <4 < n,
then w has a factorisation p with w(p) <2 and c(p) < n(r—1)+q¢+1.

Proof. We assume that there exists a set T C U with |T| < g and T N S; # 0,
1 < i < n. We now construct a factorisation p of w with the desired properties.
We let every single occurrence of ¢ be a factor of p; thus, it only remains to split
every v;, 1 <1 < n, into factors of size at most 2, which is done as follows. For
every i, 1 <i < n,let j;, 1 < j; < r, be arbitrarily chosen such that y; ;, € T
(since TN S; #0,1 < i < n, such j; exist). Then, for every i, 1 < i < n, we
factorise v; into

Yi 1l %1 1Yi2%i 20 1 Yi 5, —1 %65, —1 VY5, VXig; Yiga+1 1 1R r—1 Yir -

Obviously, this results in a factorisation p of w with w(p) < 2. Furthermore,
sf(p) contains the factor o, at most |T| factors x with € T and, for every
tand j with 1 < i < mn, 1< j <r—1, a distinct factor of length 2 that
contains the symbol «; ; (the distinctness of these factors follows from the fact
that each symbol *; ; has only one occurrence in w). This implies that c(p) <
1+|T|+n(r—1)<1+qg+n(r—1). O

On the other hand, if w has a factorisation p with w(p) < 2 and c(p) <
n(r — 1) + g+ 1, then we can show that it can be turned into one that is well-
formed (i. e., it has the structure of the factorisation constructed in the proof of
Lemma , from which a hitting set of size at most g can be obtained.

Lemma 12. Ifw has a factorisation p with w(p) < 2 and c(p) < n(r—1)+q¢+1,
then there exists a set T C U with |[T| < qand TNS; #0, 1 <i<n.

Proof. We assume that there exists a factorisation p of w with w(p) < 2 and
c(p) < 1+g+n(r—1). We now modify p step by step such that every modification
maintains w(p) < 2 and ¢(p) < 1+ g+ n(r — 1). Since w starts with ¢© and
w(p) < 2, we can conclude that ¢ or ¢¢ is a factor of p. If oo is a factor of
p, then we can split it into ¢1¢ without increasing c(p), since the factor ¢ ¢ is
then not a factor of p anymore (since it has no other occurrences in w) and
we get at most ¢ as a new factor. Then, every factor of p that contains the
symbol ¢ is either the factor ¢ or of the form x ¢ or ¢z for some x € U (note
that = %; ; is not possible). If, for such a factor z< or ox, we split all its
occurrences into two individual factors z and ¢, then we may produce the new
factor x (recall that ¢ is already a factor), but we also necessarily lose x ¢ as
a factor in p; thus, c(p) does not increase. If we apply this modification with
respect to all x € U and all factors x ¢ and ¢ x, then we obtain a factorisation in
which every single occurrence of the symbol ¢ in w is also a factor of p, w(p) < 2
and c(p) <14 ¢+ n(r — 1), i.e., the factorisation has the structure

SIOIULIOIV 101+ 101U, 1O,

where the v; are further factorised into factors of size at most 2.
Since, for every i, 1 < i < n, v; has odd length, the factorisation of v;
(according to p) must contain at least one factor of length 1. Furthermore, if

12

this factor is of the form %; ;, then the parts to the left and to the right of x; ;
have both odd length as well; thus, using the same argument, they have at least
one factor of length 1. Inductively, we can conclude that there is a factor of the
form y; ;,, for some j;, 1 < j; < r. Now if we group the part to the left and the
part to the right of y; ;, (which both have even length) into factors of size 2,
then this does not increase c(p), since each of these factors contains exactly one
of the symbols x; ;, which have only one occurrence in w. Consequently, after
these modifications, every v; has the structure

Yixl *i 1V Yi 2% 20 1 Yi5,—1 %i,5,—1 1 Yig; V%5, Yiga+1 1V ki r—1 Yir

for some j;, 1 < j; < r. We can now define T' = {y; ;, | 1 < i < n}, which is
obviously a hitting set. Furthermore, the set of factors sf(p) of p contains the
factor o, all n(r — 1) factors containing a symbol #; ; and, for every x € T, the
factor x. Thus, c(p) = 1+n(r—1)+|T|. By assumption, c(p) < 1+n(r—1)+q,
which implies |T'| < ¢q. Hence, T is a hitting set of size at most q. O

We note that the MINRF-w instance (w,2,n(r — 1) + ¢ + 1) can be con-
structed from the HS instance (U, Si,...,Ss,¢) in polynomial-time and that
MINRF-w is in NP (we can guess and verify a factorisation). Hence, from the
NP-completeness of HS (see Garey and Johnson [7]) and from Lemmas|[11]and[12]
we can conclude the following:

Theorem 13. The problem MINRF-w is NP-complete even if 8 < 2.

6. Conclusions

In this section, we interpret and discuss our results in more detail and we also
point out the most relevant open problems. More precisely, we shall now use
the algorithmic and hardness results presented in Sections [4 and [5] in order to
categorise the investigated problems in terms of parameterised complexity. This
will provide us with a more systematic point of view regarding the hardness of
computing equality-free and repetitive factorisationsﬂ The results with respect
to equality-free factorisations are summarised in Table[T] while the results about
repetitive factorisations are summarised in Table

We first recall that the fixed-parameter tractability (of all the considered
problems) with respect to the parameter |w| follows trivially (see Proposition [I]
and is therefore not of much interest. Furthermore, we have also briefly investi-
gated the problem EFFC, which is not in XP with respect to the parameter |X|

IThis kind of complexity analysis of NP-hard problems, which considers several different
parameters and, by applying the framework of parameterised complexity, tries to scrutinise
their impact on the hardness, is also called multivariate analysis (multivariate algorithmics)
or multi-parameter analysis in the literature.

2In these tables, an entry p indicates that the label of the corresponding column is treated
as a parameter, while an integer entry means that the non-membership to XP is due to the
NP-hardness of the problem variant, where the parameter is bounded by the given integer.

13

Problem [[S[| a/B | Result [Ref. |

MINEFF-w | p P € FPT | Thm.
2 - ¢ XP 13]
- 2 ¢ XP 13]
MAXEFF-s | — - NP-h [4]
P - Open -
- P € FPT | Thm. @

Table 1: Problems MINEFF-w and MAXEFF-s.

[Problem [[S[| o/B | k | Result [Ref. |

MAXRF-s | — — | Open -
P - — | eXP | Thm.|
- P — | €XP | Thm.|§
- - p| €XP Thm. |7
MINRF-w | - 2 | - | ¢XP | Thm.[13
P - — | €XP | Thm. 10
- - p| €XP | Thm.|9

Table 2: Problems MAXRF-s and MINRF-w.

(see Theorem , but fixed-parameter tractable with respect to the parameter
|F’| (see Theorem [3)).

With respect to computing equality-free factorisations with small width, due
to the results by Condon et al. [3], it was already known that MINEFF-w is
not in XP with respect to 8 or X, but Theorem [5| shows the fixed-parameter
tractability if both 8 or ¥ are parameters. It is interesting to note that if
instead of a small width we require a large size, the problem, which generally
is also NP-complete (see [4]), becomes easier, i.e., fixed-parameter tractable if
parameterised only by « (see Theorem @ However, it is still open whether
MAXEFF-s is fixed-parameter tractability, or at least in XP, with respect to
the remaining parameter |X|.

With respect to repetitive factorisations, we know more about computing
factorisations with a small width, too, and also this seems to be the harder
variant of the problem. More precisely, MINRF-w is in XP with respect to
parameter k and || (see Theorems [0] and [10} respectively), but not in XP with
respect to § (Theorem , while, on the other hand, MAXRF-s is in XP with
respect to k, a or [X| (see Theorems [7] and [8). However, we wish to emphasise
that the XP membership results of MAXRF-s become obsolete if MAXRF-s is
not NP-complete, which is still open.

While above we compared, for computing equality-free factorisations and
computing repetitive factorisations separately, the width variant with the size
variant, we can as well compare the problem of computing equality-free factori-
sations with the problem of computing repetitive factorisations (for the width

14

variant and the size variant separately). In this regards, the old and new re-
sults point out that computing factorisations with a small width is harder if we
are looking for equality-free factorisations, since repetitive factorisations with a
small width can be computed in polynomial-time for constant alphabets, while
this seems impossible for equality-free factorisations. For the size variant, due
to the cases left open, we cannot conclude such a statement.

It is still open whether or not the XP-membership results (with respect
to MAXRF-s and MINRF-w) can be improved to fixed-parameter tractabil-
ity results. Since for these cases XP-membership is known, in order to show
fixed-parameter intractability, we need more sophisticated concepts of parame-
terised complexity, e. g., the hardness for one of the classes of the W-hierarchy
(see Flum and Grohe [5] for more details).

In the field of algorithmics and combinatorics on words, important properties
of strings are often related to special types of factorisations (e.g., Lempel-Ziv
factorisations, Lyndon factorisations, etc.). Therefore, purely combinatorial
questions about string factorisations are often of interest. In this regard, a trivial
and expected combinatorial property of equality-free factorisations is mentioned
in Observation[I} i.e., if a string w has an equality-free factorisation of maximal
size «, then it necessarily has equality-free factorisations of sizes 1,2,..., a.
However, the analogous question with respect to the width seems more difficult
to answer: if a string w has an equality-free factorisation of minimal width 3,
does it always have equality-free factorisations of widths 8,5 +1,...,|w|? It
seems very unlikely that, for some word w and 8, < 45 < 3, w has equality-
free factorisations with width 5, and 35, but no equality-free factorisation with
width B,; however, proving this is not straightforward, since a procedure that
increases the width by exactly one, while preserving the equality-freeness is not
obvious.

Acknowledgements

The author wishes to thank the anonymous referees of this paper for pointing
out simpler fpt-algorithms for Theorems |3| and [5| that also achieve a better
running time compared to the ones presented in the conference version [12].

References

[1] L. Bulteau, F. Hiiffner, C. Komusiewicz, and R. Niedermeier. Multivariate
algorithmics for NP-hard string problems. FEATCS Bulletin, 114:31-73,
2014.

[2] A. Condon, J. Manuch, and C. Thachuk. Complexity of a collision-aware
string partition problem and its relation to oligo design for gene synthesis.
In Proc. 14th Annual International Computing and Combinatorics Confer-
ence, COCOON 2008, volume 5092 of LNCS, pages 265275, 2008.

[3] A. Condon, J. Manuch, and C. Thachuk. The complexity of string parti-
tioning. Journal of Discrete Algorithms, 32:24-43, 2015.

15

[4]

H. Fernau, F. Manea, R. Mercag, and M.L. Schmid. Pattern matching
with variables: Fast algorithms and new hardness results. In Proc. 32nd
Symposium on Theoretical Aspects of Computer Science, STACS 2015, vol-
ume 30 of Leibniz International Proceedings in Informatics (LIPIcs), pages
302-315, 2015.

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag
New York, Inc., 2006.

T. Gagie, S. Inenaga, J. Karkkainen, D. Kempa, M. Piatkowski, S. J.
Puglisi, and S. Sugimoto. Diverse palindromic factorization is NP-complete.
Technical Report 1503.04045, 2015. http://arxiv.org/abs/1503.04045,

M. R. Garey and D. S. Johnson. Computers And Intractability. W. H.
Freeman and Company, 1979.

H. Jiang, B. Su, M. Xiao, Y. Xu, F. Zhong, and B. Zhu. On the exact
block cover problem. In Proc. 10th International Conference on Algorith-
mic Aspects in Information and Management, AAIM 201/, volume 8546 of
LNCS, pages 13-22, 2014.

D E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in
strings. Communications of the ACM, 6(2):323-350, 1977.

M. Lothaire. Combinatorics on Words, chapter 9. Cambridge University
Press, Cambridge, New York, 1997.

H.C. Papadimitriou. Computational Complezxity. Addison-Wesley, Reading,
MA, 1995.

M. L. Schmid. Computing equality-free string factorisations. In Proc. 11th
Conference on Computability in Europe, CiE 2015, volume 9136 of LNCS,
pages 313-323, 2015.

16

http://arxiv.org/abs/1503.04045

	Introduction
	Preliminaries
	Factorisations
	Problems
	Parameterised Complexity Theory
	Basic Observations

	Computing (Equality-Free) Factorisations From Given Factors
	Computing Equality-Free Factorisations
	Computing Repetitive Factorisations
	Conclusions

