Pattern Matching with Variables:
A Multivariate Complexity Analysis™

Henning Fernau®, Markus L. Schmid®*

@Fachbereich 4 — Abteilung Informatik, Universitat Trier, D-54286 Trier, Germany

Abstract

A pattern «, i.e., a string that contains variables and terminals, matches a
terminal word w if w can be obtained by uniformly substituting the variables
of a by terminal words. Deciding whether a given terminal word matches a
given pattern is NP-complete and this holds for several natural variants of the
problem that result from whether or not variables can be erased, whether or not
the patterns are required to be terminal-free or whether or not the mapping of
variables to terminal words must be injective. We consider numerous parameters
of this problem (i.e., number of variables, length of w, length of the words
substituted for variables, number of occurrences per variable, cardinality of the
terminal alphabet) and for all possible combinations of the parameters (and
variants described above), we answer the question whether or not the problem
is still NP-complete if these parameters are bounded by constants.

Keywords: Parameterised Pattern Matching, Function Matching,
NP-Completeness, Membership Problem for Pattern Languages, Morphisms

1. Introduction

In the present work, a detailed complexity analysis of a computationally hard
pattern matching problem is provided. The patterns considered in this context
are strings containing variables from {x1, zo, 3, ...} and terminal symbols from
a finite alphabet X, e.g., a := z1 ax; bx 2 is a pattern, where a,b € 3. We
say that a word w over ¥ matches a pattern « if and only if w can be derived
from « by uniformly substituting the variables in a by terminal words. The
respective pattern matching problem is then to decide for a given pattern and
a given word, whether or not the word matches the pattern. For example, the
pattern « from above is matched by the word u := bacaabacabbaba, since
substituting x; and zs in a by baca and ba, respectively, yields u. On the other

* A preliminary version [I1I] of this paper was presented at the conference CPM 2013.
*Corresponding author
Email addresses: Fernau@uni-trier.de (Henning Fernau), MSchmid@uni-trier.de
(Markus L. Schmid)

Preprint submitted to Elsevier July 12, 2017

hand, « is not matched by the word v := cbcabbcbbccbe, since v cannot be
obtained by substituting the variables of a by some words.

To the knowledge of the authors, this kind of pattern matching problem
first appeared in the literature in 1979 in form of the membership problem for
Angluin’s pattern languages [3, 4] (i.e., the set of all words that match a certain
pattern) and, independently, it has been studied by Ehrenfeucht and Rozenberg
in [I0], where they investigate the more general problem of deciding on the
existence of a morphism between two given words (which is equivalent to the
above pattern matching problem, if the patterns are terminal-free, i.e., they
only contain variables).

Since their introduction by Angluin, pattern languages have been intensely
studied in the learning theory community in the context of inductive inference
(see, e.g., Angluin [4], Shinohara [32], Reidenbach [24] 25] and, for a survey, Ng
and Shinohara [22]) and, furthermore, their language theoretical aspects have
been investigated (see, e. g., Angluin [4], Jiang et al. [I9], Ohlebusch and Ukko-
nen [23], Freydenberger and Reidenbach [12], Bremer and Freydenberger [7]).
However, a detailed investigation of the complexity of their membership prob-
lem, i.e., the above described pattern matching problem, has been somewhat
neglected. Some of the early work that is worth mentioning in this regard is by
Ibarra et al. [I7], who provide a more thorough worst case complexity analysis,
and by Shinohara [33], who shows that matching patterns with variables can be
done in polynomial time for certain special classes of patterns. Recently, Reiden-
bach and Schmid [26, 27] identify complicated structural parameters of patterns
that, if bounded by a constant, allow the corresponding matching problem to
be performed in polynomial time (see also Schmid [29]).

In the pattern matching community, independent from Angluin’s work, the
above described pattern matching problem has been rediscovered by a series of
papers. This development starts with [5] in which Baker introduces so-called
parameterised pattern matching, where a text is not searched for all occurrences
of a specific factor, but for all occurrences of factors that satisfy a given pat-
tern with parameters (i. e., variables). In the original version of parameterised
pattern matching, the variables in the pattern can only be substituted by single
symbols and, furthermore, the substitution must be injective, i. e., different vari-
ables cannot be substituted by the same symbol. Amir et al. [I] generalise this
problem to function matching by dropping the injectivity condition and in [2],
Amir and Nor introduce generalized function matching, where variables can be
substituted by words instead of single symbols and “don’t care” symbols can be
used in addition to variables. In 2009, Clifford et al. [J] considered generalised
function matching as introduced by Amir and Nor, but without “don’t care”
symbols, which leads to patterns as introduced by Angluin.

In [2], motivations for this kind of pattern matching can be found from such
diverse areas as software engineering, image searching, DNA analysis, poetry
and music analysis, or author validation. Another motivation arises from the
observation that the problem of matching patterns with variables constitutes
a special case of the matchtest for regular expressions with backreferences (see,
e.g., Campeanu et al. [§], Schmid [30]), which nowadays are a standard ele-

ment of most text editors and programming languages (cf. Friedl [14]). Due
to its simple definition, the above described pattern matching paradigm also
has connections to numerous other areas of theoretical computer science and
discrete mathematics, such as (un-)avoidable patterns (cf. Jiang et al. [I§]),
word equations (cf. Mateescu and Salomaa [21]), the ambiguity of morphisms
(cf. Freydenberger et al. [13]), equality sets (cf. Harju and Karhuméki [I6]) and
database theory (cf. Barcel6 et al. []).

It is a well-known fact that — in its general sense — pattern matching with
variables is an NP-complete problem; a result that has been independently re-
ported several times (cf. Angluin [4], Ehrenfeucht and Rozenberg [10], Clifford
et al. [9]). However, there are many different versions of the problem, tailored to
different aspects and research questions. For example, in Angluin’s original def-
inition, variables can only be substituted by non-empty words and Shinohara
soon afterwards complemented this definition in [32] by including the empty
word as well. This marginal difference, as pointed out by numerous results, can
have a substantial impact on learnability and decidability questions of the corre-
sponding classes of non-erasing pattern languages on the one hand and erasing
pattern languages on the other. If we turn from the languages point of view of
patterns to the respective pattern matching task, then, at a first glance, this
difference whether or not variables can be erased seems negligible. However, in
the context of pattern matching, other aspects are relevant, which for pattern
languages are only of secondary importance. For example, requiring variables
to be substituted in an injective way is a natural assumption for most pattern
matching tasks and bounding the maximal length of these terminal words by
a constant (which would turn pattern languages into finite languages) makes
sense for special applications (cf. Baker [5]). Hence, there are many variants of
the above described pattern matching problem, each with its individual moti-
vation, and the computational hardness of all these variants cannot directly be
concluded from the existing NP-completeness results.

For a systematic investigation, we consider the following natural parameters:
the number of different variables in the pattern, the maximal number of occur-
rences of the same variable in the pattern, the length of the terminal word, the
maximum length of the substitution words for variables and the cardinality of
the terminal alphabet. Hence, there are 2° different combinations of parameters
and coupling these with the 23 variants of the pattern matching problem with
variables results in 256 individual problems. For each of these problems, the
question arises whether or not the parameters can be bounded by (preferably
small) constants such that the resulting variant of the pattern matching prob-
lem is still NP-complete. In this paper, by giving a brief overview of all the
existing related results that we are aware of, we show that answers to many
of these questions can already be concluded from the literature. Nevertheless,
several important cases have not yet been settled and our main contribution
is to close all these remaining gaps, such that we obtain an answer for all of
these 256 questions. In this regard, we provide dichotomy results (in terms of
Schaefer [28]) for the pattern matching problem with variables with respect to
the above mentioned parameters.

The main motivation for undertaking such a research task is the following.
While many NP-complete problems naturally occur in theory and also in prac-
tical situations, it is almost never the case that the actual problem that has to
be solved is exactly the one for which NP-completeness has been established.
It is rather the case that we face a subproblem of an NP-complete problem,
tailored to the context in which it is encountered. This is also the reason why
NP-completeness results are usually accompanied with statements like “This
problem is still NP-complete, even if ...”. As an example, consider the inten-
sive research that is done on proving NP-completeness for graph problems on
restricted classes of graphs as planar graphs, graphs with constant degree and
so on or the classical results that the satisfiability problem for Boolean formulas
is NP-complete even if every clause contains at most 3 literals. Similarly, if
some kind of pattern matching problem with variables is encountered, this is
most likely not exactly one of the versions for which NP-completeness has been
established in the literature, but, as we believe, it is very likely to be covered by
one of the 256 restricted subproblems described above. Therefore, a thorough
analysis of the complexity of these problems is a worthwhile research task.

This paper is organised as follows. In Section [2| we recall some general
concepts and we formally define the pattern matching problem with variables.
In Section [3] we first provide an overview of all the related results that exist in
the literature and that we are aware of and, furthermore, we outline the proof
technique that shall be used in order to establish our new results. The main part
of the paper is represented by Sections [d] and [5] More precisely, in Section [4] we
only consider the non-injective variants of the pattern matching problem with
variables and in Section [the injective variants are investigated. In each of
these parts, we shall first consider the erasing case and then the non-erasing
one. Finally, in Section [f] we summarise our results and state some related
open problems.

2. Preliminaries

Let N := {1,2,3,...}. For an arbitrary alphabet A, a word (over A) is a
finite sequence of symbols from A, and ¢ is the empty word. The notation A™
denotes the set of all non-empty words over A, and A* := AT U {e}. For the
concatenation of two words w1, we we write wiws. We say that a word v € A*
is a factor of a word w € A* if there are uy,us € A* such that w = uy vug. The
notation | K| stands for the size of a set K or the length of a word K.

Let X := {x1,22,23,...} and every z € X is a variable. Let ¥ be a finite
alphabet of terminals with X N X = (. Every a € (X UX)T is a pattern and
every w € X* is a (terminal) word. For any pattern a, we refer to the set
of variables in « as var(a) and, for any variable x € var(«), |a|, denotes the
number of occurrences of z in a.

Let a be a pattern. A substitution (for «) is a mapping h : var(a) — X*.
For every x € var(a), we say that = is substituted by h(x) and h(a) denotes
the word obtained by substituting every occurrence of a variable x in « by
h(z) and leaving the terminals unchanged. If, for every x € var(a), h(z) # ¢,

then h is non-erasing (h is also called erasing if it is not non-erasing). If, for
all z,y € var(a), © # y and h(x) # € # h(y) implies h(z) # h(y), then h is
E—injectiveﬂ and h is called injective if it is E-injective and, for at most one
x € var(w), h(z) =¢.

Example 1. Let f := x1axobxsx T2 be a pattern, let u := bacbabbacb and
let v := abaabbababab. It can be verified that h(f8) = u, where h(x1) = bacb,
h(z2) = € and g(B) = v, where g(z1) = g(z2) = ab. Furthermore, B cannot be
mapped to u by a mon-erasing substitution and 5 cannot be mapped to v by an
injective substitution.

If the type of substitution is clear from the context, then we simply say that
a word w matches o to denote that there exists such a substitution h with
h(a) = w.

We are now ready to formally define the pattern matching problem with
variables, denoted by PMV, which has informally been described in Section

PMV

Instance: A pattern o and a word w € X*.
Question: Does there exist a substitution h with h(a) = w?

As explained in Section [I] the above problem exists in various contexts with
individual terminology. Since we consider the problem in a broader sense, we
term it pattern matching problem with variables in order to distinguish it —
and all its variants to be investigated in this paper — from the classical pattern
matching paradigm without variables.

Next, we define several parameters of PMV. To this end, let & and w be a
pattern and a word, respectively, over ¥ and let h be a substitution for a.

® Pvar(a)| = | var(a)l,

® pla|, = max{|al; | x € var(a)},

Plw| = |’U.)|,

Pz = |E|a
® (e = max{|h(z)| | x € var(a)}.

The restricted versions of the problem PMV are now defined by P-[Z,I,T]-
PMV, where P is a list of bounded parameters, Z € {E,NE} denotes whether
we are considering the erasing or non-erasing case, T € {tf,n-tf} denotes
whether or not we require the patterns to be terminal-free and I € {inj, n-inj}
denotes whether or not we require the substitution to be injective (more pre-
cisely, if Z = NE, then I = inj denotes injectivity, but if Z = E, then I = inj

1We use E-injectivity, since if an erasing substitution is injective in the classical sense, then
it is “almost” non-erasing, i.e., only one variable can be erased.

denotes E-injectivity). For example, [p‘ctill-7p‘cgl7p|c2(I)|]_[NE’ n-inj, tf]- PMV de-
notes the problem to decide for a given terminal-free pattern o with max{|a/|, |
z € var(e)} < ¢1 and a given word w € ¥* with |X| < ¢, whether or not
there exists a non-erasing substitution h (possibly non-injective) that satisfies
max{|h(x)| | z € var(a)} < ¢3 and h(a) = w, where ¢1,co and c3 are some
constants.

The role of parameter pjj(,) is somewhat special and should therefore be
explained in more detail. While bounding any of the parameters pvar(a)|> Plal. >
Plw| OF p|x| by a constant constitutes a restriction of the instance comprising of
a pattern « and a word w, this is not the case for parameter p (). Therefore,
for all variants of PMV where pjj,(,) is bounded, we assume that the actual
bound of pj,() is given as part of the instance. In particular, this means
that NP-completeness of a variant of PMV where pjj,(,) is upper bounded by
constant c is preserved if instead pj(,y is upper bounded by constant ¢’ > c
and, analogously, tractability is preserved if the constant bound is decreased.
For the other four parameters this is obviously true. Moreover, since we can
always assume that ¢ < |w|, adding the possible bound ¢ on P|h(x)| to the input
does not asymptotically increase the input size, regardless of whether this is done
in a unary or binary way. This also justifies that, for presentational reasons, in
our hardness reductions, we do not explicitly mention the bound c.

The contribution of this paper is to show for each of the 256 individual
problems P-[Z I, T]-PMV (either by citing known results from the literature
or by giving an original proof) whether or not there exist constants such that
if the parameters in P are bounded by these constants, this version of PMV is
still NP-complete or whether it can be solved in polynomial time. To this end,
we first summarise all the respective known results from the literature and then
we close the remaining gaps. We wish to point out that the constant bounds
in our NP-completeness results, although often fairly small, are not necessarily
the smallest possible.

3. The Hardness of Pattern Matching with Variables

We shall now briefly summarise those variants of PMV, for which NP-
completeness or membership in P has already been established. This shall be
done in form of tables, in which a numerical entry denotes a constant bound
of a parameter, the entry “-” means that a parameter is unrestricted and N
denotes that the result holds for any constant bound. The known tractability
results, which are presented in Table[I] are fairly scarce. In order to see that all
versions of PMV can be solved efficiently if the number of variables is bounded,
we informally describe an obvious and simple brute-force algorithm. For some

instance (o, w) of PMV with m := |var(a)|, we simply enumerate all tuples
(u1,ug, ..., un,), where, for every i, 1 < i < m, u; is a factor of w. Then, for
each such tuple (u1,us, ..., uy,), we check whether h(a) = w, where h is defined

by h(z;) := u;, 1 < i < m. This procedure can be performed in time exponen-
tial only in m and, furthermore, it is generic in that it works for any variant of
PMYV. This implies Row 1 of Table

| [E/NE | inj/n-inj | tf /n-tf [[var(a)] | [w] [[Z] | [afe][Ref. |

1| ENE | inj, n-inj | tf, n-tf N - - - -
2 | ENE | inj, n-inj | tf, n-tf - N - - [15]
3| E,NE | inj, n-inj | tf, n-tf - - 1 - -
4 | E,NE | inj, n-inj | tf, n-tf - - - 1 -

Table 1: Overview of known tractability results

In the non-erasing case, a restriction of pj,,| implicitly bounds p| var(a)| as well
and, thus, all the corresponding versions of the pattern matching problem with
variables can be solved efficiently. Moreover, in [I5], Geilke and Zilles show that
if p| < ¢, for some constant ¢, then this particularly implies that the number
of variables that are mot erased is bounded by ¢ as well. As demonstrated in
[15], this means that also for the erasing case PMV can be solved in polynomial
time if the length of the input word is bounded by a constant, which implies
Row 2 of Table [I} Finally, it can be easily shown that PMV can be solved in
polynomial time if either of the parameters pjs| or pjo, is bounded by 1 (see,
e.g., Schmid [29]).

Next, in Table [2| we briefly summarise those variants of PMV, for which
NP-completeness has already been established.

| [E/NE [inj/n-inj | tf /n-tf [[a(2)] [|af. | [S]]| Ref. |
1 NE n-inj n-tf 3 - 2 [4]
9| E,NE | n-nj tf 3 — 2 [0
3 NE n-inj tf 2 - 2 [9]
1| NE inj tf - I 0]
5| NE inj tf 2 S
6 E n-inj n-tf - 2 2 [31]

Table 2: Overview of known NP-completeness results

As indicated by Rows 1 to 4 and Row 6, restricting p|x| does not seem to help
solve PMV efficiently. In [31] it is shown that even if we additionally require the
number of occurrences per variable to be bounded by 2, then PMYV is still NP-
complete. However, regarding these two parameters, we seem to have reached
the boundary between P and NP-completeness, as pointed out by Rows 3 and 4
of Table[1l

Since every version of PMV, for which p|yar(a)| O pju| is Testricted, can be
solved in polynomial time, in the following, we shall neglect these two parameters
and focus on the remaining 3 parameters p|o|,, p|z| and pjx(z))-

In the next section, we investigate the complexity of all the variants of the
pattern matching problem with variables that are not already covered by Ta-
ble [2l Most of these variants turn out to be NP-complete. A summary of all
the following results can be found in Table

The general proof technique to establish these results is to conduct a polyno-
mial reduction from the problem of checking whether or not a given graph has
a so-called perfect code, which shall be defined more formally in the following.

Let G = (V,E) be a graph with V := {tl,tg,...,tn}ﬂ A vertex s is the
neighbour of a vertex ¢ if {¢,s} € E and the set Ng[t] := {s | {t,s} € E}U{t}is
called the (closed) neighbourhood of t. If, for some k € N, every vertex of G has
exactly k neighbours, then G is k-regular. A perfect code for G is a subset C C V
with the property that, for every t € V, |[Ng[t] N C| = 1. Next, we define the
problem to decide whether or not a given 3-regular graph has a perfect code:

3RPERCODE

Instance: A 3-regular graph G.
Question: Does G contain a perfect code?

In [20], Kratochvil and Kfivdnek prove the problem 3RPERCODE to be NP-
complete:

Theorem 2 (Kratochvil and K¥ivanek [20]). The problem 3RPERCODE is
NP-complete.

As mentioned above, all the following NP-completeness results can be proved
by reducing 3RPERCODE to the appropriate variant of PMV. However, since
these reductions must cater for the different variants of the problem (i. e., erasing
or non-erasing, injective or non-injective, with terminals or terminal-free) as well
as for the choice of the restricted parameters, it can be challenging to adapt an
NP-completeness proof that works for one version to a seemingly only slightly
different version. In order to illustrate these difficulties in a bit more detail, we
shall outline the general idea of our reductions.

For the remainder of the entire paper, we define now G = (V, E) to be a 3-
regular graph, where V := {t1,t2,...,t,} and, for every i, 1 <i < m,let N; CV
be the neighbourhood of ¢;. In order to define a reduction from 3RPERCODE
to the pattern matching problem with variables, we can simply use a variable
x; for every t; € V' and represent a neighbourhood as the concatenation of the
appropriate variables, e.g., Ny = {ta,t6,17,t12} is represented by the factor
B7 := xoxexrx12. Then, since we want to select exactly one vertex from every
N;, we align each of these §8; with a single occurrence of the symbol a, i.e., we
construct a pattern a := B1#082# ... #8, and a word w := a#a#...#a, where
is a symbol used as a separator. It can be easily verified that if w matches «,
then, since every 3; matches a, in each ; exactly one variable is mapped to a
and all the others are mapped to the empty word. This directly translates to a
perfect code of G. Equivalently, a perfect code in G implies a substitution that
maps « to w.

2Usually, vertices in a graph are denoted by v1,vs,..., but we reserve the characters u, v
and w for words and factors.

In our terminology, the above sketched reduction shows the NP-completeness
of [E, n-inj, n-tf]-PMV. This is due to the fact that we use the terminal symbol
in the pattern (so the pattern is not terminal-free), we need the ability to
erase variables and, as several variables are mapped to the same word a, the
mapping of variables is non-injective. A closer look further reveals that in
fact [plh(m)‘7pfa‘x,p|22‘]—[E, n-inj, n-tf]-PMV is NP-complete, since we only use
two different terminal symbols, every variable is substituted by either a or the
empty word and, as every vertex is contained in exactly 4 neighbourhoods, every
variable x; occurs at most 4 times in a.

It is not straightforward to adapt this reduction to other variants of PMV.
For example, if we want to adapt the reduction to the terminal-free case, then
we cannot use the symbol # as a separator in « anymore, which plays an
important role in the above reduction, since it forces certain parts of the pattern
to be matched to certain parts of the word. An idea to make « terminal-free
would be to replace every occurrence of # in a by a new variable yx that is
somehow forced to match the single symbol #. However, this leads to other
problems: we lose the bound on the number of occurrences per variable. If
we cater for that by using an individual variable per occurrence of #, then
we lose the injectivity. Furthermore, if we try to maintain the injectivity by
using different separator symbols #;, then we blow up the alphabet size and,
finally, restricting the alphabet size by using binary encodings of the symbols
#; requires an unbounded length of the substitution words.

Consequently, adapting the simple reduction sketched above to individual
reductions from 3RPERCODE to each NP-complete version of PMV involves
considerable technical difficulties.

In the following, in Section [4] we first investigate the complexity of all non-
injective variants of PMV for which the question of NP-completeness is still
open and then, in Section [5| we take a closer look at the injective variants.
In both of these sections, we shall first consider the erasing and then the non-
erasing case.

4. The Non-Injective Case

In this section we show that for all non-injective variants of PMV, we can
find rather small constants such that if we bound the parameters p(z)|, £al.
and pjx| by these constants, then the problem is still NP-complete. We first
consider the erasing case, for which we can present slightly stronger results, and
then we take a closer look at the non-erasing case.

4.1. The Erasing Case

In the following, we show that the problem [p‘lh(x) ,pfalm,p‘zzl]—[E, n-inj, tf]-
PMYV is NP-complete. This problem can be rephrased in terms of renamings.
In this regard, a remaming is simply a mapping h : ¥ — I, where ¥ and T’
are alphabets. The problem to decide for a given word uius...u,, u; € %,
1 <i<mn,and a word v € I'*| whether there exists a renaming h : ¥ — I, such

that h(ui)h(ug)...h(u,) = v can be easily solved in linear time. We simply
align w and v (which must have the same length) and check position by position
whether the symbol in u (and all its occurrences in u) can be turned into the
corresponding one in v in such a way that all the changed symbols agree in
both words. The NP-completeness result mentioned above implies that this
problem of finding a renaming becomes NP-complete, only if we are looking for
an erasing renaming h : ¥ — (I' U {e}), even if |T'| = {a,b} and every symbol
in u has at most 2 occurrences. This is surprising, since the simple formulation
of the problem leads us to believe that it might be solvable in polynomial time
by some kind of dynamic programming strategy. Especially the fact that every
symbol u;, 1 < ¢ < n, has to be either turned into a, b or the empty word and
there exists at most only one other occurrence of the symbol u; makes it sound
simpler than it apparently is.

We can further note that the problem [pfy,). ot , Py |-[E; n-inj, tf-PMV
is arguably the strongest restricted NP—compﬁete variant of PMV, since any
further restriction makes it trivially solvable in polynomial time. More precisely,
as mentioned above, the non-erasing version of this problem is solvable in linear
time. If pp,|, or pjx| is bounded by 1 instead of 2, then, as mentioned in
Section [3] the problem becomes polynomial time solvable and the parameter
Pln(z)| is already bounded in the strongest possible sense. Furthermore, we shall
show that its injective version is in P as well (see Theorem E[)

Theorem 3. [p};, (| Pl » Pl)-[E, n-inj, tf]-PMV is NP-complete.

Obviously, the NP-completeness of a terminal-free variant of PMV carries
over to the non-terminal-free case as well; thus, Theorem [3| shows that the non-
terminal-free case is NP-complete as well. In order to prove Theorem [3] we
devise a reduction from 3RPERCODE to [p‘lh(%)‘,/)%alm7 ZE‘HE, n-inj, tf]-PMV.
For the sake of a clearer presentation, we shall first define a reduction to the
non-terminal-free case, which is then extended to the terminal-free case.

We recall that in all the following constructions G = (V, E) is a 3-regular
graph with V' := {¢1,t2,...,t,} and, for every i, 1 < i < n, N; is the neigh-
bourhood of ¢;. Since the neighbourhoods play a central role, we shall define
them in a more convenient way. For every r, 1 < r < 4, we use a map-
ping o, : {1,2...,n} — {1,2...,n} that maps an i € {1,2...,n} to the
index of the r*" vertex of neighbourhood Nj, i.e., for every i, 1 < i < n,
Ni = {te,(5) tos(i)s tps(i)> Lpai) - Obviously, the mappings ., 1 <r < 4, imply
a certain order on the vertices in the neighbourhoods, but, since our construc-
tions are independent of this actual order, any definition of these mappings is
fine.

Let ¥ := {a,#, ¢} be a terminal alphabet. We define a mapping ®g that
maps G to a pattern @ and a word w € ¥*, such that, for every z € var(a),
|| < 2. We shall later show how this mapping can be modified in such a way
that a binary alphabet is sufficient. Since the basic idea of all the following
reductions is similar, it is beneficial to invest some more time here to illustrate
it in an informal way. We basically use the idea described in Section [3] but

10

in order to bound the number of occurrences per variable by 2, we represent
each single occurrence of a vertex in a neighbourhood by an individual variable.
More precisely, the occurrence of vertex ¢; in the neighbourhood of vertex ¢;
is represented by variable x; ;. This requires a gadget that synchronises the 4
variables x; j,, ®; j,, Ti j;, Ti j, that correspond to t;, i.e., we have to make sure
that either all of these 4 variables are mapped to a or none of them is.

The formal definition of o and w is as follows. For every i, 1 < i < mn, let

Bi 1= Ty (i),i T (i),i Tps (i), Tpa(i),i and
U; :—=a.

Furthermore, for every ¢, 1 < i < n, we define

N /
Vi 1= Yi G i, (i) Tipa(i) Tipa (i) Ti,pa(s) €201 %02 %03 Zia Y and

vii=¢gate.
Finally, we define

=1Lt HE L HFENHFERHEH T,
wi=uy FusH - F U FLFH - FH 0,

and ®g(G) := (o,w). We note that every variable of form z; ;, y; or y; has
exactly one occurrence in «. Every variable of form x; ; has one occurrence in
each §; and ;. Thus, for every z € var(w), |al, < 2. The following lemma
states that ®g is in fact a reduction.

Lemma 4. Let (a,w) := ®Pg(G). There is a perfect code in G if and only if
there exists a substitution h for o such that h(a) = w and, for every x € var(a),
h)| < 1.

PROOF. We begin with the if direction and assume that there exists a sub-
stitution h for «, such that h(a) = w and, for every x € var(w), |h(z)| < L.
Since in « there are as many occurrences of # as in w, we can conclude that,
for every i, 1 < i < n, h(8;) = u; and h(v;) = v;. Consequently, for every i,
1 <i<n, h(zg,6),:) € {a,e}, 1 <1 <4, and there is exactly one [, 1 <[< 4,
with h(z,;),;) = a. Furthermore, for every i, 1 <14 <n,

case 1: h(¢ Liy01(3) Ti,p2(i) Ti,03(i) Li,pa(i) ¢) =c¢a'¢or

case 2: h(CT; g, (4) Ti,ps(5) Tirps (i) Tipa(i) ¢) = CC.

This is due to the fact that h(¢ 2; o, (i) i, 0y (i) Ti, 05 (i) Tiypa(i) ¢) = ¢ ¢ a* ¢ implies
that in h(B1 # B2 # - - - # Bn) there is an occurrence of ¢, which is a contradiction.
If case 2 applies, then h(x; o, ;)) =€, 1 <1 < 4. If, on the other hand, case 1
applies, then we can conclude that h(z; ;) =a, 1 <1 <4.

We can now construct a set C' of vertices of G in the following way. For
every i, 1 < i <mn, and for every ¢t; € N, if h(x;;) # €, then we add t; to C.
As explained above, for every i, 1 <1i < n, there exists exactly one [, 1 <[< 4,

11

such that h(z,(;),;) = a, which implies that |C'N N;| > 1. Now assume that,
for some i, |C N N;| > 2, i.e., there exist j,j', 1 < j < j' < 4, such that
h(z;;) = h(zj ;) = a. This is a contradiction to h(8;) = u;. Thus, C is a
perfect code for G.

Next, we prove the only if direction. Let C be a perfect code for G. We
now construct a substitution h for o with h(a) = w and, for every z € var(a),
|h(z)| < 1. Since C' is a perfect code, for every i, 1 < i < n, there is exactly one
pi, 1 < p; <mn, such that {¢,,} = N;NC (i.e., for every i, 1 <i < n, t,, is the
vertex that the perfect code selects from N;). Hence, for every i, 1 < i <n, we
define h(zp, ;) = a and h(z) = ¢ for all the other variables x; ;. We note that
this directly implies that, for every i, 1 < i <n, h(f3;) = u; is satisfied.

Now, for every i, 1 < ¢ < n, it only remains to define h(y;), h(y;) and
h(zi1), I, 1 <1 <4, in such a way that h(y;) = v; is satisfied. To this end,
let i, 1 < i < n, be arbitrarily chosen. If ¢; € C, then this implies that, for
every l, 1 S l S 4, h(zi,pl(i)) = a. Thus, h(:pz,pl(z) xi,@g(i) Ii,pg(i) xi,p4(i)) =
at. Therefore, we define h(y;) := ¢, h(y}) := ¢ and h(z;;) =¢, 1 <1 < 4.
Consequently,

h(vi) = h(yi) ¢ h(@s, 0, (i)~ Tiopu(i)) CR(Zi1 -+ Zia) B(y7)
= h(y;) ¢a’ ¢h(zi1 - zia) h(y;)
=¢ceate

=v;.

If, on the other hand, ¢; ¢ C, then this implies that, for every [, 1 < [< 4,
h(2i,0,5)) = € Thus, h(2i o, (i) Ti, 00 (i) Ti,es(i) Ti,pa(i)) = €- Therefore, we define
h(y:) ==¢€, h(y}) == ¢ and h(z;;) = a, 1 <1 < 4. Consequently,

h(%‘) = h(yz‘) ¢h(xi,p1(i) s »Ti,m(i)) ¢h(2i,1 s Zi,4) h(yz{)
=h(yi) ¢¢h(zin---zia) h(y;)
=¢eate

=; .

We conclude that, for every i, 1 < i < n, h(y;) = v;, which implies h(a) = w.
We note that by the above definitions, |h(z)| < 1, z € var(«), is satisfied.
This concludes the proof. O

We can observe that in the definition of ®g, all occurrences of symbol #
can be substituted by a ¢* a and the lemma above still holds. This is due to the
fact that then in « there are as many occurrences of factor a¢* a as in w, which
implies that every substitution h that maps a to w must map g; to u; and ~;
to v;, for every ¢, 1 < ¢ < n. Thus, we can conclude in the same way as in the
proof above that there must exist a perfect code for the corresponding graph.
In the following, let ®g denote this refined version of the reduction.

We shall now extend the reduction ®g to a reduction @1, that maps a given
3-regular graph G to a terminal-free pattern o and a word w € {¢,a}*, such

12

that, for every x € var(a), |a|, < 2. Since variations on the following construc-
tion shall also be used for later results, we spend some more time in order to
informally explain it. The basic idea is that we modify the reduction for the non-
terminal-free case in such a way that all terminal symbols in the pattern, which
mainly act as separators, are substituted by special separator-variables. The
difficulty is that we have to enforce that a substitution that maps the pattern
to the word also maps the separator-variables to the corresponding separator
symbols, since then they play the same role as the separators, which allows us
to argue in a similar way as before. Especially in the erasing case this can be
difficult to achieve, which leads to a more complicated structure of the pattern
and the word. Furthermore, since we want to maintain the bound on the num-
ber of occurrences per variable, we have to use an individual separator-variable
for each occurrence of a separator. We shall now give the formal definitions of
this construction.

Let (o/,w') := ®g(G). First, we observe that there are 2n occurrences of ¢
in the part v, 72 ...7, of @ and 2n — 1 distinct occurrences of factor # = a¢*a
in o/. Hence, there are m := 2n + 8n — 4 occurrences of ¢ and m’ := 4n — 2
occurrences of a in o’. We now obtain o” from o by substituting, for every 4,
1 < i < m, the i occurrence of ¢ by a single occurrence of a new variable ¥ ;
and, for every i, 1 < i < m/, the i*" occurrence of a by a single occurrence of a
new variable y, ;. Finally, we define

A=Y, 1Ye,2 - - - Yo,m -

i
Ya,1Ya 2 - - Yam’ " 2+ & Za,|o¢”|za,\a”\—1 c.oeZal
//I

" !
/
wi=¢m¢al® la™ ¢u al*’l,

and P4 (9) := (o, w), where the z,;, 1 < i < |a”|, and Z are new variables. We
observe that w € {a, ¢}*, for every variable z € var(a’), |&/|, = |a|, and, for
every z € var(a) \ var(a’), |al, = 2.

The variables y,,; and y, ; are the separator-variables and the variables z, ;
and Z are auxiliary variables that are used in order to force the separator-
variables to be mapped to the corresponding separator symbols.

Lemma 5. Let (a,w) := ®R(G). There is a perfect code in G if and only if
there exists a substitution h for o such that h(a) = w and, for every x € var(a),
|h(z)| < 1.

PROOF. Let (o/,w’) := ®g(G). By using Lemma |4, we can prove this lemma
by showing that there exists a substitution h for o with |h(z)| < 1, z € var(a),
and h(a) = w if and only if there exists a substitution g for o with |h(z)| <1,
x € var(a’), and g(a’) = w’. The if direction is obvious, since if g(a') = w’,
then h(a) = w, where h(z) := g(x), € var(a/), and h(yeq) == ¢, 1 <i < m,
h(Z) :=¢, h(yay) =2, 1 <i<m/, h(za;) =2, 1 <i< ||

In order to prove the only if direction, we assume that there exists a substi-
tution for a with h(a) = w, and, furthermore, |h(x)| < 1 for every x € var(«)
is satisfied, which is crucial for the following argument. First, we observe that

13

if |h(Ye,1---Ye,m2)| < m + 1, then there exists an i, 1 < 4 < |&’|, such that
h(za1-..%ai—1) =€ and h(za;) = ¢. This is due to the fact that if all variables
Za,i, 1 <1 < |a”|, are erased, then

hMYea - -Yem2Yal---Yam 2¢") =w,
which is a contradiction, since

[Yed - YemZYad - -Yam 2¢ | =m+14+m +14]d"| <

m+1+m' + ||+ 1+ ||+ || =|w]|.

We wish to point out here, that this is only a contradiction because |h(x)| < 1,
z € var(a). However, if, for some i, 1 < i < |&”|, h(za1..-%ai-1) = € and
h(za;) = ¢, then h(a) ends with symbol ¢, which is a contradiction, since w
ends with a. Consequently, none of the variables ¥, ; is erased, which means,
since they are mapped to a word of length at most 1, A(ye;) = ¢, 1 < i < m,
and h(Z) = ¢. This means that h(za1 ... 2|0 Ya,1 - - - Yam!) = al®’la™’; thus,
h(zay) = a, 1 <i < ||, and h(ya;) = a, 1 <7 < m’. Thus, h(a) = v’ is
implied, where h maps every variable y.;, 1 <4 < m, to ¢ and every variable
Yai, 1 <7 <m/, to a. Therefore, we can conclude that h(a’) = w’ holds as well.

O

It is straightforward to see that the mapping ®f can be computed in poly-
nomial time; thus, from Lemma [5] we can now conclude Theorem 3} For all our
further reductions it will be easy to see that they can be computed in polynomial
time, so we shall not explicitly mention this anymore.

We conclude this section by pointing out that the pattern matching problem
that Baker considers in [5], and for which she presents efficient algorithms, in
fact relies on the problem PMV, where the length of the substitution words is
bounded by 1. However, in [5] only non-erasing and injective substitutions are
considered and with Theorem [3] we can conclude that Baker’s pattern matching
problem most likely cannot be solved in polynomial time if it is generalised to
the erasing and non-injective case.

4.2. The Non-FErasing Case

As mentioned in Section (3| Clifford et al. show in [J] that the non-erasing,
terminal-free and non-injective case of the pattern matching problem with vari-
ables is NP-complete, even if additionally the parameters pjs| and pjp () are
bounded. We strengthen this result by stating that the NP-completeness is
preserved, even if in addition also p||, is bounded and this holds both for the
terminal-free and non-terminal-free case. However, we are only able to prove
these results for the case that parameter pj,|, is bounded by 3 and the case
where pjo, is bounded by 2 is left open (recall that in the non-erasing case,
if p|q|, is bounded by 1, then PMV can be easily solved in polynomial time).
Furthermore, for the terminal-free case we have slightly larger constant bounds
on the parameters py,|, and pyy|. Therefore, in the non-erasing case we can
show an analogue of Theorem [3] but the constants are a bit larger.

14

Theorem 6.
1. [pl‘?’h(w)l,pfa‘z,pfz‘]—[NE,n—inj,n—tf} -PMV is NP-complete.
2. [pf’h(z)l,pf’a‘m,pi‘m]—[NE,n—inj,tf]—PMV is NP-complete.

The proof of Theorem [f] proceeds similar as the one for Theorem 3] i.e., we
first give a reduction that proves statement 1 of Theorem [and then we extend
this reduction to the terminal-free case. However, adapting the reduction to the
terminal-free case increases the constant bounds of 2 for parameters p|,|, and
p)x| to 3 and 4, respectively.

We shall now extend the reduction ®g to a reduction ®ng, which works
for the non-erasing case. The basic idea is the following. We use the same
alphabet ¥ = {a, ¢, #} as for ®g, but instead of representing whether or not a
vertex is selected as a member of the perfect code by mapping the corresponding
variable to either a or ¢, it is mapped to either aa or a, i.e., the §; are mapped to
a®. This means that all the variables that represent different occurrences of the
same vertex in different neighbourhoods must be synchronised by mapping them
to either a* or a®, which requires more sophisticated synchronisation gadgets
(74, v;) with more auxiliary variables in ; and a more complicated form of v;.

We now formally define ®ng by pointing out in which regards it differs from
®y. The B; parts are defined in exactly the same way and u; :=a®, 1 <i < n.
Furthermore, for every ¢, 1 < i < n,

Vi T 20,0 Zigl %2 %03 Zia C Tioq (i) Tiypo (i) Tiys (i) Tipa (i) € 20,0 Z,1 %02 %i,3%,4 and
5 8 4 5
vii=¢’¢ca’¢ca“ ¢,

Finally, ®xg(G) := (o, w), where a and w are constructed by concatenating the
Bi, Vi, w; and v; with occurrences of # as separators in the same way as it is
done in the definition of ®g. Obviously, every variable of form z; ; or 2] ; has
exactly one occurrence in . Every variable of form z; ; has one occurrence in
each 8; and 7;. Thus, for every = € var(a), |a|, < 2 still holds.

Lemma 7. Let (a,w) := ®xg(G). There is a perfect code in G if and only if
there exists a non-erasing substitution h for a such that h(a) = w and, for every
x € var(a), |h(z)| < 3.

PrOOF. We begin with the if direction and assume that there exists a non-
erasing substitution h for a with h(a) = w and, for every x € var(a), |h(z)| <
3. Since in « there are as many occurrences of # as in w, we can conclude
that, for every ¢, 1 < i < n, h(B;) = u; and h(y;) = v;. Thus, for every i,
1 <i < n, h(B;) = a° which directly implies that, for every [, 1 < [< 4,
Mz, (i),i) € {a,aa}.

Now we assume that, for some i, 1 < <n, h(2; o, (i) Ti 00 (i) Ti,05(i) Ti,pa())
is not of the form a® or a*. This implies that there is a factor ¢a? ¢ in h(y;),
where 5 < p < 7. This is a contradiction, since h(v;) = v; and there is no
such factor in v; = ¢® ¢ a® ¢a*¢¢®. Consequently, for every i, 1 < i < n, either
h(2;,0,(i)) = aa for every I, 1 <1 < 4, or h(z;,p,;)) = aforevery I, 1 <1 < 4.

15

By collecting all ¢; with h(:ciwm(i)) = aa, [, 1 <1 < 4, this translates into a
perfect code in the same way as in the proof of Lemma [4] which concludes the
if direction.

Next, we prove the only if direction. To this end, we assume that there
exists a perfect code C for G. We construct now a non-erasing substitution
h for o with h(a) = w and, for every z € var(a), |h(z)] < 3. Now let 4,
1 <i < n, be arbitrarily chosen. If t; € C, then, for every [, 1 <[< 4, we define
h(2;,,(:)) := aa and if, on the other hand, ¢; ¢ C, then, for every I, 1 <1 < 4,
we define h(z; g, ;y) := a. Since, for every i, 1 <i < n, |[CN Ny =1, we can
conclude that h(B;) = u;. It only remains to define, for every i, 1 <1 < n, and
every [, 0 <1 <4, h(z;,;) and h(z;,) in such a way that h(v;) = v; is satisfied.
This is achieved in the following way.

Let i with 1 < i < n be arbitrarily chosen. If h(z; ;) = aa, 1 <1 < 4,
referred to as case 1, then we define h such that h(z; 021 2.4) = ¢° and
Wz 2,2 4) = a*¢e®. If, on the other hand, h(z;) = a, 1 <1 < 4,
referred to as case 2, then we define h such that h(z; 021 - 2zi4) = ¢® ¢ a® and
Mz 212 4) = ¢°. We note that the definitions above can be done in such
a way that, for every I, 0 <1 <4, [h(z;;)| < 3 and |h(2];)| < 3. We conclude
that in case 1

h(vi) = h(2i0 2i1 -+ 2ia) CR(Ti 6, (i) T (5) Tipa (i) Tinpa (i) C (200 261 7+ 21 4)
=h(zi0zi1 - zia)¢a® Ch(zlgzf -2 4)
=¢S¢abcated®

and in case 2

h(vi) = h(zi0 2,1 -~ 2i,a) € W(Ti o, (i) Tipn (i) Tipa (i) Tinpa(i)) P20 201 - 2ia)
=h(zi02i1 - zia)¢at Ch(z] g2, 21 ,)

=¢°¢acatca’.

Consequently, for every i, 1 < i < n, h(v;) = v; is satisfied, which implies that
h(a) = w.

We observe that, for every i, 1 < i <n and every [, 1 <
{aa,a} and, as explained above, for every [, 0 < I < 4, |h(z; ;)] < 3 and
|h(2; ;)| < 3. This implies that, for every x € var(a), |h(z)| < 3, which concludes
the proof. o

1 <4, h(z;0,4)) €

In a way similar as before, we can observe that if we encode the symbol #
by a¢” a, then Lemma still holds. This proves Theorem @1.

Next, we show how ®yg can be extended to the terminal-free case. To
this end, similar as in the erasing case, we apply the idea of substituting the
terminal symbols in the pattern by separator-variables. However, in the non-
erasing case it is easier to enforce the separator-variables to be mapped to
the corresponding separator symbols, since we do not have to take care of the
situation that separator-variables are erased.

16

Let (o/,w'") := ®Ng(G), where Oyg is the mapping that uses the alphabet
{a, #, ¢}, i.e., the reduction without the encoding of symbol # by a¢”a. We
now define a terminal-free pattern « and a word w by modifying o/ and w'.
Firstly, all occurrences of symbols ¢ or # in o’ are substituted by new individual
symbols (i.e., we use || +|/|4 new symbols) and for every new such symbol
b, by m(b) we denote the original symbol that has been substituted by b. We
now assume that after this modification in o’ there occur exactly the symbols
¢1,¢2,...,¢n. Then, for every j, 1 < j < m, we substitute each ¢; by a new
variable y., and we denote this modified version of o’ by . Next, we define

Q= Y% Y% Yoo Yoo = Yoo Y%
w:=%%7m(¢1) w(¢2) - w(Cm) B,

and P (G) := (o, w), where % is a new symbol and yg is a new variable. We
observe that « is terminal-free, for every z € (var(a/) Nvar(a)), ||z = |afs
and, for every z € (var(a) \ var(o’)), |aly < 3. Thus, for every z € var(a),
|aly < 3. Furthermore, w € {a,#,¢,%}*. The following lemma shows that
P\ is a valid reduction.

Lemma 8. Let (o, w) := ®PNp(G). There is a perfect code in G if and only if
there exists a non-erasing substitution h for o such that h(a) = w and, for every
x € var(a), |h(z)| < 3.

PROOF. Let (o/,w’) := ®xg(G). Again, we prove the lemma by using Lemmal[7]
i.e., we show that there exists a substitution h for o/ such that h(a’) = w’ and,
for every = € var(a/), |h(z)| < 3, if and only if there exists a substitution g
for a such that g(a) = w and, for every = € var(a), |g(z)| < 3. The only if
direction of this statement follows trivially from the fact that if h(a') = w’, then
h can be extended to g with g(a) = w by mapping the separator-variables to
the corresponding separator symbols.

It remains to prove the if direction. To this end, we assume that there
exists a substitution g for a such that g(a) = w and, for every x € var(«),
lg(z)| < 3. We observe that g(yy) = % holds, since otherwise g(yo) = %% - -,
which implies that there are at least 6 occurrences of symbol % in g(«), a
contradiction to g() = w. In particular, this also means that g(a”) =
and g(3e, e, Vo) = T(1) T(Gz) - w(e); thus, for every i, 1 < i < m,
9(ye,) = m(¢;). This directly implies g(a’) = w’. a

From Lemmal[8] the second statement of Theorem [6] follows, which concludes
the proof of Theorem [f]
5. The Injective Case

In the remainder of the main part of this paper, we shall focus on the injective
variants of PMV. A main difference between the injective and the non-injective
cases is that in the injective case, bounding p|s| and pj;(,)| already yields poly-
nomial time solvability (see Theorem [9] below), whereas the non-injective case

17

remains NP-complete, even if we additionally bound py,|, (as stated in Sec-
tion . Informally speaking, this is due to the fact that if pjx| and pjp () are
bounded by some constants, then the number of words variables can be substi-
tuted with is bounded by some constant, say c, as well. Now if we additionally
require injectivity, then the number of variables that are substituted with non-
empty words is bounded by ¢, too, which directly implies the polynomial time
solvability for the non-erasing case. In order to extend this result to the erasing
case, we apply a technique similar to the one used by Geilke and Zilles in [15].

Theorem 9. Let ki1,ka € N, let Z € {E,NE} and let T € {tf,n-tf}. The
problem [plel,pﬁf(z)l]—[Z, inj, T]-PMV s in P.

PROOF. Since the case Z = NE can be proved analogously to the case Z = E,
we shall only prove the latter.

Let o be a pattern and let w be a word over ¥ := {a;, as,...,ax, }. Let S be
an arbitrary subset of var(a). We say that S satisfies condition (%) if and only
if there exists an E-injective substitution h with h(a) = w, 1 < |h(z)| < ka, for
every x € S, and h(z) = ¢, for every x € var(a) \ S. For any set S C var(a), it
can be checked in time exponential in |\S| whether S satisfies condition (x). More
precisely, this can be done in the following way. First, we obtain a pattern S
from « by erasing all variables in var(a))\S. Then we use a brute-force algorithm
to check whether or not there exists an injective non-erasing substitution A with
h(B8) =w and 1 < |h(z)| < ke, x € var(), which can be done in time O(klfl).

For the sake of convenience, we define k' := ky x k¥2. We observe that there
are less than k' non-empty words over {aj,as,...,a, } of length at most ks.
This implies that every substitution h that maps more than &’ variables to non-
empty words of length at most ko is necessarily not E-injective. So, for every
set S C var(«), if |S| > &/, then S does not satisfy condition (x). Consequently,
there exists an E-injective substitution h with h(a) = w, |h(z)| < ka, for every
x € var(a), if and only if there exists a set S C var(a) with |[S| < k' and S
satisfying the condition (x).

We conclude that we can solve the problem stated in the theorem by enu-
merating all possible sets S C var(a) with |S| < k' and, for each of these sets,
checking whether they satisfy condition (*). Since the number of sets S C var(«)
with |S| <K is

s V&I‘ ’
Z() Zlv&f)T < (K + 1) var(@)¥ = O(|var(a)[*),

i=0
the running time of this procedure is exponential only in k’; thus, since k' is a

constant, it is polynomial. O

Theorem [0 implies that if P # NP, then an analogue of Theorems|[3|and [6]does
not exist in the injective case. However, it remains to investigate all the injective
variants where either pj;(,) and p|,|, are bounded, but p|x is unbounded or pjx;
and pq|, are bounded, but p;(;)| is unbounded. For all these variants, we can

18

prove NP-completeness, but for some of the results we need more complicated
reductions than the ones used for the non-injective case. Furthermore, the
specific constant bounds in our results are larger, especially for the parameter
Pih(z)|- Again, we start with the erasing case and take care of the non-erasing
case later on.

5.1. The Erasing Case

We first show the NP-completeness for the situation that the parameters
Pin(z)| and pjq|, are bounded.

Theorem 10.
1. [pfh(z)l,pfa‘z]—[E,inj,n—tf]-PMV is NP-complete.
2. [pf’h(w)l,pfa‘z]—[E,inj,tf]—PMV is NP-complete.

As before, our proof strategy consists again in adapting the reduction ®g
(see Lemma [4)) first to the injective case and then to the injective and terminal-
free case. In the reduction ®g, all variables z; ; that are not erased are mapped
to the same word a, which is the reason why this reduction does not work for the
injective case. Therefore, for the injective case, we use several individual symbols
a;, 1 <4 <mn, in order to ensure that the substitution that maps the pattern to
the word is injective. More precisely, we use the alphabet ¥ := {a;, ¢;, #; | 1 <
i <mn,1<j<2n—1}, the size of which depends on the size of the graph G, i.e.,
the alphabet size is not bounded by a constant, which we can afford since the
parameter px| is unbounded. The parts 3; that represent the neighbourhoods
are defined as usual, but, for every i, 1 < i < n, the corresponding factors u;
equal the symbol a; instead of a. In the v;, instead of having 4 occurrences of a,
we have to list all 4 different symbols that correspond to the 4 neighbourhoods
in which ¢; occurs. More precisely, for every i, 1 < i < n, we define

Vi = Zi € Ti o, (3) Lo (i) Tiyps (i) Tiypa(s) Ci Z; and
Vi = C; ¢ Ao, (i) apz(i) a@s(i) a@él(i) ¢

Finally, we construct o and w as usual, but we use individual separators, i.e.,
we define

a:=P1 91 BaFo Hn1 Bn Fn V1 Fnr1 Ve Fnr2 Fon-1Vn

W i=UL LU 2 1 Un Frn V1 Fnt1 V2 Fnt2 - Fon—1Vn

and ¥ 1(G) := (o, w).

The use of individual separators #;, 1 < i < 2n — 1, is not really necessary
here, but it helps us to extend this reduction to the terminal-free case later on.
We note that every variable z;, 2}, 1 < ¢ < n, has only one occurrence in a.
For every i, 1 < i < n, and every j with t; € IV;, variable z;; has exactly one
occurrence in f; and exactly one occurrence in v;. Thus, for every = € var(a),
ol < 2.

19

Lemma 11. Let (o, w) := Yy 1(G). There is a perfect code in G if and only
if there exists an E-injective substitution h for a such that h(a) = w and, for
every z € var(a), |h(z)| < 5.

PRrROOF. We begin with the if direction and assume that there exists an E-
injective substitution h for a, such that h(a) = w and, for every x € var(a),
|h(x)] < 5. By the use of the symbols #;, 1 < i < 2n — 1, we can conclude
that, for every i, 1 < i < n, h(B;) = u; and h(y;) = v;. Consequently, for
every i, 1 < i < n there is exactly one I, 1 <[< 4, with h(zg,(;);) = a; and
h(zg, i),:) =€, 1 < 1" <4,1#1'. Furthermore, since, for every i, 1 <i < n,
the factor ¢;z; o, (i)Ti,00(i)Ti, 05 (i) Ti,pa(i)¢i Of i must be mapped to a factor of
v; that is delimited by occurrences of ¢;, we can conclude

case 1t h(Qi i gy (i) Ti,02(i) Tirps (i) Tirpa(i) Ti) = Ci By (i) Bpa (i) Rps (i) Bpa(i) Gi OF

case 2: 1 Ti g1 (3) Ti,p2(i) T s (i) Tirpa(i) ¢i) = i G-

This is due to the fact that if h(a; i, (i) i 00 (i) Ti,s(i) Ti,pa(i) ¢i) €quals the
word €; ¢; @, (i) By (i) Bps (i) Bpa(i) i, then in h(By #1 Bo #f2 - - F#n—1 Bn) there is
an occurrence of ¢;, which is a contradiction. If case 2 applies, then h(z; o, ;)) =
e, 1 <1< 4. If, on the other hand, case 1 applies, then we can conclude that
h(24,0,(:)) = @pi(iys 1 < 1 < 4. From this observation, we can conclude in the
same way as in the proof of Lemma [f] that we can construct a perfect code for
Gg.

In order to prove the only if direction, let C' be a perfect code for G. We
now construct an E-injective substitution h for a with h(a) = w and, for every
x € var(a), |h(z)] < 5. Since C is a perfect code, for every i, 1 < i < n, there is
exactly one p;, 1 < p; < n, such that t,, € N;NC (i.e., for every i, 1 <i <mn,
tp, is the vertex that is chosen from N; as a member of the perfect code). Hence,
for every i, 1 < i < n, we define h(zp, ;) = a; and h(z) = ¢ for all the other
variables x; ;. We note that this directly implies that, for every i, 1 < i < n,
h(5;) = u; is satisfied.

Now it only remains, for every i, 1 < i < n, to define h(z;) and h(z}) in such a
way that h(~;) = v; is satisfied. To this end, let ¢, 1 < i < n, be arbitrarily cho-
sen. If ¢; € C, then this implies that, for every I, 1 <1 <4, h(x; () = ap, (i)
Thus, h(@i,e. () Ti,pa (i) Tips(i) Tipa(i)) = Bpr(i) Bpa(i) Bpa(i) Bpa(i)- Therefore, we
define h(z;) = ¢; and h(z]) = . It can be easily verified that this implies
h(vi) = v;. If, on the other hand, t; ¢ C, then, for every I, 1 < [< 4,
h(2i,0,5)) = € Thus, h(x; . (i) Ti,00(5) Ti,ps(i) Tispa(i)) = €. Hence, we define
h(zi) = € and h(2]) = ag, (i) @, (i) Qps (i) Bpa(i) ¢i and again this means that
h(v;) = v; is satisfied. We conclude that, for every i, 1 < i < n, h(y;) = v;,
which implies h(a) = w.

Next, we can observe that, for every x € var(a), |h(z)| < 5. It remains
to prove that h is E-injective, i.e., each two variables that are not erased are
mapped to different words. For all the variables z; ; this is obviously true. Next,
we observe that, for every i, 1 <i < n, if h(z;) or h(z}) is not the empty word,
then h(z;) or h(z]), respectively, contains ¢;. This implies that, for every i, 7,

20

1 <i<j<mn,andevery Z € {2, 2}, Z € {2, 2} }, if h(Z) # € and h(Z) # ¢, then
h(Z) # h(Z). Furthermore, for the same reasons, for every 4,47, 1 < i,i' < n,
every j with ¢t; € N; and every z € {zy, 2}, }, if h(x; ;) # € and h(z) # ¢, then
h(z; ;) # h(z). Finally, since, for every 4, 1 < ¢ < n, either h(z;) or h(z]) is
empty, we can conclude that h is E-injective. O

Lemma [T1] implies the first statement of Theorem [I0]

Next, we extend the reduction Wg; to a reduction Wy, that works for
the terminal-free case. The general strategy is again to introduce separator-
variables, which, due to the required injectivity, need to be mapped to individ-
ual separator symbols. This is the reason why we already use such individual
separator symbols in the definition of Ug ;. Now let o’ and w’ be the pattern
and the word given by the mapping Vg ;. Firstly, for every ¢, 1 <14 < 2n — 1,
we substitute every occurrence of #; in o’ by a new variable yx, and, for every
i, 1 <14 < n, we substitute every occurrence of ¢; in o’ by a new variable ye,.
Thus, we obtain a terminal-free pattern, which we denote by o”. Next, we
define

= (Y, Yo Ybonr Yer Yo - Ve,) - @
W= (F1#2 - Fo-101 02 ¢n) W W,

and ¥y 1 (G) == (a,w). We note that all the variables in a that also occur in o
have twice as many occurrences in « as in o’ and all the variables {y¢,,y%, | 1 <
i <mn,1<j<2n—1} have at most 4 occurrences. Thus, for every z € var(«),
||, < 4.

Lemma 12. Let (a,w) := Wy ,(G). There is a perfect code in G if and only
if there exists an E-injective substitution h for a such that h(a) = w and, for
every x € var(a), |h(z)] < 5.

PRrROOF. Let (¢/,w') := ¥g1(G). By using Lemma we can prove the state-
ment of the lemma by showing that there exists an E-injective substitution h
for o such that h(a/) = w’ and, for every = € var(o’), |h(x)| < 5, if and only if
there exists an E-injective substitution g for « such that g(«) = w and, for every
x € var(a), |g(z)| < 5. The only if direction follows in the usual way, i.e., we
can extend h such that the separator variables are mapped to the corresponding
separator symbols.

It remains to prove the if direction. To this end, we assume that there exists
an E-injective substitution g for o such that g(a) = w and, for every z € var(a),
lg(z)| < 5. If g(yg,) == #i, 1 <i<2n—1, and g(ye,) := ¢, 1 <i < n, then
g(a’) = w’ holds as well. Hence, in the following, we assume that this is not
satisfied.

If, for some z € {ye,,y%, | 1 <i<n,1<j<2n—1}, [g(2)| > 2, then g(2)
contains a factor u € {#; #i11, #an—1 ¢1, ¢; Cir1,Cn #1, ¢n a1 }. In « there are
at least 3 occurrences of z, but there are at most 2 occurrences of factor u in w.
Thus, we can conclude that, for every z € {ye,,y%, |1 <i<n,1<j<2n—-1},
lg(2)| < 1. Next, we observe that if, for some z € {y¢,,y%, | 1 <i <n,1 <

21

§< 2 =1}, g(2) = & then [9((Us, Vs Yt Yeu Yoo = Ve,)*)| < 2(2n —
1+ n). This means that g(a” o) = uw'w’, where u is a non-empty suffix

of (#1#2 - #2n_1¢1¢2---¢y)%. This is a contradiction, since g(a” o) is a
square, but ww’w’ is not a square. Consequently, we can conclude that, for
every i, 1 <i < 2n—1, g(yg,) = #: and, for every i, 1 < i < n, g(ye,) = ¢i-
This particularly implies that g(a’) = w’, which concludes the proof. O

From Lemma the second statement of Theorem follows, which con-
cludes the proof of Theorem

The question is now whether or not, in the injective and erasing case, the
NP-completeness is preserved if instead of pjj ()|, the parameter p|s is bounded
by a constant. We can answer this question in the affirmative.

Theorem 13.
1. [pfa‘m,pfz‘]-[E7inj7n—tf]—PMV is NP-complete.
2. [p?a‘m,pfg‘]-[E,injmf]-PMV is NP-complete.

Both statements of Theorem [13| can be proved by modifying the reduction
Vg1 in such a way that the many different symbols {a;, ¢, #; |1 <i<n,1 <
j < 2n —1} used in Ug; are encoded as long binary words, i.e., we trade in
the bound of the length of the substitution words for a bound on the alphabet
size. When proving that the thus obtained reduction is correct, we can generally
proceed as in the proof of LemmalIl] but we have to be a bit more careful, since
we also have to show that it is impossible for a substitution to map variables to
proper factors of the binary code words for the original symbols. More precisely,
the reduction Wg o is defined in the following way. For every ¢, 1 < i < n, we
substitute all occurrences of a; in o and w by ab‘a, all occurrences of ¢; by
ab""a and all occurrences of #; by ab?tia. Let o and w be the pattern
and the word produced by this mapping, which is denoted by ¥g 5. We observe
that w € {a,b}* and, for every x € var(a), o], < 2.

Lemma 14. Let (a,w) := Vg o(G). There is a perfect code in G if and only if
there exists an E-injective substitution h for a such that h(a) = w.

PRrROOF. The only if direction follows from the proof of Lemma We let
(¢, w') = Ug1(G). If there exists a perfect code in (G), then there exists a
substitution g with g(«/) = w’, according to Lemma This implies that
h(a) = w, where h is obtained from g by replacing all the symbols a;, ¢;, 1 <
i <n,and #;, 1 < j <2n—1, in the images of g by the corresponding code
words defined above. Furthermore, the E-injectivity of g is preserved.

It remains to prove the if direction. To this end, we first note that if there
exists an E-injective substitution A for «, such that h(a) = w, then, since the
binary encoded separators work in the same way as before, we can conclude
that, for every ¢, 1 < i < n, h(B;) = u; and h(vy;) = v;. This particularly implies
that, for every ¢, 1 <i < n,

P, (3),8 T3 (3),1 Ts (1), Tpa(i),i) = ab'a, and %,

h(xi,gn (4) mi,pg(i) xi,pg(i) xi:@zl(i)) S {abm (i)aabm(i)aabm(i)aab“(i) a, &‘})

22

Moreover, since *; holds, for every I, 1 < I < 4, if h(zg,5):) ¢ {abla, e},
then h(z, ;) is non-empty and contains 0 or 1 occurrence of a, which is a
contradiction to *;. Thus, for every I, 1 <1 <4, h(z,;),;) € {ab'a, e} and, in
conjunction with *; this implies that there exists exactly one such [, 1 <1 <4,
with h(z,(;),:) = ab'a and h(zg,;):) =€, 1 <U <4, 141

Now, we can conclude just in the same way as in the proof of Lemma
that there exists a perfect code for G. O

From Lemma [[4] we can conclude the first statement of Theorem [I3]

In order to prove statement 2 of Theorem we do not modify Vg 5, but
again Wg ; from above. The general idea is that we first use a binary encoding
for the different terminal symbols {a;, ¢;, #; |1 <i<n,1<j<2n-—1}, asit
is done in the definition of Wg », and then we replace in the pattern all the code
words by separator-variables. This is necessary, since using separator-variables
for single symbols would conflict with the injectivity. The difficulty is now that
we have to construct the pattern and the word in such a way that the separator-
variables are necessarily mapped to the corresponding code words, instead of
single symbols. This requires a more complicated form of the pattern and the
word, compared to the one used in the definition of ¥y ;. The formal definition
of this construction is as follows.

Let (@, w) := Vg . For every i, 1 <14 < n, we substitute all occurrences of
a; in @ and @ by ab’a. Then, we substitute in @ every individual occurrence of
a terminal #;, 1 < j <2n -1, and ¢;, 1 <4 < n, by a new terminal symbol
and we do the same with respect to the word w. The thus obtained pattern and
word are denoted by o' and w’, respectively. We assume now that after this
transformation, in o’ there occur exactly the terminals ¢1, ¢a, . .., ¢,,. Then, we
substitute each ¢; in o by a new variable y., and each ¢; in w’ by ¢; := ¢ #/ ¢.
We denote these modified versions of o’ and w’ by o’ and w”, respectively.
Next, we define

0 = Yo% Y% Yoy Y% Yoo Yer Yoz Yoo Yeu Yo Yem—s Yem—1 Yem—z Yem Yem_1 »

where % is a new symbol and y is a new variable. It is necessary to illustrate
the structure of § and ws. If, for example, m = 6, then

0 = Y% Y% Ye1 Y% Yoo Yo Yoz Yoo Yeu Yes Yes Yes Yeo Yes »

The idea of § and ws is the following. We first make sure that ye is mapped
to %, which then forces y,, to be mapped to ¢, since y;, and ¢; are delimited
by two occurrences of yy, and %, respectively. Analogously, v, is then forced
to be mapped to ¢ and by repeating this argument, we can conclude that all
the separator variables are mapped to the desired code words. We conclude the
definition of the reduction by

Q= (5)2 (Yer Yeo *- ‘ymm)g (0//)2)

w = (ws)? (€1 T2+ Em)® (W")?,

23

and Vg 5(G) = (a, w). We observe that w € {a,b,#, ¢, %}*, a is terminal-free,
for every z € (var(a/) Nvar(a)), |&'|: = 2|a|, and, for every = € (var(a) \
var(a’)), |ale <9. Thus, for every x € var(a), |al, <9.

Lemma 15. Let (o, w) := \IliE’Q(Q). There is a perfect code in G if and only if
there exists an E-injective substitution h for a such that h(a) = w.

PrROOF. Let (/,w') := ¥ 1(G). We prove the statement by using Lemma
i.e., we show that there exists an E-injective substitution h for o such that
h(a') = w' if and only if there exists an E-injective substitution g for « such
that g(a) = w. The only if direction follows trivially, i.e., we can extend h
such that the separator variables are mapped to the corresponding code words
defined above.

It remains to prove the if direction. To this end, we assume that there exists
an E-injective substitution g for « such that g(«) = w. If

9((0)? (Yo, - Ye,)?) # (w5)* (€1 Em)?,
then either g((a’’)?) is a proper suffix of (w”)? or g((a'")?) is of the form @ (w'")?,
where @ is a non-empty suffix of (ws)? (¢1 G2+ &m)>. It can be verified that
every proper suffix of (w”)? is not a square and, for every non-empty suffix
of (ws)? (€1 T2+ Gm)?, W (w”)? is not a square either. Hence, since g((a’’)?) is
a square, we can conclude that

9((8)? (Yer *+Ye,)?) = (w5)? (@1 Tm)® -

Furthermore, g(yy) = % % - - - is not possible, since this implies that there are
at least 12 occurrences of % in g(«). If, on the other hand, g(yy) = €, then
either,

1. for some i, 1 <i<m, g(yg,) =---%---, or,

2. for some 4,5, 1 <i,j <n, (z;;)=--%---.
Case 1 is not possible, since there are 8 occurrences of y¢, in «, but only 6
occurrences of % in w. If we have case 2, then, for every i, 1 < i < m,
9(ye,) = €, which implies that g(a” @”) = w. This is a contradiction, since
w is not a square. Consequenty, g(yy) = %, which particularly implies that
9(ye,) = ¢1. We note that there are exactly as many occurrences of y,, in

(5)2 (y¢1 o 'yctm)S

as there are occurrences of ¢; in

(w5)? (€12~ Em)” .
This implies that ¢(ye,) = ¢z and, in a similar way, we can show that, for
every i, 2 <i <m — 2, g(y¢,) = ¢ in conjunction with g(ye,,,) = €41 implies
9(Ye¢,yo) = Cig2. Therefore, for every i, 1 <i < m, g(ye,) = &, which implies
that g(o/) = w'. a

From Lemma[l5|we can conclude the second statement of Theorem which
concludes the proof of Theorem

This solves all the open questions with respect to the injective and erasing
case and in the following, we take care of the non-erasing case.

24

5.2. The Non-erasing Case

It remains to investigate the question of whether or not the NP-completeness
results presented in Theorems [10| and [13| also hold for the non-erasing case. As
in the previous section, we start now with the situation that pj; ;) and pjq|,
are the parameters that are bounded.

Theorem 16. oY) . pi\,]-[NE, inj, tf]-PMV is NP-complete.

We shall prove Theorem [16| by first defining a reduction from 3RPERCODE
to [pf’,f(xwpf’alz]—[NE,inj,n—tﬂ—PMV and then we extend this reduction to the
terminal-free case.

The task of finding suitable reductions for proving Theorem leads to
difficulties that are particular with respect to the injective and non-erasing case.
In order to illustrate these problems in a bit more detail, we recall the reduction
®ng that has been used to reduce 3BRPERCODE to the non-injective and non-
erasing variant of PMYV. In this reduction, every variable is mapped to either
a or aa, where the image aa means that the corresponding vertex is chosen as a
member for the perfect code. Here, in order to cater for the injectivity, we map
x;,; to a; to represent that vertex ¢; is chosen from neighbourhood V;, which is
similar to the reduction ¥ ;. However, if ¢; is not chosen from neighbourhood
N;, then, since we cannot erase it, we have to map it to a special false symbol
b. Furthermore, the injectivity condition dictates that all these false symbols
must be distinct symbols, which means that x, (5)i% e, (i),iTes(i),iTea(),ir 1€
the pattern representation of N;, must be mapped to 3 false symbols and a;.
Since we do not know which vertex should be mapped to a;, we have to allow
T, (i),iT s (1),iTps(d),iTpa(i),s 1O be mapped to either a;b; 1b; 2b; 3, by 12:b;2b; 3,
b;.1b;2a;b; 3 or b; 1b; ob; 3a;, where the b; 1, b; 2 and b; 3 are the individual false
symbols and the situation that a variable x, ;) , 1 <1 < 4, is mapped to b; .,
1 <7 < 3, means that ¢, (; is the r* vertex in N;, that is not chosen. This
version of the gadget that selects the vertices from the neighbourhoods causes
problems for the synchronisation gadget. More precisely, in the synchronisation
gadget, if vertex i has been selected, then x; o ()T o, (i)T4,04(i)Ti,pq (i) Should
be mapped to ag, ()@, (i) Aoy (i), (i)- 1f, on the other hand, vertex i has not
been selected, then x; , ()i o, (i)Ti,04(i)Ti,pq(i) has to be mapped to a factor
Y1y2y3ya, where y,. € {bg, (5),1,00,(i),2>Pp.(i),3}, but the actual values of these
yr, 1 < r < 4, depend on which vertex has been chosen from neighbourhood
N, () and, thus, this cannot be explicitly represented in the structure of the
pattern and the word. Therefore, in the synchronisation gadget, we have to
cater for all these possibilities of mapping the variables x; , (;) to symbols from
{bp, ()1, b, ().2: b, ()3}, 1 7 <4

We are now ready to define a mapping ¥ng,1 that maps G to a pattern o and
a word w over ¥ := {a;,b; j,€;57,¢:, %, # | 1 <i<n,1<j<3,1< 5 <5}
such that, for every « € var(a), |a|, < 2. In the following construction, we shall
use many variables that have just one occurrence in the whole pattern «. In
order to improve the readability, we denote all these single occurrence variables
by the symbol z, keeping in mind that any occurrence of symbol z represents an

25

individual variable with just one occurrence. Furthermore, we shall call these
variables the z-variables.
For every i, 1 <7 <n,

Bi i= 2€i Ty (3),i Ta (i), Tipa(i)i Ta(i),i G 2
Ui :=¢;¢;2;b51b520b;3¢bj12;bjobj3¢;bi1b;2a;b;3¢b;1b;2b;3a8;¢¢;.

Furthermore, for every ¢, 1 < i < n, we define

¥ $i (2 Zi 01 (i) 2 Ti,02(i) 2 Ti 5 (5) % Tiya (i) 2)*$; z and

=z
v; =8$; % (9;)%$; (1:)°$: 8
and

Vi 1= @i,1b0, (1),10p, (1),2Pp1 (1),3€1,2Pp (1),1Pps (1),2Pp2 (1),3
€i,3D05(1),1P05(1),2P 0 (1),3€1,4P04 (1), 1Pp4 (1), 2Ppa (i) 381.5 »

Vi 1= €41 8p, (4) €i,2 Ay (i) €4,3 Apg (i) €i,4 Bpy(5) €45 -
Finally, we define

o=y PottHE B FENHETHEFH T
Wi=ur FULFEH U F L F V2 HF - F U,

and Ung1(G) = (o, w). By definition, each of the z-variables has only one
occurrence in a. For every i, 1 < ¢ < n, and every j with ¢t; € N;, variable z; ;
has exactly one occurrence in f; and exactly two occurrences in ;. Thus, for
every = € var(a), |al, < 3.

Lemma 17. Let (a,w) := Ung1(G). There is a perfect code in G if and only
if there exists an injective non-erasing substitution h for o such that h(a) = w
and, for every x € var(a), |h(z)| < 36.

PROOF. We begin with the if direction and assume that there exists an injective
non-erasing substitution A for «, such that h(a) = w and, for every z € var(a),
|h(a)] < 36. Since in « there are as many occurrences of # as in w, we can
conclude that, for every i, 1 <i < n, h(8;) = u; and h(~;) = v;. Obviously, the
factor @y, (i),i Tps(i),i Tps(i),i Tpa(i),s Of Bi must be mapped to a factor of u; that
is delimited by occurrences of ¢;. Moreover, h(Ty, (i),i T, (i)i Tps(i),i Tpali),i)
cannot contain occurrences of ¢;, since this implies that there are occurrences
of ¢; in some h(v;) as well. Consequently,

h(@ gy (i), T (i), Tea ()i Tea(i),i) € {2ibi,1bi2bis,
b;1a;b; 2b; 3,
b; 1b;i 2a;b; 3,
b; 1b;,2bi 38, }.

26

Thus, for every i, 1 < i < n, there exists exactly one [, 1 < [< 4, such
that h(z,;),:) = a; and h(xw(l i) € {bi1,bi2,bis}h, 1 < U < 4,1 # 1.
Now let i, 1 < ¢ < m, be arbitrarily chosen. We recall that h(y;) = v; and
we observe that h($;(zz; 01 (8) T4, 00 (1) ¥ %5, @3(1)in,g;4(i)z)2$i) = ,(il\) $i(ii)2$z
is not possible, since (vz)2$l(v)2 is not a square. Therefore,

81 (224,01 () 7T, 2 (1) 21,05 (i) # T, 0 (1) 7) B

is mapped to either $;(v;)%$; or $;(v;)?$;, which, in particular, implies that
R(224 6, (i) 2,0 (1) 2T, 0 (i) 2T 1,04 () 2) € {Vi, Vi }. We recall that, as demonstrated
above, every variable x; ., ;), 1 < I’ < 4, is either mapped to a,,) or to
some symbol in {b, (i),1,Pg,(i),2: Pp(i),3}- Hence, if, for some [, 1 < [< 4,
Mi,p,(1)) = 2p, (), then

P26, (1) 24,05 (1) 21,03 (1) 201,04 () Z) = Vi

and h(wig, 1) = ap, @), for every I'; 1 < I' < 4. Similarly, if h(z; i) €
{Poi(i),15Ppi(3),2: Do (i) 31, then

~

P21, 0, (5) 21,03 (1) 2T 5 (1) 2%, 4 (1) 2) = Vs

and h(z;,5,, (1)) € {0p, (i),1, Ppy (i),2) Ppy (i),3), for every I, 1 < 1" < 4. From these
observations we can conclude in the usual way that there exists a perfect code
for C.

Next, we prove the only if direction. Let C be a perfect code for G. We now
construct an injective non-erasing substitution A for « with h(a) = w and, for
every x € var(a), |h(z)| < 36. Since C is a perfect code, for every i, 1 <14 < n,
there is exactly one p;, 1 < p; < n, such that {t,,} = N;NC (i.e., for every 1,
1 <i < n, tp, is the vertex that is chosen from N; as a member of the perfect
code). Hence, for every i, 1 <1i < n, we define h(x,, ;) = a;. We define

o Ny, ai)) = bi1, Mg, a):) =i and h(z,;):) = b3, if pi = p1(4),

o (g (i)i) = bi1, Mg),:) =i and h(z,):) = b3, if pi = (i),

o (g (i)i) = bi1, Mg, a),:) =i and h(z,;):) = by3, if pi = p3(4),

o (g (i)i) = bi1, Mg, a),:) = i and h(zg,(),:) = be3, if pi = pa(9).
Thus

P(Z o, (4),iT 05 (i),iT s (i),iTpa(i),i) € { @ibi,1bi 203,
b;1a;b; 2b; 3,
b; 1b; 2a;b; 3,
b; 1b; 2b; 33, }

is satisfied. We note that we can now define the images of the z-variables
in f; in such a way that h(8;) = w; and these images have a length of at

27

most |bi,1aibi,Qbi,Sqiibi,1bi,2aibi,3¢ibi,1bz‘,2bi,3ai¢i¢i| = 16. Hence, for every i,
1 <i<n, h(B;) = u; is satisfied.

Now, for every ¢, 1 < ¢ < n, it only remains to define the z-variables
in 7; in such a way that h(y;) = v; is satisfied. To this end, let i, 1 <
i < n, be arbitrarily chosen. If ¢; € C, then this implies that, for every
I, 1 <1 <4, Mojp)) = ag). Thus, we can map the 5 z-variables of
2T, 0, (1) T4, 00 (1) 2 T4, 03 (1) #T4,04 () 2 1O the symbols e;,, e;,, €y, €;, and e;;, Te-
spectively, which implies h(22; g, (i)2%i 0, (i) 2Ti, 04 (i) 2T, 04 (i) 2) = Ui- Further-
more, the substitution words for the remaining z-variables can be defined such
that h(y;) = v; and all the images of z-variables have a length of at most
1$: $; (0;)2] = 36.

If, on the other hand, ¢; ¢ C, then this implies that, for every I, 1 <1 < 4,
h(2i,0,5)) € {0p,(6),1,Ppi(3),2) Ppi(i),3}- Thus, we can define the substitution
words for the z-variables in 2x; () 2% o, (i) 24, 05 (i) 2Ti,04 (i) # 10 SUCh a way that
R(224 6, (i) 20,05 (1) 2T, 05 (1) 2T, 04 (i) 2) = U; is satisfied, which also means that
the substitution words for the remaining z-variables can be defined such that
h(v;) = v; and, furthermore, all the images of z-variables have a length of at
most |(;)?$; $;| = 20. We conclude that, for every i, 1 < i < n, h(y;) = v;,
which implies h(a) = w.

Finally, we have to show that h is injective. To this end, we first note that
according to the definitions above, for all 7,7, 1 < 4,4 < n, and for all j, j* with
t; € N; and tj € Ny, if i # 4" or j # j', then h(x;;) # h(z;). Furthermore,
for every i, 1 < i < n, the two z-variables in [3; are mapped to two different
words that both contain at least one occurrence of symbol ¢;. For every i,
L <i <ny i W25, () 24,05 (1) 24,05 (1) 21,04 (i) 2) = Vi, then the z-variables in
2T 00 (1) 2T, 05 (i) 2 T4, 05 (1) 2 Ti, 04 (i) 2 @€ mapped to e€;1,¢€;2,...,¢; 5, respectively,
and the two remaining z-variables of v; are mapped to different words that both
contain $;. If, on the other hand, h(zx; o, (i)2%4 0y (i) 24,05 () 2Ti,04(:)2) = Vis
then it can be easily verified that, for every [, 1 <1 < 5, the I*" z-variable of
2T, 0, (1) 24,00 (1) T4, 03 (i) 4,04 (/) TUst be mapped to a word that contains the
occurrence of symbol e;; and, again, the two remaining z-variables of vy; are
mapped to different words that both contain $;. These considerations demon-
strate that h is an injective substitution, which concludes the proof. O

In order to extend the reduction ¥ng,; to a reduction \I/{\IEJ, which works
for the terminal-free case, we apply an idea that is similar to the one used
to extend ®ng to Pg. Let o and w’ be the pattern and word produced by
Ung,1. In both o and w’, we substitute every individual occurrence of some
symbol in {¢;,$;,# | 1 <i < n} by a new symbol. We now assume that after
this modification in o’ there occur exactly the terminal symbols ¢1, ¢a, ..., Cp,.
Then, we substitute each ¢; by a new variable y,, and we denote these modified
versions of o/ and w’ by o' and w”, respectively. Next, we define

Q= Yo Y% Yoo Yoo = Yeo Y% &
wi=%% ¢ ¢ ¢ Tow”

28

and ¥yg 1(G) = (o, w), where % is a new symbol and yy, is a new variable.
We observe that « is terminal-free, for every z € (var(a/) Nvar(a)), ||z = |als
and, for every z € (var(a) \ var(c’)), |al, < 3. Thus, for every z € var(a),
| < 3.

Lemma 18. Let (o, w) := Vg ,(G). There is a perfect code in G if and only
if there exists an injective non-erasing substitution h for o such that h(a) = w
and, for every x € var(«), |h(z)| < 36.

Since the proof of Lemma [L8is analogous to the one for Lemma [§] we just
give a brief sketch. If there is a perfect code in G, then it follows from Lemmal[I7]
that there exists an injective non-erasing substitution A for o’ such that h(a’) =
w’ and, for every z € var(a’), |h(z)| < 36, where (o/,w’) := ¥Ung1(F). This
implies that there also exists an injective non-erasing substitution g for a such
that g(a) = w and, for every = € var(a), |g(x)| < 36, since we can extend h
by mapping all the separator-variables to the corresponding separator symbols.
Moreover, if there exists an injective non-erasing substitution g for « such that
g(a) = w and, for every x € var(a), |g(z)| < 36, then, by the same argu-
ment used in the proof of Lemma [8] ¢ must map yo, to % and every y,, to ¢;.
Lemma [18| directly implies Theorem

As in the erasing case, we shall now show that the NP-completeness is pre-
served if instead of pjj ()|, the parameter p|s| is bounded by a constant.

Theorem 19. [, , pfy |-[NE, inj, tf]-PMV is NP-complete.

Analogously to the erasing case, we prove Theorem [19| by encoding different
symbols by words over a constant alphabet. It turns out that in the non-erasing
case, this can be done in a simple way.

Let a and w be the pattern and the word given by Wy, (G). For the sake of
convenience, let ¥ := {c1,ca,...,ck} be the symbols in w, let « = y1 y2 - yn,
y; € var(a), 1 <i¢ < n,and let w=dydy- - dp, di € E, 1 <i < m. Firstly,
we define o :=y1 byab---by, and w’ :=dy bdab---bd,,, where b ¢ 3. Then,
o/ :=a and w” := 7(w'), where 7 is a morphism (X U {b})* — {a,b}* defined
by m(c;) = a’, 1 < i < k, and n(b) := b. Finally, we define Ung2(G) :=
(o', w"). We note that, for every = € var(a), |a|, = ||, and w” € {a,b}*;
thus, |af, < 3, z € var(«).

Lemma 20. Let (a,w) := Ung2(G). There is a perfect code in G if and only
if there exists an injective non-erasing substitution h for o such that h(a) = w.

PROOF. Let (o/,w') := Wy ;(G). We prove the lemma by applying Lemma (18}
i.e., we show that there exists an injective non-erasing substitution i for o/ suc
that h(a/) = w’ and, for every = € var(a), |h(x)| < 36, if and only if there exists
an injective non-erasing substitution g for « such that g(«) = w.

We shall first prove the only if direction of this statement. To this end, we
assume that there exists an injective non-erasing substitution h with h(a’) = w’
and, for every z € var(a), |h(z)] < 36. We define an injective non-erasing

29

substitution g for « in the following way. For every z € var(o’) with h(z) =
Cj, Cj, - - - Cj,, we define g(x) := 7m(c;,) b7(cj,) b---b7(cy,), where 7 is the mor-
phism defined above. It can be verified with moderate effort that g(a) = w.
From the fact that h is injective it follows that g is injective as well.

Next, we prove the if direction of the statement. Let g be an injective non-
erasing substitution for a with g(a) = w. We recall that in « every occurrence
of a variable is delimited by two occurrences of the symbol b. This implies that
if a variable is substituted by a word that starts or ends with b, then in h(«) the
factor bb occurs, which is a contradiction, since this factor does not occur in w.
Hence, for every = € var(a), g(z) is of form a/t ba/2b--- balt with [> 1 and
j1 # 0 # j;. We can now simply translate the factors ba’b back to the symbols
c; and obtain an injective non-erasing substitution h for o’. More precisely, for
every x € var(a) with g(z) = a/* ba/? b- - ball, we define h(z) :=cj, cj, - - ¢j,.
It can be verified with moderate effort that h(a’) = w’ and, for every = € var(«),
|h(z)] < 36. |

From Lemma we can directly conclude Theorem and we note that
Theorem also implies that [pfa‘x,plzz‘]—[NE, inj, n-t{]-PMV is NP-complete.

We wish to point out that the simple encoding of different symbols c¢; by
unary factors a’ that are separated by occurrences of symbol b does not work in
the erasing case, where we use more complicated encodings in order to bound
the alphabet size (see Theorem . This is due to the fact that in the erasing
case, variables can be substituted by the empty word, which means that several
adjacent occurrences of symbol b may occur in the word. Therefore, if we encode
the terminal word by substituting all symbols by unary factors, separated by
occurrences of b, then it is not possible anymore to erase variables from the
pattern.

6. Conclusions and Future Research Directions

We shall now summarise all the main results of this work in Table [3| (the
entries have the same meaning as for Tables (1| and and then we discuss
them in a bit more detail. The results presented in Table |3 together with the
observation that if p|var(a) OF pju| is bounded, then PMV can be solved in
polynomial time (see Section , demonstrate that for every list of parameters
P, every Z € {E,NE}, every I € {inj,n-inj} and every T € {tf,n-tf}, we can
now answer the question whether or not the parameters in P can be bounded
by constants such that P-[Z,n-inj, T|-PMV is NP-complete.

Most of these questions are answered in the positive and the only polyno-
mial time solvable variants with an unrestricted number of variables and an
unrestricted word length are the injective ones, where the maximum length of
substitution words as well as the alphabet size is bounded by constants.

We can further note that most of these results that a certain restricted vari-
ant of PMV is NP-complete are also true for small constants. In this regard,
the strongest results are obtained in the erasing and injective case. More pre-
cisely, for Z = E, I = n-inj and all T € {tf,n-tf}, we know for all specific

30

| E/NE [inj/n-inj [tf /n-tf | [a(z)] | [a]e | [S] [[Compl. | Thm. |

E n-inj tf, n-tf 1 2 2 NP-C 3
NE n-inj n-tf 3 2 2 NP-C ©
NE n-inj tf 3 3 4 NP-C 6

E, NE inj tf, n-tf N - N P 9

E inj n-tf 5 2 - NP-C 10

E inj tf 5 4 - NP-C 10

E inj n-tf - 2 2 NP-C 13

E inj tf - 9 5 NP-C 13
NE inj tf, n-tf 36 3 - NP-C 16
NE inj tf, n-tf - 3 2 NP-C 19

Table 3: Summary of all new results

constants whether or not P-[Z, I, T]-PMV is NP-complete if the parameters in
P are bounded by these constants. On the other hand, in the case Z = NE
and I = n-inj, even though the NP-completeness results hold for rather small
constants, too, we are not able to prove such a strong result, e.g., we do not
know whether PMV is NP-complete if pjj,(,)| is bounded by 2 instead of 3.

In the injective case, the constant bounds for the NP-complete variants are
slightly larger, but, for most cases, still quite small. An exception is the non-
erasing and injective case, where the number of variable occurrences and the
length of the substitution words is bounded. Here, we are only able to estab-
lish NP-completeness if the constant bound on the substitution word length
is at least 36. We conjecture that it is possible to further lower some of these
constants, especially in the injective case, without losing NP-completeness. Fur-
thermore, while the problem 3RPERCODE proves itself very useful in order to
obtain our hardness results, it may also be possible that by choosing a different
NP-complete source problem reductions can be found that improve some of our
constant bounds.

References

[1] A. Amir, Y. Aumann, R. Cole, M. Lewenstein, and E. Porat. Func-
tion matching: Algorithms, applications, and a lower bound. In Proc.
30th International Colloguium on Automata, Languages and Programming,
ICALP 2003, volume 2719 of Lecture Notes in Computer Science, pages
929-942. 2003.

[2] A. Amir and I. Nor. Generalized function matching. Journal of Discrete
Algorithms, 5:514-523, 2007.

[3] D. Angluin. Finding patterns common to a set of strings. In Proc. 11th
Annual ACM Symposium on Theory of Computing, STOC 1979, pages
130-141, 1979.

31

[4]

[10]

[11]

[16]

[17]

D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46—62, 1980.

B. S. Baker. Parameterized pattern matching: Algorithms and applications.
Journal of Computer and System Sciences, 52:28—-42, 1996.

P. Barceld, L. Libkin, A. W. Lin, and P. T. Wood. Expressive languages for
path queries over graph-structured data. ACM Transactions on Database
Systems, 37, 2012.

J. Bremer and D. D. Freydenberger. Inclusion problems for patterns with a
bounded number of variables. Information and Computation, 220-221:15—
43, 2012.

C. Campeanu, K. Salomaa, and S. Yu. A formal study of practical regular
expressions. International Journal of Foundations of Computer Science,
14:1007-1018, 2003.

R. Clifford, A. W. Harrow, A. Popa, and B. Sach. Generalised matching. In
Proc. 16th International Symposium on String Processing and Information
Retrieval, SPIRE 2009, volume 5721 of Lecture Notes in Computer Science,
pages 295-301, 2009.

A. Ehrenfeucht and G. Rozenberg. Finding a homomorphism between two
words is NP-complete. Information Processing Letters, 9:86-88, 1979.

H. Fernau and M. L. Schmid. Pattern matching with variables: A multi-
variate complexity analysis. In Proc. 24th Annual Symposium on Combina-
torial Pattern Matching, CPM 2013, volume 7922 of LNCS, pages 83-94,
2013.

D. D. Freydenberger and D. Reidenbach. Bad news on decision problems
for patterns. Information and Computation, 208:83-96, 2010.

D. D. Freydenberger, D. Reidenbach, and J. C. Schneider. Unambiguous
morphic images of strings. International Journal of Foundations of Com-
puter Science, 17:601-628, 2006.

J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA,
third edition, 2006.

M. Geilke and S. Zilles. Learning relational patterns. In Proc. 22nd Inter-
national Conference on Algorithmic Learning Theory, ALT 2011, volume
6925 of Lecture Notes in Computer Science, pages 84-98, 2011.

T. Harju and J. Karhumé&ki. Morphisms. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 1, chapter 7, pages 439—
510. Springer, 1997.

O. Ibarra, T.-C. Pong, and S. Sohn. A note on parsing pattern languages.
Pattern Recognition Letters, 16:179-182, 1995.

32

[18]

[19]

[20]

[21]

[22]

[27]

[28]

T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages
with and without erasing. International Journal of Computer Mathematics,
50:147-163, 1994.

T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for pat-
terns. Journal of Computer and System Sciences, 50:53-63, 1995.

J. Kratochvil and M. Kfivanek. On the computational complexity of codes
in graphs. In Proc. 13th Symposium on Mathematical Foundations of Com-
puter Science, MFCS 1988, volume 324 of Lecture Notes in Computer Sci-
ence, pages 396—404, 1988.

A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern lan-
guages. RAIRO Informatique théoretique et Applications, 28:233-253, 1994.

Y. K. Ng and T. Shinohara. Developments from enquiries into the learn-
ability of the pattern languages from positive data. Theoretical Computer
Science, 397:150-165, 2008.

E. Ohlebusch and E. Ukkonen. On the equivalence problem for E-pattern
languages. Theoretical Computer Science, 186:231-248, 1997.

D. Reidenbach. A non-learnable class of E-pattern languages. Theoretical
Computer Science, 350:91-102, 2006.

D. Reidenbach. Discontinuities in pattern inference. Theoretical Computer
Science, 397:166-193, 2008.

D. Reidenbach and M. L. Schmid. A polynomial time match test for large
classes of extended regular expressions. In Proc. 15th International Confer-
ence on Implementation and Application of Automata, CIAA 2010, volume
6482 of Lecture Notes in Computer Science, pages 241-250, 2011.

D. Reidenbach and M. L. Schmid. Patterns with bounded treewidth. In-
formation and Computation, 239:87-99, 2014.

T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th
Annual ACM Symposium on Theory of Computing, STOC 1978, pages
216-226. ACM, 1978.

M. L. Schmid. On the Membership Problem for Pattern Languages and Re-
lated Topics. PhD thesis, Department of Computer Science, Loughborough
University, 2012.

M. L. Schmid. Inside the class of regex languages. International Journal
of Foundations of Computer Science, 24, 2013.

M. L. Schmid. A note on the complexity of matching patterns with vari-
ables. Information Processing Letters, 113:729-733, 2013.

33

[32] T. Shinohara. Polynomial time inference of extended regular pattern lan-
guages. In Proc. RIMS Symposium on Software Science and Engineering,
volume 147 of Lecture Notes in Computer Science, pages 115-127, 1982.

[33] T. Shinohara. Polynomial time inference of pattern languages and its ap-
plication. In Proc. 7th IBM Symposium on Mathematical Foundations of
Computer Science, pages 191-209, 1982.

34

	Introduction
	Preliminaries
	The Hardness of Pattern Matching with Variables
	The Non-Injective Case
	The Erasing Case
	The Non-Erasing Case

	The Injective Case
	The Erasing Case
	The Non-erasing Case

	Conclusions and Future Research Directions

