Noname manuscript No.
(will be inserted by the editor)

On the Parameterised Complexity of String
Morphism Problems

Henning Fernau - Markus L. Schmid -
Yngve Villanger

Received: date / Accepted: date

Abstract Given a source string v and a target string w, to decide whether w
can be obtained by applying a string morphism on u (i. e., uniformly replacing
the symbols in « by strings) constitutes an A/P-complete problem. We present
a multivariate analysis of this problem (and its many variants) from the view-
point of parameterised complexity theory, thereby pinning down the sources
of its computational hardness. Our results show that most parameterised vari-
ants of the string morphism problem are fixed parameter intractable and, apart
from some very special cases, tractable variants can only be obtained by con-
sidering a large part of the input as parameters, namely the length of w and
the number of different symbols in u.

Keywords String Problems - String Morphisms - Parameterised Complexity -
Exponential Time Hypothesis - Pattern Languages

1 Introduction

Many of the typical string problems are concerned with special kinds of string
operations like, e. g., concatenating strings with each other, deleting symbols
from or inserting symbols into a string or replacing symbols by other symbols
or even by other strings. Among the most prominent of these string prob-
lems are string-to-string correction, sequence alignment as well as the longest

A preliminary version [15| of this paper was presented at the conference FSTTCS 2013.

Henning Fernau, Markus L. Schmid

Fachbereich IV — Abteilung Informatikwissenschaften,
Universitat Trier, D-54296 Trier, Germany

E-mail: {Fernau, MSchmid }@uni-trier.de

Yngve Villanger
Department of Informatics, University of Bergen, Bergen, Norway
E-mail: yngve.villanger@gmail.com

2 Henning Fernau et al.

common subsequence and shortest common supersequence problem. The com-
plexity of these problems have been intensely studied, both in the classical
sense as well as in the parameterised setting (see, e. g., |1,/11,/27.[30]).

In this work, we investigate string problems that arise from a less well-
known operation on strings, i.e., mapping a source string u to a target string
w by uniformly (i. e., by a mapping) replacing the symbols of u by strings. For
example, we can turn the source string u := abba into the target string w :=
bbaaaaabba by replacing a and b of u by the strings bba and aa, respectively.
On the other hand, w’ := abaaaaaabb cannot be obtained from u in a similar
way. The string morphism problenﬂ (denoted by STRMORPH) is to decide
for two given strings v and w, whether or not w can be obtained from u
by this kind of operation. Due to its simple definition, variants of this NP-
complete problem can be found in many different areas of theoretical computer
science. In fact, many respective results are scattered throughout the literature
without pointers to each other and consulting the existing literature suggests
that variants of the string morphism problem have emerged and have been
investigated in different contexts without knowledge of other related work.

A Brief History of the String Morphism Problem

The origin of the string morphism problem is usually traced back to the 1979
paper by Angluin [4], in which she introduced the model of pattern languages
(the membership problem of which is essentially the string morphism problem),
but, independently and at the same time, it has also been studied by Ehren-
feucht and Rozenberg in [12]. Garey and Johnson [19], by referring to a private
communication with Aho and Ullman from 1977, report the N"P-completeness
of the problem REGULAR EXPRESSION SUBSTITUTION, for which, on close in-
spection, the string morphism problem turns out to be a natural subproblem.

Since their introduction, Angluin’s pattern languages have been intensely
studied in the context of learning theory and formal language theory. While
questions of learnability as well as language theoretical properties were the
main focus of research, results regarding the complexity of their membership
problem (except of its general N'P-completeness) were sparse and only ap-
peared as by-products (see, e.g., [4,[20422,32]).

In the pattern matching community, independent of Angluin’s work, the
pattern matching problem described above has been rediscovered in a series of
papers. This development starts with [5] in which Baker introduces so-called
parameterised pattern matching, where a pattern with parameters and a text
is given and the text is searched for factors that can be obtained by uniformly
replacing the parameters of the pattern by single symbols. Furthermore, differ-
ent parameters must be replaced by different symbols. Amir et al. [2] generalise
this problem to function matching by dropping this injectivity condition and
Amir and Nor [3] as well as Clifford et al. [9] consider function matching where

1 We choose this name, since, mathematically speaking, it is the problem to decide on the
existence of a morphism between two strings.

On the Parameterised Complexity of String Morphism Problems 3

parameters can be substituted by words instead of single symbols, which leads
to patterns as introduced by Angluin. In [3], motivations for this kind of pat-
tern matching can be found from such diverse areas as software engineering,
image searching, DNA analysis, poetry and music analysis, or author valida-
tion.

The string morphism problem can also be seen as the solvability problem
for word equations where one side does not contain variables (for more details
on word equations, see Mateescu and Salomaa [26]). Combinatorial properties
of the operation of uniformly replacing the symbols in a string by other strings
are investigated in numerous other areas of theoretical computer science and
discrete mathematics, such as (un-)avoidable patterns (cf. Jiang et al. [24]),
the ambiguity of morphisms (cf. Freydenberger et al. [18]) and equality sets (cf.
Harju and Karhuméki [21]). Last but not least, the string morphism problem
can also be found in practical applications. More precisely, it constitutes a
special case of the matchtest for regular expressions with backreferences (see,
e.g., Campeanu et al. [6]), which nowadays are a standard element of most
text editors and programming languages.

Our Contribution

A systematic study of the computational complexity of STRMORPH has been
taken on just recently. In [2829,|31], several possibilities are presented of how
to restrict the structure of the source strings, such that STRMORPH can be
solved in polynomial time, and in [14], the A/P-completeness of a large number
of strongly restricted versions of STRMORPH is shown.

In the literature mentioned above, different wvariants of STRMORPH are
considered, each tailored to different aspects and research questions. The most
common variants arise from whether or not we allow symbols to be erased (i.e.,
replaced by the empty string), whether or not we allow constants (also called
terminals) in the source string, which cannot be replaced and whether or not
the replacement function needs to be injective (i.e., different symbols cannot
be replaced by the same string). While the subtle difference of whether or not
symbols can also be erased has a substantial impact on decidability questions
for pattern languages, the differentiation of STRMORPH in an injective and a
non-injective version is motivated by pattern matching tasks. In addition to
these different variants of STRMORPH, we can observe many natural param-
eters (in the definition of the following parameters, let u be a source string
over the alphabet A and let w be a target string over the alphabet B).

— p1: The cardinality of A.

— po: The length of w.

— p3: The cardinality of B.

— pyg: The maximum length of the strings substituted for the symbols in w.
— p5: The maximum number of occurrences of any symbol in w.

In [14], for every variant of STRMORPH and for every subset of the above
mentioned parameters, it is shown whether the chosen parameters can be

4 Henning Fernau et al.

bounded by constants such that the resulting version of STRMORPH can be
solved in polynomial time or whether it is still N"P-complete. For example, if
the cardinality of A is bounded by a constant, then all variants of STRMORPH
can be solved in polynomial time. This trivially follows from the fact that
there is a simple brute-force algorithm that runs in time that is exponential
only in p;. Close inspection reveals that STRMORPH can also be solved in time
that is exponential only in py (for details, the reader is referred to [20] and
also [14]). Consequently, in terms of parameterised complexity, STRMORPH
parameterised by p; or ps is in XP and the question arises whether these
problems are in FPT. Unfortunately, as a main result of this work, we report
that both of the above parametrisations are Wl]-hard, even if additional
parameters are taken into account. More precisely, we show that the following
versions of STRMORPH are W([1]-hard:

1. all variants of STRMORPH parameterised by (p1,ps3, ps),
2. all variants of STRMORPH (except the nonerasing ones) parameterised by

(P2, 3, P4, D5)-

For obtaining the first result, we extend a result by Stephan et al. [33], who
showed the W[1]-hardness for a special variant of STRMORPH parameterised
by p1 and in order to prove the second result, we devise a new reduction from
k-MULTICOLOURED-CLIQUE. With respect to the parameters defined above,
this leaves only very few parameterised variants of STRMORPH that could
possibly be in FPT. In this regard, we report the fixed parameter tractability
of the following versions of STRMORPH:

3. all variants of STRMORPH parameterised by (p1, p2),

4. all variants of STRMORPH parameterised by (p1,p4),

5. all nonerasing variants of STRMORPH parameterised by pa,

6. the nonerasing, injective variant of STRMORPH parameterised by (ps, p4)-

The above results 1 to 6 (in conjunction with results from [14]) completely
settle the fixed parameter tractability of all possible parameterised variants of
STRMORPH, with respect to the parameters p; to ps. We complement these
results by showing for all the W/[1]-hard cases W{[l]-membership or W|[P]-
membership.

We conclude the paper by demonstrating the unlikeness of a subexponential
algorithm for an important variant of the string morphism problem by applying
the Fxponential Time Hypothesis.

2 Preliminaries

Let N := {1,2,3,...}. For an arbitrary alphabet A, a string (over A) is a
finite sequence of symbols from A, and € is the empty string. The notation
AT refers to the set of all non-empty strings over A, and A* := A" U {e}. For
the concatenation of two strings wi,ws we write wy wy. We say that a string
v € A* is a substring (or factor) of a string w € A* if there are uy,us € A*

On the Parameterised Complexity of String Morphism Problems 5

such that w = u; vug. The powers w?, i € N, of a string w are inductively
defined by w! := w and w® = ww'~!. The notation |K| stands for the size
of a set K or the length of a string K. By |w|;, we denote the number of
occurrences of b € A in w, by wli, j|, we denote the factor from position i to
j in w and w[i] := wi,].

Let A and B be alphabets. A mapping h : A* — B* with h(vw) =
h(u) h(w), for every u,w € A*, is a morphism. It can be easily verified that a
morphism is uniquely defined by the images h(b), b € A. If, for every b € A,
h(b) # ¢, then h is said to be nonerasing. If, for all b, c € A with b # ¢, h(b) # ¢
and h(c) # e implies h(b) # h(c), then h is E-injective and h is injective
if it is E-injective and nonerasing. The size of a morphism h is defined by
|| := max{|h(b)| | b € A}. Let A and B be alphabets with B C A. A morphism
h: A* — B* that satisfies h(b) = b, for every b € B, is a substitution.

Ezample 1 Let w1 := zxyzy, us := raybyxy, w; := ababababab, wy :=
bacbabbacb and ws := abaabbababab. The nonerasing morphism h; defined
by h1(z) := hi(y) := hi1(2) := ab satisfies hi(u;) = w;. However, u; cannot
be mapped to wib =: w} by a nonerasing morphism. If, on the other hand, we
do not restrict ourselves to nonerasing morphisms, then hs(ui) = wj, where
ho is defined by hao(z) := ha(y) := € and ha(z) := w). It can be verified that
g1(u2) = wa, where g; is a substitution defined by g1 (z) := bacb, g1(y) = ¢
and go(ug) = ws, where go is a substitution defined by g»(z) := g2(y) := ab.
Furthermore, us cannot be mapped to wy by a nonerasing substitution and us
cannot be mapped to ws by an E-injective or injective substitution.

Next, we briefly recall some of the main concepts of parameterised com-
plexity theory (in our definitions and notations, we follow the textbook [16]
by Flum and Grohe, to which we also refer for all terms and concepts not
explicitly explained here). As it is common in complexity theory, we consider
decision problems as languages over some alphabet I' (if the instances are
tuples of several elements, then we assume that they are encoded as single
strings over I'). A parameterisation (of I') is a polynomial time computable
mapping « : I — N and a parameterised problem is a pair (Q, k), where
Q is a problem (over I') and & is a parameterisation of I'. A parameterised
problem (Q, k) is fized-parameter tractable if there is an algorithm that de-
cides whether x € @ in time O(f(k(z)) X p(|z|)), where f : N — N is a
recursive function and p : N — N is a polynomial, and such an algorithm
is called an fpt-algorithm. The class of fixed parameter tractable problems is
denoted by FPT. In order to argue for the fixed parameter intractability of a
parameterised problem, we need the notion of an fpt-reduction from a param-
eterised problem (@1, 1) (over the alphabet I'1) to a parameterised problem
(Q2, k2) (over the alphabet I5), which is a function R : I} — Iy with the
following properties. For every x € I'f, x € @1 if and only if R(z) € Q2, the
function R is computable in time O(f(k1(z)) x p(|x])), where f is a recursive
function and p is a polynomial, and there is a recursive function g : N — N
such that k2(R(z)) < g(k1(x)). The framework of parameterised complexity
provides the classes of the so-called W-hierarchy, for which the hard problems

6 Henning Fernau et al.

are considered fixed parameter intractable. For a detailed definition of the W-
hierarchy, we refer to the textbooks [10}/16]; in this paper, all intractability
results are W[1]-hardness results.

The classes of polynomial and nondeterministically polynomial time solv-
able problems are denoted by P and NP, respectively.

Now, we define the string morphisms problems that are investigated in
this work. We start with the following most general version of the string mor-
phism problem, which shall serve as a base for the definitions of all the further
restricted versions.

STRMORPH
Instance: Two strings v and w over some alphabets A and B.
Question: Does there exist a morphism h : A* — B* with h(u) = w?

By STRSUBST, we denote the version of STRMORPH, where instead for a
morphism we are looking for a substitution. By adding the prefixes NE, INJ and
NE-INJ, we denote the variants of the problems STRMORPH and STRSUBST,
where the morphism (the substitution) needs to be nonerasing, E-injective
and nonerasing injective, respectively. Let SMP be the class containing exactly
these 8 variants of the string morphism problem, i.e.,

SMP := {Z- STRMORPH, Z- STRSUBST | Z € {¢, NE, INJ, NE-INJ}}.

Next, we fix some notation that shall be used throughout the paper. For
an instance (u,w) of one of the string morphism problems defined above, u
is called the source string, w is called the target string and the respective al-
phabets A and B with u € A* and w € B* are called the source and target
alphabet, respectively. From now on, the target alphabet is always denoted by
X and the source alphabet is X for string morphism problems and (X U X)
for string substitution problems, where X C {x1,x2,x3,...}. The symbols in
2] are called terminals and the symbols in X are called wvariables. For any
string u € (X U X)*, by var(u) we refer to the set of variables occurring in
uw and |ulyar is the maximum number of occurrences of a variable in w, i.e.,
|tt|var := max{|u|, | € var(u)}. For the problems in SMP, we consider the
following parameters:

Parameter | Description
|[var(u)| | the number of variables in the source string
| 2] | the cardinality of the target alphabet
|w| | the length of the target string
|tt|var | the maximum number of occurrences of a variable
|h| | the size of the morphism or substitution

A list of parameters is a tuple [p1,...,pr], where 1 < k <5, {p1,...,px} C
{|var(u)|, | 2|, |wl|, |u|var, |h|}. For example, [|var(u)|,|X],|h|] is a list of pa-
rameters. For every K € SMP and every list L of parameters, by L-K, we
denote the problem K parameterised by the sum of the parameters in L, e. g.,
[|Z], |t|var]-NE-STRMORPH is the parameterised problem (NE-STRMORPH,),

On the Parameterised Complexity of String Morphism Problems 7

where the parameterisation « is defined by k(u,w) := |¥| + |t|var. As a con-
vention, whenever we consider parameterised problems L-K, K € SMP, where
L contains |h|, we assume that the parameter |h| is explicitly given as input
along with the source and target string.

In Section[4] in order to argue for the unlikeness of a subexponential algo-
rithm, we shall apply the Exponential Time Hypothesis (ETH) by Impagliazzo,
Paturi, and Zane [23], which, informally speaking, is the conjecture that 3SAT
cannot be solved in time 2°(™. For an introduction to ETH, the reader is
referred to [17},25].

3 The Parameterised Complexity of String Morphism Problems

In this section, we show for every list of parameters L and for every K € SMP,
whether or not L-K is fixed parameter tractable or W{[l]-hard. We start with
the hardness results and then present fpt-algorithms for all the other cases.
The section is concluded by showing W{l]-membership and W[P]-membership
for the W[1]-hard cases.

3.1 W[1]-Hardness

As explained in Section[l] it can be easily seen that all variants of STRMORPH
can be solved in polynomial time if |var(u)| or |w| is bounded by a constant.
Furthermore, as shall be explained in Section it also follows trivially that
all variants of STRMORPH are in FPT if parameterised by |var(u)| and |w]| at
the same time. Hence, the most interesting question is whether this also holds
if either |var(u)| or |w| is a parameter. We show that this is very unlikely, since
the corresponding parameterised versions of the string morphism problems are
W(1]-hard.

The Parameter |var(u)]

First, we consider the case that |var(u)| is a parameter and |w| is not a pa-
rameter, for which we can show W[l]-hardness, even if |u|vay and |X| are
parameters, too.

Theorem 1 For every K € SMP, [[var(u)|, |2, |u|var]-K is W][1]-hard.

Theorem [I] can be proven by a reduction from the canonical parameterised
variant of the clique problem:

k-CLIQUE

Instance: A graph G and an integer k.
Parameter: k(G, k) = k.

Question: Does G has a clique of size k(G, k)?

8 Henning Fernau et al.

It is a well-known fact that k-CLIQUE is complete for W[1] (with respect
to parameterised reductions) [16]. In order to prove Theorem |1} we modify a
reduction from Stephan et al. [33]. More precisely, in [33] a reduction from
k-CLIQUE is used in order to prove the Wl]-hardness of [|[var(u)|, ||, |u|var]-
NE-STRSUBST and we shall modify this reduction in such a way that it works
for all problems [|var(u)|, | X, |t|var]-K, K € SMP.

To this end, we define a mapping @ that maps a given graph G = (V, E)
with V := {p1,ps,...,pn} and integer k to a source string v € (X' U X)T and
a target string w € X, where X := {a,b,c,d,e}. First, we define 7 to be
the mapping that maps a vertex p;, 1 < ¢ < n, to its binary respresentation
over {a,b}, e.g., if n = 25, then 7(p3) = aaabb, m(p13) = abbab and 7 (p25) =
bbaab. For the sake of convenience, in the following definition of u, by z we
always denote an occurrence of some variable with only a single occurrence in
u. Now we define

U:=ZCT1CZCIL2CRZCA3CZ...2CTRC2Z,
n+3

W= a(p) ctw(pe)c® ... " P2 r(p,) c

The string @ is an enumeration of k vertices (represented by the variables
Z1,%9,...,2;) and W is an enumeration of all the vertices of G, encoded as
binary strings over {a,b}. The idea is that by mapping @ to w, we pick exactly
k vertices of G by mapping the variables x1, x2, ...,z to exactly k encodings
of vertices. We now have to construct another gadget that makes sure that
these k selected vertices form a k-clique of G. To this end, we first encode
the clique property, i. e., the property that between each two selected vertices
there is an edge in G, as a string u:

U:=zdxixodzdxi2x3d2zdx124d2...2dw; 2 d

zdzoxrgdzdrsxrgdz...zdxa) d

zdxp_oxp_1dzdrr_1Trd
zdxp_1xpdz.

Before we can define the counterpart of u, which will be a string representing
the complete structure of the graph G, we need the following definition. For
every 7, 1 < ¢ < n—1,let e;1,€;2,...,€,;, be an enumeration of exactly
the edges {p;,p;} € E, with ¢ < j and let this enumeration be in ascending
order with respect to j, e.g., I3 =4 and e3 1 = {ps,p1}, €32 = {p3,p5}, €33 =
{ps,p7},e34 = {ps,ps}. Furthermore, we extend the mapping 7 to edges by
defining w({p;,p;}) = 7(p;) 7(p;) for every edge {p;,p;}. Now, we define

w:=a> m(e1,1) a4 m(e1,2) d°...qh+? (e,)

a3 1(eg) dr T w(eg) dt T a2 2 ey)

dll+-~+ln—2+3 ﬂ.()dl1+»--+ln—2+4 o dll+---+ln_1+2 7.‘.(

€n—1,1 en_17ln,—1)

On the Parameterised Complexity of String Morphism Problems 9

Finally, we define u :=ueu, w:= wew and P(G, k) := (u,w).
The proof of the following lemma is partly due to Stephan et al. [33].

Lemma 1 Let G be a graph, let k be an integer, and let (u,w) = P(G, k).
The following statements are equivalent:

There is a clique of size k in G.

There is a substitution h such that h(u) = w.

There is an E-injective substitution h such that h(u) = w.

There is a nonerasing substitution h such that h(u) = w.

There is a nonerasing injective substitution h such that h(u) = w.

Cuds ot =

Proof We first note that, by definition, implies , implies and
() implies . Next, we show that implies (5]), which means that -
(5) are equivalent. To this end, we assume that there exists a substitution h
with h(u) = w. Clearly, h(u) = w and h(u) = @. From h(u) = W and the
fact that there is no occurrence of ¢ in @, but at least one occurrence of every
z;, 1 <1 < k, in @, we can conclude that h(z;) € {n(p1),7(p2),.-.,7(pn)}
Furthermore, if any of the variables z in @ is mapped to ¢, then h(u) starts with
a single occurrence of ¢ followed by a symbol different from c or in h(u) there
is an occurrence of a factor cc delimited by symbols different from c, which is
a contradiction, since this is not the case for w. Analogously, the assumption
that any of the variables z in u is mapped to ¢ leads to a contradiction as well.
Next, we observe that all the variables x;, 1 < ¢ < k, as well as the variables
z, are mapped to different strings. Thus, if there exists a substitution h with
h(u) = w, then h is nonerasing injective, which implies the statement .

In order to conclude the proof, we first show that implies and then
that implies .

We assume that there is a clique of size k£ in G. We define a substitu-
tion h with h(u) = w by allocating exactly the vertices of the k-clique to the
variables x;, 1 < ¢ < k. More precisely, if, e.g., k = 4 and {p2,p4,ps,po} is
the k-clique, then we define h(z1) := m(p2), h(z2) := w(ps), h(x3) := 7(ps)
and h(z4) := m(pg). Since the variables z;, 1 < i < 4, appear in @ in
the order x1,x9,x3,z4 and the factors 7w(p;), i € {2,4,8,9} appear in @
in the order m(p2), 7(ps), 7(ps), m(pg), the variables z can be substituted in
such a way that h(u) = w holds. Next, we note that @ contains the factors
T1%o, T1T3, X1L4, ToX3, ToXy, 3L, in exactly this order and @ contains the fac-
tors 7"({1)2,]?4}), W({p27p8})7 7T({p?’pf)})v 77({]74,178}), W({p4,p9}), W({pg,pg})
in exactly this order; thus, the variables z can be substituted in such a way
that h(uw) = w holds. This implies that h(u) = w.

Next, we assume that there exists a nonerasing injective substitution h
with h(u) = w. In the same way as above, this implies that, for every i,
1<i<k, h(z;) € {m(p1),7(p2),...,7(pn)}. Informally speaking, this means
that the variables x;, 1 < i < k, necessarily pick k vertices. Since, for every
i,j, 1 < i < j <k, the factor x; z; occurs in u and h(u) = w, in w factor
h(z1) h(z2) must occur, which represents the edge between the vertex picked
by x; and the vertex picked by x;. We recall that @ contains exactly the edges

10 Henning Fernau et al.

of the graph G, which implies that for all 4,5, 1 < i < j < k, in the graph G
there is an edge between the vertex picked by z; and the vertex picked by x;.
Thus, the vertices picked by variables x; form a clique in G. This concludes
the proof. O

In order to use the reduction @ to conclude the W/[l]-hardness results
claimed in Theorem [T it is important to note that & is a parameterised re-
duction with respect to the parameters |var(u)|, || and |u|var-

Proposition 1 Let G be a graph, let k be an integer, and let (u,w) := P(G, k).
Then |var(u)| and |u|var are bounded by a function in k and | X| = 5.

Proof Obviously, there are k variables x;, 1 <14 < k. In @, there are k+ 1 vari-
ables z and in @ there are O(k?) variables 2. The alphabet X = {a,b,c,d, e}
has a cardinality of 5. Every variable x;, 1 < i < k, has one occurrence in @
and k — 1 occurrences in u; thus, |ul,, =k, 1 <i < k. O

So far, we have proven the statement of Theorem [I] only for the problems
Z-STRSUBST, Z € {NE, INJ,NE-INJ,e}. In order to conclude the proof, we
show that the above transformation @ can be extended in such a way that it
works for the problems Z-STRMORPH, Z € {NE,INJ, NE-INJ, e} as well. To
this end, let G := (V, F) be a graph and let k& be some integer. Furthermore,
let (u,w) := &(G, k). We define

U = e xe g (u)?,

w =ecd(w)?,
where z., x4 and z are new variables and u” is obtained from u by substituting
every occurrence of ¢, d and e by an occurrence of the new variables x., x4
and x., respectively. We note that v’ € X*.
We can now prove an analogue of Lemma [I| with respect to this modified
reduction:

Lemma 2 Let v’ and w' be defined as above. The following statements are
equivalent:

1. There is a clique of size k in G.

There is a morphism h' such that h(u') = w’.

There is an E-injective morphism h' such that h'(u') = w'.

There is a nonerasing morphism h such that h/(u') = w'.

There is a nonerasing injective morphism h such that h(u') = w'.

Cuds o o

Proof We assume that holds. By Lemma [2 this implies that there exists
an injective nonerasing substitution h with h(u) = w (recall that (u,w) =
&(G, k)). The substitution h can be transformed into an injective nonerasing
morphism that maps u’ to w’ by defining h(x.) := ¢, h(zq) := d and h(x,) := e,
which implies and, by definition, also , and .

Next, we assume that holds, i.e., there exists a morphism h’ with
M) = w. If M(z.) = ¢, W(zq) = d and h'(z.) = e, then A/ (u") = w;

On the Parameterised Complexity of String Morphism Problems 11

thus, h'(u) = w if A’ is interpreted as a substitution. If h(zex.z4) is a proper
prefix of ecd, then A’ must map (u”)? to a word that is not a square, which
is not possible. If neither h'(zez.xq) is a proper prefix of ecd nor h'(z.) = e,
R (z.) = c, h'(xq) = d, then for at least one © € {x¢, 4, Te }, B’ (x) contains the
factor ec, cd or dc. Since x has at least 2 occurrences in u’, but the factors ec,
cd or dc have only one occurrence in w’, this is a contradiction. Consequently,
W (u') = w' implies h'(z.) = ¢, h'(x4) = d and h/(xz,) = e and therefore, as
explained above, there exists a substitution A with h(u) = w. By Lemma
this means that is implied. a

It can be easily verified that an analogue of Proposition [I] holds for the
modified reduction described above, which means that it is a parameterised
reduction with respect to the parameters |var(u)|, |X| and |u|yar. This con-
cludes the proof of Theorem

The Parameter |w|

Next, we consider the case where |w| is a parameter instead of |var(u)|. In this
regard, we can state a rather strong result, i. e., the W[1]-hardness for all (but
the nonerasing)ﬂ variants of string morphism problems parameterised by all
the considered parameters except |var(u)|.

Theorem 2 For every Z € {INJ,e} and K € {STRMORPH, STRSUBST}, the
problem [|w], | 2|, |u|var, |h|]-Z-K is W[1]-hard.

The reductions that have been used in order to prove Theorem [l| are of no
use for proving Theorem 2] since they produce target strings whose lengths
depend on the size of the graph and not on the size of the clique. For the proof
of Theorem [2| we utilise the following variant of k-CLIQUE:

k-MULTICOLOURED-CLIQUE

Instance: A graph G := (V, E), a partition V1, Va, ..., Vi of V, such that
every V; is an independent set.

Parameter: k(G, Vi, Va,..., Vi) =k.

Question: Does G has a clique of size x(G, V1, Vs, ..., Vi)?

Obviously, an instance (G, Vi,. .., V;) of k-MULTICOLOURED-CLIQUE is a pos-
itive instance if and only if G has a k-clique with exactly one element from
each V;, 1 < i < k. It is a well-known fact that k-MULTICOLOURED-CLIQUE is
complete for W[1] (with respect to parameterised reductions) [13].

We now define a mapping ¢ that maps a given graph G := (V, E) and a
partition V3, Va,..., Vi of V to a source string v € (X U X)T and a target
string w € YT, where X = {ag;; | 1 <@ < j < ki # j}U{$} and
X := {z. | e € E}. For the sake of concreteness, we define, for every i,
1<i<k, V;:={vi1,v2,...,0i4}. Note that, for every i,j,1 <i < j <k,

2 It shall be explained later in Section that the nonerasing variants of the string
morphism problem are trivially fixed parameter tractable if parameterised by |w|.

12 Henning Fernau et al.

i # j, the symbols ay; ;3 and ag; ;) are considered identical. For every i, j,
1 <i< j <k, we define
Uij =820 Tei, o Tei, $,

Wy 5 = $a{i7j} $,

where e] 1,ej 9 - e Ry is an enumeration of exactly the edges between V;
and V;. We recall that in the reduction used for proving Theorem 1] ' we use
the Varlables in order to pick k vertices from the graph. Here, we apply a
similar idea, but with respect to the edges of the graph. More precisely, if
we map u; ; to W; ;, then exactly one Tei s 1 < q <, is mapped to ay; 3,
which means that we pick the edge ej 4 @ the one that serves as the connection
between V; and V; in the clique we are looking for. All these factors u; ; and
w; ; are appended in the following way:

Ui=Ur2UL3.. UL EU23U24 . U2 | - Uk—2 k—1 Uk—2.k Uk—1,k ,

gl

=W12W13.. Wik W23W24 .. - W2k - - Wk—2 k—1Wk—2k Wk—1k -

It now remains to define a gadget that makes sure that the selected edges are
in fact the edges of a k-clique. To achieve this, it is sufficient to ensure that,
for every i, 1 < i < k, all the k — 1 selected edges that are connected to some
vertex in V; are all connected to exactly the same vertex in V;. To this end, for
every i, 1 <1i <k, we define a gadget (u;,w;) in the following way. For every
40, 1<p<t;,1 <5<k, i#j, we define

Uj,p,j = Te p Lo p2 . "meg,sp,j y
where e ...,eP is an enumeration of exactly the edges between ver-
g1 J 2 ? 7 5,8p,j

tex v; » and some vertex of V;. Next, for every p, 1 <p <t;, we define
Uip += WUip,1 Uip,2 -« Uiypi—1 Wi,p,it1 Uipit2- .- WUipk-

This means that u; , is an enumeration of all edges adjacent to the vertex v; ,
in the following order: first, we list all edges connecting v; , with some vertex
in V1, then all edges connecting v; , with some vertex in V5 and so on. Our goal
is to enforce that, for every i, 1 < i < k, there is exactly one ¢, 1 < ¢ < ¢;, such
that ﬂiyq is mapped to the string afi1ya4i,2} - - - Af,i—1}a4,i+1} {4,042} - - - &{i,k}
(which represents the selected edges between V; and all other V}, 1 < j <k,
i # j) and all other u; o, 1 < ¢’ <t;, ¢ # ¢, are mapped to the empty word.
To this end, we define

ﬂi = ﬂil @1272 . ﬂftv,

Wy = (a{z‘,l} afi2} - -0 0—1) Af4i41) Af4,i42) - - - a{i,k})2

Furthermore, we define

On the Parameterised Complexity of String Morphism Problems 13

and, finally, v :=wu, w:=ww and (G, V1, Va,..., Vi) := (u,w).
The next lemma states that the function @ defined above is a reduction
from k-MULTICOLOURED-CLIQUE to INJ-STRSUBST:

Lemma 3 Let G := (V, E) be a graph, let V1, Va, ..., Vi be a partition of V,
such that every V; is an independent set and let (u,w) := ®(G, V1, Va, ..., V).
There exists a clique of size k in G if and only if there exists an E-injective

substitution h of size 1 with h(u) = w if and only if there exists a substitution
K of size 1 with h'(u) = w.

Proof We first note that, for every substitution h, if h(u) = w, then h has
property (x): for every 4,7, 1 < i < j < k, i # j, where e§717e§727...,e;,lw
are exactly the edges between V; and Vj, there exists an s, 1 < s < ; 4, such
that h(a:eé;s) = ay;;) and, for every s', 1 < 5" < [, s # 5/, h(xeé;s) = e.
This is due to the fact that h(u) = w implies h(w; ;) = w;;, for every i, j,
1 <i<j<k i+#j, and W, is a listing (delimited by the symbol §)
of variables corresponding to exactly the edges €, €} ,,.. .,e;li_j and w; ;
equals $a{i’j} $. We further observe that if a substitution has property (x),
then, since every variable occurrs in some %; ;, it is necessarily E-injective and
of size 1. This means that in order to prove the statement of the lemma, it is
sufficient to show that there exists a clique of size k in G if and only if there
exists a substitution A with h(u) = w and h has property (*). Obviously, a
substitution with property (x) can be interpreted as selecting a subset of the
edges of G, i.e., for every e € E, if h(z.) # €, then we say that h selects the
edge e.

We start with the if direction and assume that there exists a substitution
h with property (%) and h(u) = w. Let Cg be the set of edges selected by h
and let C'y be the set of corresponding vertices, i. e., the set of all vertices that
are adjacent to some edge of Cg. Since, for every i,j, 1 < i < j < k, i # 7,
h(w; ;) = W; j, we can conclude that in Cg there is exactly one edge between
V; and V}, which, in particular, implies that V; N Cy # 0 and V; N Cy # 0.

We note that, due to the occurrences of symbols $ in @ and w, for every 1,
1<i<k,

h(u;) = h(ail a§,2 . azzt) =
(3fin) agi2) -« Biio1) 041} Afiit2) - Afik)) = Wi

Now let p, 1 < p < t;, be such that h(u;,) contains some a; ;, 1 < j <k,
j # i, as a factor. This directly implies that h((; p)?) contains

L5} Lig+1} - - - Lai—1) i1} 3,42} - - - 86k} 8{0,1} 3f4,2} - - - (i 5}
if 7 < and
Afi,j} 8fi,g+1} - - - 8Lk} 84,1} 86,2} -+ - BLi,i—1} i i1} (i i+2} - - - (3,5}

if i < j, as a factor. Now assume that h((@;,)?) # w;. This means that a
non-empty prefix ¢ of a; 1 a;...a; 1 is generated by U7, U3 ,... U7, , or a

14 Henning Fernau et al.

. ! o =2 59 =2
non-empty suffix ¢’ of a; j+1 a; j42. .. 2 is generated by u7 , 4 U7 0. .. Uiy,

which is a contradiction, since every variable in the strings @7, 47, ... U7,
/\2 /\2 /\2 . . /
and U3, q U7 4o Us,, 18 repeated, whereas every symbol in ¢ and ¢’ occurs

only once. Thus, for some p, 1 < p < t;, h((4;,)?) = Ww;, which implies that
h(ai,p) = a1} afi,2}y - - 0,i—1}y &ii+1}y &ii+2}) - - ik} -

We recall that
Wip = Wi,p,1 Uip,2 -+ Uip,i—1 Wi,p,i+1 Wip,it2---Uipk,

where, for every j, 1 < j <k, i # j, U;,, ; contains exactly these variables that
correspond to edges between vertex v; , and some vertex in V. Now if, for some
J, 1 <4 <k, i#j, |h(Up;)| > 2, then there are two edges e1,es € Cg that
both connect v; , with some vertex in Vj;, which is a contradiction to the fact
that h has property (). Thus, for every j, 1 < j <k, i # j, h(Uip,;) = ag -
Consequently, for every i, 1 < 14,5 < k, all the k—1 edges in C'g, which connect
V; with each of the sets V;, 1 < j <k, i # j, are adjacent to the same vertex
v;,p in V;. This directly implies that C'y has cardinality of k, which means that
Cy is a clique of size k of G.

In order to prove the only if direction, we assume that there exists a clique
of size k in G. We define a substitution h that maps z. to ay; ;; if and only if e
connects V; and V; and its adjacent vertices are members of the clique. It can
be easily verified that h has property (x) and, for every i,5, 1 < i < j < k,
i # j, h(w;;) = w, ;. Moreover, since, for every i, 1 < i < k, there is a p,
1 < p <5, such that v; p, the clique member from V;, is connected to exactly
one clique member from every V;, 1 < j <k, i # j, we can conclude that

h(ai,p) = a1} a2} -+ - 30,i—1}y i1y i i+2) - - L0k} -

Furthermore, all the other vertices v;,/, 1 < p < t;, p # p/, of V;, are no
clique members, which implies that h(u;) = e. Hence, h(u;) = w;, for every
i, 1 < i < k, and therefore, h(u) = w and h(u) = w. This concludes the
proof. a

It follows from Lemma 3| that & is and fpt-reduction with respect to the
parameter |h|. Next, we note that @ is also an fpt-reduction with respect to
the parameters |w|, | X| and |u|var.

Proposition 2 Let G be a graph, let V1, Vs, ..., Vi be a partition of V and let
(u,w) = ®(G, V1, Va,..., V). Then |w| and |X| are bounded by a function of

k and |u|var = 3.

Proof For every i,j, 1 < i < j <k, i # j, |w;;| = 3; thus, [w| = O(k?).
Furthermore, for every i, 1 < i < k, |w;| = 2(k — 1); thus, |w| = O(k?).
Consequently, |w| = O(k?). Every variable z € var(u) occurs once in % and
twice in @. Thus, |u|vay = 3. Finally, | X| = O(k?). O

On the Parameterised Complexity of String Morphism Problems 15

However, the reduction @ only works for the problems Z-STRSUBST, Z €
{INJ, e}, but it can be extended to the problems Z-STRMORPH, Z € {INJ, e},
as well, 1. e., to a mapping ¢’ that maps a k-MULTICOLOURED-CLIQUE instance
to a source string v/ € X' and a target string w’ € XT. To this end let
G := (V,E) be a graph and let V1, V5, ..., V) be a partition of V, such that
every V; is an independent set. Since @’ is very similar to @, we shall only point
out in which regards they differ. The main difference is that for &', instead of
using occurrences of the symbol $ in u, we use an occurrence of a new variable
per each occurrence of §. Furthermore, in order to maintain the E-injectivity,
each of these new variables has to match its own individual symbol in w. More
formally, for every 4,7, 1 <i < j < k, we define

Ui,j "= Zai5 Teija Leija - Lei g, ; %o
Wij = Cijagjy Gy
and

U= 2%, ﬂl 28, ag Z8q - - 28, ﬂk Z$k+1 5

IT) = $1ﬂ71$2@2$3...$k@k$k+1,

where the factors u; and w;, 1 < ¢ < k, are defined as in the definition of .
Furthermore, analogously to the definition of @, we define w and w to be the
concatenations of the factors u; ; and w; ;, respectively. Finally, we define

. 2 — ~
U= 2y 2 2y, 8T Zg Uig U,
w i=%%%r? %w%w,

and ¢'(G, V1, Va, ..., Vi) := (u/,w’), where s is a concatenation of all the new
variables of form z, ; and zg, and r is the corresponding concatenation of the
symbols ¢; j and $;.

For the reduction @', we can prove analogous results to Lemma [3| and
Proposition [2] which concludes the proof of Theorem

Lemma 4 Let G := (V, E) be a graph, let V1,Va,..., Vi be a partition of V,
such that every V; is an independent set and let (u',w') := &' (G, V1, Va, ..., Vi).
There exists a clique of size k in G if and only if there exists an E-injective
morphism h of size 1 with h(u') = w' if and only if there exists a morphism
h' of size 1 with h'(u') = w'.

Proof Let (u,w) := ®(G,V1,Va,...,Vi). If there exists a clique of size k in
G, then, by Lemma [3] there exists a E-injective substitution g of size 1 with
g(u) = w. We can now obtain an E-injective substitution h of size 1 with
h(u") = w'" by simply mapping each variable zg,, z¢, ;, 2% and z5 to 8, ¢ij,
% and %, respectively. By definition, this means that there exists a morphism
K of size 1 with h/(u') = w'.

Next, we assume that there exists a morphism h of size 1 for «’ such
that h(u') = w'. If h(zg) = %, then h(s?) = 72, h(u) = w and h(u) = w.

16 Henning Fernau et al.

Furthermore, since |s?| = |r?|, if a variable of s? is mapped to the empty
word, then this means that another variable of s> must be mapped to a word
of length at least 2, which contradicts to the assumption |h| = 1; thus, every
variable zq, ; and zg, is mapped to ¢;; and $;, which implies that h can be
interpreted as a substitution of size 1 for u such that h(u) = w. By Lemma
this directly implies that there exists a clique of size k in G. Furthermore, in
the proof of Lemma [3] it has been shown that a substitution of size 1 that
maps v to w is necessarily E-injective, which means that the morphism A is
E-injective as well. Hence, in order to conclude the proof, it only remains to
show that every morphism h of size 1 for v’ with h(u') = w’ necessarily satisfies
h(ze) = %. To this end, we assume that h(zy) # %. Thus, h(zy) = &, which
implies that there is some other variable y € var(u’), such that h(y) = %. If
y € var(u), then, by Proposition[2] y has 3 occurrences and if y ¢ var(u), then
either y equals z; and therefore it has 3 occurrences or y has 2 occurrences in
s? (which explains why we use the square of s and r in the strings «/ and w’)
and at least 1 occurrence in wu and therefore it has at least 3 occurrences, too.
Since there are only two occurrences of % in w’, this is a contradiction. a

In order to conclude the proof of Theorem [2| it only remains to observe
that the reduction @’ is still a parameterised reduction with respect to the
parameters |w'|, | X| and |[v/|var.

Proposition 3 Let G be a graph, let V1, Vs, ..., Vi be a partition of V and let
(v, w') :=d'(G,V1,Va,..., Vi). Then |W'| and |X]| are bounded by a function
of k and |u|var = 4.

Proof In order to prove the statement of the proposition, let © and w be the
source and target string produced by @. Every variable in var(v’) \ var(u) is a

variable zg,, z¢, ;, 2% Or zg; the variables zy and zy have 2 and 3 occurrences,

respectively, the variables zg, have 2 occurrences in s* and 1 occurrence in

@ and the variables z, , have 2 occurrences in s® and 2 occurrence in .
Furthermore, every variable in var(u’) Nvar(u) has as many occurrences in
as in u. Thus, by Proposition [2| we can conclude that |u/|ya, = 4. Obviously,
|w'| < 2|w]|, thus, since |w| is bounded by a function of k, |w’| is bounded
by a function of k, too. Let A and B be the sets of terminal symbols that
occur in w’ and w, respectively. By definition, B C A. Furthermore, for every
occurrence of $ in w, we use a new individual terminal symbol, which implies
|A\ B| < |w|. Again, by Proposition [2] we can conclude that |A| is bounded
by a function of k. O

3.2 Fixed Parameter Tractability

In the previous section, the W[1]-hardness of a large number of string mor-
phism problems is shown. In this section, we prove that the remaining variants
are fixed parameter tractable. To this end, we now present two brute-force al-
gorithms for the string morphism problems.

On the Parameterised Complexity of String Morphism Problems 17

The algorithm BF-1gqnvoren, presented as Algorithm [1} solves the problem
STRMORPH by enumerating all possible substitutions for the source string.
It is straightforward to generalise BF-1grrmorpn tO algorithms BF-1g, which
solve the problems K € SMP. We only have to make sure that, depending on
the problem K, we only enumerate m-tuples of factors of w that induce an
injective, a nonerasing or an injective nonerasing morphism (or substitution).

Input : A source string u and a target string w
Output: YES iff (u,w) € STRMORPH
for every tuple (w1, w2, ..., War(w)|) of factors of w do
for i =1 to |var(u)| do
| h(w:) = ws;
if h(u) = w then return YES;
return NO;

Algorithm 1: BF-1grryvoren

Proposition 4 Let K € SMP. The running time of BF-1x (u,w) is O(Ju| x
Jwl > (Jw[?)PrCl).

Proof Since there exist O(|w|?) different factors of w, the main loop of the
algorithm is executed O((|w|?)/v2* (W) times. In every iteration of the loop,
we have to construct h and check whether h(u) = w, which can be done in
time O(|h(u)]) = O(Ju| x |w|). Thus, the total running time of the algorithm
BF-1g (u, w) is O(|u| x [w] x (Jw|?)!varl), O

By slightly changing Algorithm[I] we can define the algorithm BF-2gp\iorens
presented as Algorithm [2| In a similar way as done for Algorithm [1] for every
K € SMP, we can extend BF-2grnvoren t0 BF-25, which solves K.

Input : Source string u, target string w over an alphabet X' and k € N

Output: YES iff there exists a morphism h with |h| < k and h(u) = w

for every tuple (w1, ..., Wvar(u)|) € () varl ;| < k, 1 <4 < |var(u)| do
for i =1 to |var(u)| do

| h(@i) = wy;
if h(u) = w then return YES;
return NO;

Algorithm 2: BF_2STRI\'IORPH

Proposition 5 Let K € SMP. The running time of BF-2x (u,w, X, k) is
O(lu| x k x (k x | Z|F)lvar(ly,

Proof The main loop is executed O((Zfzo | D) varwly = O((k x | 2|k)l var(wly
times. In every iteration of the loop, we have to construct h and check whether
h(u) = w, which can be done in time O(]h(u)]) = O(Ju| x k). Thus, the total
running time of the algorithm is O(|u| x k x (k x |X|*)Ivar(l), |

18 Henning Fernau et al.

By applying the brute-force algorithms from above for solving the string
morphism problems, we can conclude the following fixed parameter tractability
results:

Theorem 3

1. For every K € SMP, [|var(u)|, |w|]-K is in FPT.

2. For every Z € {NE,NE-INJ} and K € {STRMORPH, STRSUBST}, [|lw|]-
Z-K s in FPT.

3. For every K € {STRMORPH, STRSUBST}, [|hl],|X|]-NE-INJ-K is in FPT.

4. For every K € SMP, [|[var(u)|, |h|]-K is in FPT.

Proof Obviously, BF-1 is an fpt-algorithm for [|var(u)|, |w|]-K, K € SMP,
which proves A. For the NE variants of the string morphism problems, we
can assume |w| > |u| > |var(u)|; thus, for every Z € {NE,NE-INJ} and
K € {STRMORPH, STRSUBST}, BF-1z_k (u,w) has a running time of O(|u| x
lw| x (Jw]?)!*!)), which proves B.

We shall now prove part C, but only show the case K = STRMORPH, since
the case K = STRSUBST can be handled analogously. Let w be the source
string, let w € X* be the target string and let k¥ € N be the parameter |h|.
We check whether there exists an injective nonerasing morphism h of size
at most k with h(u) = w in the following way. First, we note that there
are Zle | Y|P < k x |X|F different non-empty strings over ¥ with a length
of at most k. Hence, if |var(u)| > k x |X|¥, which can be checked in time
O(k x |X|*), then every morphism h of size at most k with h(u) = w is
necessarily non-injective. If, on the other hand |var(u)| < k x |X|¥, then we can
use the algorithm BF-2xy_ vy~ stavoren (4, w, X, k) in order to check whether
there exists an injective nonerasing morphism h of size at most k with h(u) = w
and |h(z)| < k, z € var(u), in time

0 <|u| x kx (kx Z|k)(kxzk)) .

For part D, we again only show the case K = STRSUBST, since all the other
cases K € SMP \{STRSUBST} can be handled analogously. Let u be the source
string, let w € X* be the target string and let k& € N be the parameter |h|. Let
I be exactly the symbols from X which have more occurrences in w than in w.
Obviously, these are the only symbols that need to occur in the images of the
substitution. Now if |I"| > k x |var(u)|, then there does not exist a substitution
h of size at most k that satisfies h(u) = w, since every variable in var(u) can
generate at most k new symbols. If, on the other hand, |I'| < k x |var(u)],
then we can use the algorithm BF-2grrgupsr(u, w, I, k), which has a running

time of
\ Ivar(w)
0 <|u| x k x (k x (k x |var(u)|)k>) .

On the Parameterised Complexity of String Morphism Problems 19

[Problems [[var (u)[[[w[][ulvar [[R[[|Z]][Compl. [Ref.]
SMP p p| — | =] - [[FPT [Thm. BJi
{NE, NE- INJ}-{STRMORPH, STRSUBST } - p| — |-| - [[FPT |Thm. |2
NE- INJ-{STRMORPH, STRSUBST} - - - p| p ||[FPT Thm. |3}13]
SMP p - p| - |[FPT |Thm. P[4
SMP P - P — | 6 ||W][1]-h.| Thm. |1
{e, INJ}-{STRMORPH, STRSUBST} - p 3 1| p |[|[W[1]-h.|Thm. |2

Table 1 A summary of parameterised complexity results.

We conclude this section by pointing out that the results presented in
Section [3.1] and [3:2] completely settle the fixed parameter tractability of all
possible parameterised variants of string morphism problems, with respect to
the parameters considered in the context of this work. In order to verify this
claim, we recall these results in Table [1} In this table, an entry p means that
the problems denoted in the row are parameterised by the parameter in the
column and an integer entry constitutes a constant bound for this parameter.
We note that all the cases parameterised by both |var(u)| and |w| are settled
by row 1. Furthermore, all the cases parameterised by |w]|, but not by |var(u)]
are settled by rows 2 and 6, and all the cases parameterised by |var(u)|, but
not by |w| are settled by rows 4 and 5. In order to see that all the cases
parameterised neither by |var(u)| nor by |w| are settled as well, we need to
take a closer look.

From row 5, we can only conclude that as long as |h| is not a parameter,
then all variants are W[1]-hard. However, for the cases where |h| is a parame-
ter, we can only conclude from row 6 the W[1]-hardness for all but the NE and
NE-INJ variants, and, in addition to that, from row 3 we can conclude the
FPT-membership for the NE - INJ variant, where | X| is a parameter, too. Con-
sequently, for every K € {STRMORPH, STRSUBST} and Z € {NE,NE-INJ},
the following cases are open: (1) [|], |u|var, | X|]-NE-K, (2) [|h], | X]]-NE-K, (3)
[|h], |ulvar]-Z-K and (4) [|h|]-Z-K. In [14] it has been shown that the problems
NE-K are N'P-complete even if the parameters |h|, |u|yar and | 2| are bounded
by constants, which implies that, unless P = AP, the problems of cases (1)
and (2) are not in XP; thus, they are not in FPT. The same holds for the
problems Z-K with respect to parameters |h| and |u|yar, which, in a similar
way, implies that the problems of cases (3) and (4) are not in FPT.

3.3 W[1]-Membership and W[P]-Membership

In this section, we investigate the W[1]-membership and W[P]-membership for
those variants of the string morphism problem that are shown to be W[1]-hard
in Section [3.1] So, we try to find their proper place within the W-hierarchy of
parameterised complexity. More precisely, we first show that, for every K €
SMP, the problems [|var(u)|, |u|var]-K and [|w|]-K are in W[1]. Unfortunately,
for the problems [|var(u)|]-K, K € SMP, we are only able to show a weaker

20 Henning Fernau et al.

result, i.e., their W[P]-membership. Our W[l]-membership results shall be
proven by reductions to the following W [1]-complete problem, hence employing
the “Turing way” to the W-hierarchy as proved by Cesati [7].

SHORT-NTM-CowMP

Instance: A nondeterministic Turing machine M and a string w over
the input alphabet of M and a k € N.

Parameter: (M, w, k) = k.

Question: Does M have an accepting computation for w with at most
k steps?

We wish to point out that the problem variant that fixes the input w to
the empty string characterises W[1], too, and, for the sake of convenience, we
shall employ this problem to prove our W[l]-membership results.

On the other hand, the result that all problems [|var(u)|]-K are in W[P]
is obtained by using the following characterisation of the class W|[P]:

Proposition 6 (Flum and Grohe [16]) A parameterised problem (Q, k)
with Q € N'P is in W[P] if and only if there is a computable function h : N —
N, a polynomial p and a nondeterministic Turing machine M deciding Q such
that on every run with input x the machine M performs at most p(|x|) steps,
at most h(k(x)) x log(|x|) of them being nondeterministic.

We are now ready to present our results and we start with the problem
[[var(w)]|, |t|var]-STRSUBST:

Theorem 4 Let K € SMP. The problem [|var(u)|, |u|var]-K is in W[1].

Proof In order to prove the statement of the theorem, we define a param-
eterised reduction from [|var(u)|, |t|var]-STRSUBST to SHORT-NTM-COMP.
We shall then show how this reduction can be extended to reductions from all
the problems [|var(w)|, |t|var]-K, K € SMP, to SHORT-NTM-CoMP.

Let u :=uoy1 w1 y2u2y3 .. . Yntn, ¥ € X, 1 <0 <n,u; € X, 0< 5 < n,
be a source string and let w € X* be a target string. For every 4,7, k,1, 1 <
1 <j<k<Il<|w|, wedefine P, ;; :=1if w[i, j]| = wk,l] and P; j 1, := 0 if
wli, j] # wlk,l]. Furthermore, for every i, 5, k, 1,1 <i < j<n,1 <k <l < |w],
we define Q; ;=1 if w; i1 ... uj—1 = wk + 1,1 — 1] and Q; jx,; = 0 if
U; Wig1 ---Uj—1 7 wlk + 1,1 — 1]. Next, we define a nondeterministic Turing
machine M, ,,, which accepts the empty string if and only if h(u) = w for
some substitution h. The tape alphabet of M, ,, is 7 := X U 7', where 7/ :=
{Tj(flz [1<i<n,1<j<Ek<|w}U{T} The states and transition function
of M, ., is implicitly given by the following description of how M,, ,, works:

1. My writes y1 92 ...y, on the working tape (in any of the following in-
structions, by u’ we denote the current content of the working tape).

2. M, guesses S C var(v') and, for every i, 1 <14 < n,
(a) if y; € S, then y; is replaced by T,
(b) if y; ¢ S, then y; is replaced by Tj(f,z, for some j,k, 1 <j <k <|w|

On the Parameterised Complexity of String Morphism Problems 21

3. M, ., checks, for every factor Tj(l“}zl T! Tj(;?]zy 0<1<n—2, of u, whether
Qi1 iz k1,jo = 1 is satisfied.

4. M, checks, for every i1,i2, 1 < i1 < iz <n, with u'[i;] = Tj(f’l,zl, u'lis] =

T](sz,zz and y;, = yi,, whether Pj, g, i, k, = 1 is satisfied.
5. If conditions 3 and 4 are satisfied, then M, ,, accepts and rejects otherwise.

The following three claims, which can be verified with moderate effort,
show that the transformation of a source string u and a target string w into the
nondeterministic Turing machine M, ,, constitutes a parameterised reduction
from [|var(u)|, |u|var]-STRSUBST to SHORT-NTM-COMP.

Claim 1. Let u be a source string and let w € X* be a target string. There
exists a substitution h with h(u) = w if and only if M, ,, accepts the empty
string.

Claim 2. Let u be a source string and let w € X* be a target string. The Turing
machine M, ., can be constructed in time O(g(|ul, |w])), for a polynomial g.

Claim 3. Let u be a source string and let w € X* be a target string. Ev-
ery computation of the Turing machine M, ,, halts after O(g(|u|var, [var(u)|))
steps, where ¢ is a polynomial.

It is straightforward to modify the construction of M, ,, in such a way
that a Turing machine M, ., i, K € SMP \{STRSUBST}, is constructed, which
accepts the empty string if and only if (u,w) is a positive instance of problem
[[var(u)|, |t|var]-K . More precisely, in order to define M, ,, i for the nonerasing
versions of string morphism problems, we have to make sure that in step 2 we
set S := 0 and in order to define M, ., for the injective versions of string
morphism problems, we need an additional step similar to step 4 in which we

check, for every iy,ia, 1 < i1 < i < m, with u'[i;] = Tj.(f},zl, u'ia] = Tg?,gZ
and vy, # Yi,, whether P}, x, j, x, = 0 is satisfied. This concludes the proof of
Theorem [l 0

Next, we consider the case where instead of |var(u)|, the length of the
target string, |w|, is a parameter.

Theorem 5 Let K € SMP. The problem [|w|]-K is in W[1].

Proof We proceed analogously to the proof of Theorem {4} i.e., we define a
parameterised reduction from [|w|]-STRSUBST to SHORT-NTM-CoMP and we
shall later explain how this reduction can be extended to all the other problems
K € SMP.

Let u be a source string and let w € X* be a target string. We define a
nondeterministic Turing machine N, ., in the following way. The tape alphabet
of Ny is 7:= X U{1,2,...,|ul}. The states and transition function of N,
is implicitly given by the following description of how N,, ,, works:

1. Ny nondeterministically initialises a variable ¢ := ¢, 1 < 4 < |u|, and
writes w on the working tape (in any of the following instructions, by w’
we denote the current content of the working tape).

22 Henning Fernau et al.

2. N, scans over w’ from left to right and every single occurrence of a
terminal symbol b € X' that is encountered is replaced by ¢ and then c is
nondeterministically set to a value j, ¢ < j < |ul.

3. N, . checks, for every i, 1 <4 < |u], with u[i] € X, whether there is exactly
one j, 1 < j < |w'|, with w'[j] = ¢ and, furthermore, w[j] = u[i].

4. Ny checks, for every i1,ig, 1 < i1 < iy < |u], and for every ji, k1, Ja, k2,
1< jy < kg < ja < ko < '], with w'[jy, ky] = "7 w'ljy —1] < iy <
w'[ky + 1], w'[j2, k2] = igcth) and w'[je — 1] < iy < w'[ke + 1], whether
or not u[i1] = wufis] implies w(j1, k1] = w[ja, ka)-

5. If conditions 3 and 4 are satisfied, then N, ,, accepts and rejects otherwise.

The following claims show that the construction of N, ,, described above
is a parameterised reduction from [|w|]-STRSUBST to SHORT-NTM-CoMmP.

Claim 1. Let u be a source string and let w € X* be a target string. There
exists a substitution h with h(u) = w if and only if N, ., accepts the empty
string.

Claim 2. Let u be a source string and let w € X* be a target string. The Turing
machine N, ,, can be constructed in time O(g(|u|,|w]|)), for a polynomial g.

Claim 3. Let u be a source string and let w € X* be a target string. Every
computation of the Turing machine N,, ,, halts after O(g(|w|)) steps, where g
is a polynomial.

We can again note that it is straightforward to extend the construction
of Ny, from above in such a way that a Turing machine N, , x, K €
SMP \{STRSUBST}, is constructed, which accepts the empty string if and only
if (u,w) is a positive instance of problem K. More precisely, in order to de-
fine N, .,k for the injective versions of string morphism problems, we need to
check in step 4, whether or not the substitution induced by the replacements
done in step 2 satisfies the injectivity or E-injectivity condition, and in order
to define IV, i for the nonerasing versions of string morphism problems, we
only have to make sure that in step 2, for every ¢, at least 1 terminal symbol
is replaced by c. This concludes the proof of Theorem a

We have now established the W[l]-membership of all [|var(u)]|, |u|var]-K
and [Jw|]-K, K € SMP. Furthermore, since W[1]-membership is preserved if
we add more parameters, Theorems 4| and [5| imply W[1]-completeness for all
the W[1]-hard versions of string morphism problems, except [|var(u)|,|X|]-K
and [[var(u)|]-K, K € SMP, for which W]l]-membership does not follow,
since in the reduction defined above, we need |u|y,y as a parameter, too. How-
ever, for the problems [|var(u)|-K, K € SMP, we can show a weaker result,
i.e., their W[P]-membership (which then also carries over to the problems
[[var(u)|,|X|]-K, K € SMP).

Theorem 6 For every K € SMP, [|var(u)|]-K € W[P].

Proof In order to prove the statement of the Theorem, we define a Turing
machine Mg strMoren, Which solves [|[var(u)|]-NE- STRMORPH and satisfies

On the Parameterised Complexity of String Morphism Problems 23

the conditions given in Proposition [6} Later on, we explain how this definition
can be extended to Turing machines Mg for every K € SMP.

Let u = y1y2...Ym, yi € var(u), 1 < i < m, be a source string and let
w € X* be a target string. The states and transition function of Myg- strMoren
is implicitly given by the following description of how Myy.srrMorpn WOrks.
We assume that the input is given in the form u # w:

1. Mnyg- steMorpn NOndeterministically guesses numbers 41, j1, %2, 52, - - - tm, Jm
€ N, such that 1 =41 < j; <is < jo < ... < < jm = |w| and, for every
L1<l<m—1,+1=i1.

2. Myg-stanoren accepts if, for every p,q, 1 < p < ¢ < |u], y, = y, implies
wlip, jp] = wliq, jq], and rejects otherwise.

The following claims establish that the Turing machine Myg.strMoren
solves the problem [|var(u)|]-NE- STRMORPH and satisfies the conditions given
in Proposition [6}

Claim 1. The Turing machine My srrMoren SOlves NE- STRMORPH.

Claim 2. Let u be a source string and let w € X* be a target string. The
Turing machine Myg_ srrMorpn, 01 input u#w, performs O(|var(u)| X log(|w|))
nondeterministic steps.

Claim 3. Let u be a source string and let w € X* be a target string. Any com-
putation of the Turing machine Myy. srrMorpn ON input uFw is polynomial.

Proposition [f] and the claims from above imply that NE- STRMORPH is
in W[P]. Next, we observe that the Turing machine Mg srrMoren Can be
extended to Turing machines Mk, K € SMP \{NE- STRMORPH}, which solves
K in the following way. If the source string contains terminal symbols, then we
have to make sure that the numbers guessed in step 1 cater for this situation,
e.g., if there are 5 terminal symbols between y, and y,41, then j, +6 = 7,11
must hold. If we are concerned with erasing substitutions or morphisms, then,
before performing step 1, the Turing machine first guesses a subset of variables
which are erased from u. This can be done with O(|var(u)|) nondeterministic
steps. Moreover, the claims from above still hold for these extended versions
of Mg strmoren- Thus, we can conclude the statement of the theorem. a

4 A Lower Bound

For most string problems, it is a natural assumption that the alphabet X' is
fixed (in fact, it often has very small cardinality as, e. g., 2 if we are dealing with
binary numbers or 4 in the case of DNA sequences). Furthermore, if we use
strings with variables (i. e., source strings) for specifying a class of similar string
objects (which is a typical application of strings with variables), then, for many
applications, there are only finitely many string objects that can replace the
variables. Hence, the problems [|h] < k1, |X| < ko]-K, K € SMP, ky,ks € N
(i.e., the parameters |h| and |X| are bounded by k; and ko, respectively), are

24 Henning Fernau et al.

of special interest. We recall that Proposition [5| demonstrates that, for every
constants k1, ke € N and for every K € SMP, [|h]| < k1, |X]| < k3]-K can be
solved in time O(|u| x k1 x (ky x k51)var@ly = |y| x 20(var(w]) In this section,
we show that if kg > 2, then, for every K € {STRMORPH, STRSUBST}, it is
very unlikely that a subexponential algorithm for [|h| < k1, |X| < ko]-K exists.

One common way to argue for the unlikeness of a subexponential algorithm
is to use the Exponential Time Hypothesis (ETH) by Impagliazzo, Paturi, and
Zane. For an introduction to ETH, see [17,[25]. By the observation that each
variable of a Boolean formula is used at least once, and by the Sparsification
Lemma (23], ETH can be expanded as follows:

Exponential Time Hypothesis (ETH) [23]: There is a positive
real s such that 3-SAT instances on n variables and m clauses can-
not be solved in time 2°™(n + m)?(M. In particular: there is a real
s’ > 0 such that 3-SAT instances on m clauses cannot be solved in
time 25" (77 (4)0,

Obviously, if there exists some algorithm solving 3-SAT in time 2°+™) (n+
m)P™) | this would contradict ETH.

In the following, we show that if ko > 2, then, for every K € {STRMORPH,
STRSUBST}, there does not exist an algorithm that solves [|h| < k1, | X] < ko]-
K in time (Jul|w|)P®) x 200var()D) “ynless ETH fails.

To this end, we define a reduction @ from 3SAT to STRSUBST. Let C' :=
{c1,¢2,...,cm} be a set of three-literal-clauses with variables vy, va,..., v,
(the negation of a variable v; is denoted by —w;). We define

IS

=¢x1T1¢Cx2T2¢... ¢, Ty ¢,
=¢(aq)",

gl

and, for every clause ¢; := {pi,, Diy»Dis }, 1 <@ < m, we define

-~ .__ ! !
Ui 2= CYiy Yiy Yiz 2,1 25,2 €231 24,2 21 232 €,

W; := ¢aaac¢aad,

where y;, = x;; if p;; = v;; and y;; =7y, if p;; = —w;;, 1 < j < 3. Finally,
UI=TUL Uz ... Uy, W= WW Wa ... W, and P(C) := (u,w).

Lemma 5 Let C be a SCNF formula and let (u,w) := $(C). The formula C
is satisfiable if and only if there exists a substitution h of size 1 with h(u) = w.

Proof We first prove the only if direction and assume that there exists a
satisfying assignment m : {v1,ve,...,v,} — {true,false} for C. We define
a substitution for u in the following way. For every ¢, 1 < i < n, we define
h(z;) := a and h(Z;) := ¢, if 7(v;) = true and h(z;) := ¢ and h(T;) := a, if
m(v;) = false. This implies h(uw) = w. Furthermore, since 7 is satisfying, for
every i, 1 < i <m, h(yi, Vi, ¥Yi;) € {a,aa,aaa}. Thus, we define

— h(zi1) == a, h(zi2) == a, h(z] ;) =€ and h(z],) := ¢, if h(yi, i, ¥is) = 2,

On the Parameterised Complexity of String Morphism Problems 25

— h(zi1) == a, h(zi2) =€, h(z],) := a, h(z]) = ¢, if h(yi, i, yis) = 22,
— h(zi1) =€, h(zi2) =6, h(z] 1) == a, h(z],) = a, if h(yi, Yi, vi;) = 222

This directly implies that, for every i, 1 < ¢ < m, h(u;) = w;. Hence, h(u) = w
and h is of size 1.

In order to prove the if direction, we assume that there exists a substi-
tution h of size 1 with h(u) = w, which implies h(@) = w and, for every 1,
1 < i < m, h(u;) = ;. From h(u) = W we can directly conclude that, for
every i, 1 <i <mn, h(z;) = a and h(T;) = € or h(z;) = € and h(T;) = a. Fur-
thermore, h(u;) = W;, 1 < ¢ < m, implies that h(y;, i, Yi, 2i1 zi,2) = aaa and
h(zi1 zi2 2} #;) = aa. This particularly implies that, for every 4, 1 <i <m,
h(Yiy Viy Yis) 7 €, since otherwise h(z; 1 2,2) = aaa, which is a contradiction
to h(zi1 22 2 4 #{ o) = aa. Consequently, if we assign every v; with h(z;) = a
to true, then at least one variable in every clause is assigned to true, which
means that C' is satisfied. O

We note that #(C') produces a source string u with |u| = 3n+1+12m and
a target string w € {a, ¢}* with |w| = 2n + 1 4+ 8m, where n is the number of
Boolean variables and m is the number of clauses of C'. This implies that, for
every ki, ko € N, ko > 2 if [|h] < k1, |X| < ko]-STRSUBST can be solved in time
(Jul|w])OM) x 20(var(D " then 3SAT can be solved in time (m+n)OM) x 200m+n),

Furthermore, the reduction @ can be extended to morphisms, i.e., to a
reduction @’ that maps a Boolean formula C with n variables and m clauses to
a source string u that only contains variables, i. e., w € X*, with |u| = O(n+m).
To this end, let C' be a set of m three-literal-clauses with n variables and let
(u, w) := @(C). First, we obtain a source string v’ € X* from u by substituting
every occurrence of ¢ by an occurrence of the new variable y,. Next, we define
U = ye ye (v')? and w” := ¢ ¢ (w)?. Obviously, [u”| = 2Ju| +2 = O(n + m).
In order to prove that @' is a valid reduction, it is sufficient to show that
there exists a substitution h of size 1 with h(u) = w if and only if there exists
a morphism g of size 1 with g(u”) = w”. The only if direction is obvious,
since if h(u) = w, then g(u”) = w”, where g(z) := h(z), z € var(u), and
9(ye) := ¢. For the if direction, we observe that if g(u”) = w” and g(y) = ¢,
then g(u) = w holds as well. If, on the other hand, g(y.) = €, then g(u?) = w”,
which is a contradiction, since w” is not a square.

Hence, for every ki, ke € N, ko > 2, if we can solve [|h| < k1, | Y| < ko]-K,
K € {STRMORPH, STRSUBST}, in time (|u|lw])OM) x 20(var(w " then 3SAT
can be solved in time (m 4 n)°™M) x 2°0m+7) 'wwhich is a contradiction to ETH.

Theorem 7 For every K € {STRMORPH, STRSUBST} and k1, ko € N, ko >
2, [|h] < k1,|%| < ko]-K cannot be solved in time (|ul|w|)O) x 20(var(w)l)
unless ETH fails.

Proof Let C be a 3CNF formula with n variables and m clauses, let (u,w) =
&(C) and let (v/,w’) := §'(C), where ¢ and ¢’ are the transformations from
3SAT to STRSUBST and STRMORPH, respectively. We observe that |u| = 3n+
14+12m = O(n+m), [v/| = 2Ju|+2 = O(n+m), |lw| = 2n+1+8m = O(n+m)

26 Henning Fernau et al.

and |w'| = 2|w| +2 = O(n + m). In particular, this means that |var(u)| =
O(n+m) and |var(u’)] = O(n+m). We assume that there exists an algorithm
Xk, K € {STRSUBST, STRMORPH}, that solves [|h] < ki, |X| < k3]-K in time
(Jul|w])O) x 20(var(@)]) We can now solve the 3SAT instance C' as follows. In
case K = STRSUBST, we perform the reduction @, which constructs u and w,
and in case K = STRMORPH, we perform the reduction &', which constructs
u' and w’. Then we apply xx on input (u,w) or (u',w’), respectively, which
has a running time of

(|u\|w|)0(1) % 20(\Var(u)|) _ (er n)O(l) % 20(m+n) _

20(m+n)+10g0(1)(m+n) _ 20(m+n))

As pointed out by Lemma [5| ¢ and ¢’ are reductions from 3SAT to [|h]| <
k1,|X| < ko]-K, K € {STRSUBST, STRMORPH}, as long as k1 > 1 and ko >
2. Hence, C is a positive 3SAT instance if and only if (u,v) is a positive
[|h] < k1,|X| < k2]-STRSUBST instance (if and only if (u/,v’) is a positive
[|h] < k1,]X| < k2]-STRMORPH instance, respectively). This is a contradiction
to ETH as formulated before. O

5 Conclusions

In this paper, we investigate 8 variants of the string morphism problem (i. e.,
the problems in SMP) with respect to the 5 parameters |var(u)|, |X|, |w],
|tt|var and |h|. From our results, we can conclude either W|[1]-hardness or FPT-
membership for all of these 256 parameterised problems.

Our results can be summarised as follows. The string morphism problems
become fixed parameter tractable if parameterised by |var(u)| and |w], but, if
at most one of those is a parameter, then almost all problem variants are W{1]-
hard and for the few cases that are still in FPT, this is due to the fact that
the considered parameters implicitly bound |var(u)| and |w| as well. A natural
question that arises is whether there are better fpt-algorithms for the problems
[[var(u)|,|w|]-K, K € SMP than the brute-force algorithm. Furthermore, it
might be interesting to measure the kernel sizes for these problems.

For the W{[l]-hard variants of the string morphism problems, we show
W [1]-membership for the cases that |w]| is a parameter and both |var(u)| and
|ulyvar are parameters, whereas for the case that only |var(u)| is a parameter,
we are only able to show W[P]-membership. Hence, the exact location of this
problem variant in the W[1]-hierarchy remains open. In this regards, it is worth
mentioning that examples for problems that are complete for Wt] with ¢ > 3
are rare (see Chen and Zhang [§]).

References

1. Abu-Khzam, F.N., Fernau, H., Langston, M.A., Lee-Cultura, S., Stege, U.: A fixed-
parameter algorithm for string-to-string correction. Discrete Optimization 8, 41-49
(2011)

On the Parameterised Complexity of String Morphism Problems 27

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Function matching: Al-
gorithms, applications, and a lower bound. In: Proc. 30th Int. Coll. on Automata,
Languages and Programming, ICALP 2003, LNCS, vol. 2719, pp. 929-942 (2003)

. Amir, A., Nor, I.: Generalized function matching. Journal of Discrete Algorithms 5,

514-523 (2007)

Angluin, D.: Finding patterns common to a set of strings. In: Proc. 11th Annual ACM
Symposium on Theory of Computing, STOC 1979, pp. 130-141 (1979)

Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Journal of
Computer and System Sciences 52, 28-42 (1996)

. Campeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.

International Journal of Foundations of Computer Science 14, 1007-1018 (2003)
Cesati, M.: The Turing way to parameterized complexity. Journal of Computer and
System Sciences 67, 654-685 (2003)

Chen, J., Zhang, F.: On product covering in 3-tier supply chain models: Natural com-
plete problems for W[3] and W[4]. Theoretical Computer Science 363(3), 278-288
(2006)

Clifford, R., Harrow, A.W., Popa, A., Sach, B.: Generalised matching. In: Proc. 16th
International Symposium on String Processing and Information Retrieval, SPIRE 2009,
LNCS, vol. 5721, pp. 295-301 (2009)

Downey, R., Fellows, M., Kapron, B., Hallett, M., Wareham, H.: Parameterized com-
plexity of some problems in logic and linguistics (extended abstract). In: Proc. 2nd
Workshop on Structural Complexity and Recursion-theoretic Methods in Logic Pro-
gramming, LNCS, vol. 813, pp. 89-101 (1994)

Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
Ehrenfeucht, A., Rozenberg, G.: Finding a homomorphism between two words is NP-
complete. Information Processing Letters 9, 86-88 (1979)

Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized com-
plexity of multiple-interval graph problems. Theoretical Computer Science 401, 53-61
(2009)

Fernau, H., Schmid, M.L.: Pattern matching with variables: A multivariate complexity
analysis. In: Proc. 24th Annual Symposium on Combinatorial Pattern Matching, CPM
2013, LNCS, vol. 7922, pp. 83-94 (2013)

Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string mor-
phism problems. In: Proc. 33rd TARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2013, Leibniz International
Proceedings in Informatics (LIPIcs), vol. 24, pp. 55-66 (2013)

Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2006)

Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Com-
puter Science. Springer (2010)

Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic images of
strings. International Journal of Foundations of Computer Science 17, 601-628 (2006)
Garey, M.R., Johnson, D.S.: Computers And Intractability. W. H. Freeman and Com-
pany (1979)

Geilke, M., Zilles, S.: Learning relational patterns. In: Proc. 22nd International Confer-
ence on Algorithmic Learning Theory, ALT 2011, LNCS, vol. 6925, pp. 84-98 (2011)
Harju, T., Karhumaéki, J.: Morphisms. In: G. Rozenberg, A. Salomaa (eds.) Handbook
of Formal Languages, vol. 1, chap. 7, pp. 439-510. Springer (1997)

Ibarra, O., Pong, T.C., Sohn, S.: A note on parsing pattern languages. Pattern Recog-
nition Letters 16, 179-182 (1995)

Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences 63, 512-530 (2001)

Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and
without erasing. International Journal of Computer Mathematics 50, 147-163 (1994)
Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential Time
Hypothesis. EATCS Bulletin 105, 41-72 (2011)

Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages. RAIRO
Informatique théoretique et Applications 28, 233-253 (1994)

28

Henning Fernau et al.

27.

28.

29.

30.

31.

32.

33.

Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and
System Sciences 67(4), 757771 (2003)

Reidenbach, D., Schmid, M.L.: A polynomial time match test for large classes of ex-
tended regular expressions. In: Proc. 15th International Conference on Implementation
and Application of Automata, CIAA 2010, LNCS, vol. 6482, pp. 241-250 (2011)
Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. In: Proc. 6th Inter-
national Conference on Language and Automata Theory and Applications, LATA 2012,
LNCS, vol. 7183, pp. 468-479 (2012)

Rinaudo, P., Ponty, Y., Barth, D., Denise, A.: Tree decomposition and parameterized al-
gorithms for rna structure-sequence alignment including tertiary interactions and pseu-
doknots — (extended abstract). In: B.J. Raphael, J. Tang (eds.) Algorithms in Bioinfor-
matics — 12th International Workshop, WABI, LNCS, vol. 7534, pp. 149-164. Springer
(2012)

Schmid, M.L.: On the membership problem for pattern languages and related topics.
Ph.D. thesis, Dept. of Computer Science, Loughborough University (2012)

Shinohara, T.: Polynomial time inference of pattern languages and its application. In:
Proc. 7th IBM Symposium on Mathematical Foundations of Computer Science, pp.
191-209 (1982)

Stephan, F., Yoshinaka, R., Zeugmann, T.: On the parameterised complexity of learn-
ing patterns. In: Proc. 26th International Symposium on Computer and Information
Sciences, ISCIS 2011, pp. 277-281

	Introduction
	Preliminaries
	The Parameterised Complexity of String Morphism Problems
	W[1]-Hardness
	Fixed Parameter Tractability
	W[1]-Membership and W[P]-Membership

	A Lower Bound
	Conclusions

