
August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

International Journal of Computer Mathematics
Vol. 00, No. 00, Month 200x, 1–19

RESEARCH ARTICLE

Finding Shuffle Words that Represent Optimal Scheduling of

Shared Memory Access

Daniel Reidenbacha and Markus L. Schmida∗

aDepartment of Computer Science, Loughborough University,

Loughborough, Leicestershire, LE11 3TU, United Kingdom
(Received 00 Month 200x; in final form 00 Month 200x)

In the present paper, we introduce and study the problem of computing, for any given finite
set of words, a shuffle word with a minimum so-called scope coincidence degree. The scope
coincidence degree is the maximum number of different symbols that parenthesise any position
in the shuffle word. This problem is motivated by an application of a new automaton model
and can be regarded as the problem of scheduling shared memory accesses of some parallel
processes in a way that minimises the number of memory cells required. We investigate the
complexity of this problem and show that it can be solved in polynomial time.

Keywords: string algorithms; shuffle; memory access scheduling

AMS Subject Classification: 68Q25; 68Q42; 90B35; 90C27.

1. Introduction

In this work, we introduce and investigate a problem on shuffling words. A word
is a sequence of symbols, e. g., u := abacbc and v := abc, and two words are
shuffled by interleaving them in such a way that the relative order of their symbols
is preserved. More precisely, a shuffle word of u and v is any word that can be
obtained by inserting the symbols of u into v without changing their order. Hence,
abacbcabc, aabbaccbc, abaabcbcc or abcabacbc are possible shuffle words
of u and v whereas caabbacbc is not. Shuffle words of more than two words are
defined iteratively, e. g., w is a shuffle word of the words u1, u2 and u3 if and only
if it is a shuffle word of u1 and v, where v is a shuffle word of u2 and u3.

We study the problem of constructing, for a given set of words, a shuffle word such
that a certain parameter is minimised. Intuitively, this parameter is the maximum
number of different symbols that parenthesise any position in the shuffle word. Mo-
tivation for this computational problem can be derived from the following problem
on scheduling memory accesses.

We assume that some process is executed, which requires access to different
values stored in the memory. These memory accesses can be modeled as a sequence
of symbols, e. g., the process u := abacbc needs to access the values a, b and c in
the order a,b,a, c,b, c. Obviously, u can be executed by reserving a single memory
cell for each of the values a, b and c. On the other hand, u can also be divided
into two parts, u1 := aba and u2 := cbc, and for the execution of u1, we use two
memory cells in order to store values a and b and for the execution of u2, we use

∗Corresponding author. Email: M.Schmid@lboro.ac.uk

ISSN: 0020-7160 print/ISSN 1029-0265 online
c© 200x Taylor & Francis
DOI: 10.1080/0020716YYxxxxxxxx
http://www.informaworld.com

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

2 Daniel Reidenbach and Markus L. Schmid

the same two memory cells for values c and b. Consequently, u can be executed
with only two instead of three memory cells. The situation is more involved if an
additional process v := abc is supposed to be executed in parallel to u. If we
first execute process u and then process v, then our sequence of memory accesses
reads abacbcabc and it can be easily verified that now we necessarily need an
individual memory cell for each of the values a, b and c. However, we can again
get along with only two memory cells if we interleave, or shuffle, the processes u
and v. More precisely, we first carry out only the initial part aba of process u and
then interrupt its execution. After that, process v = abc is executed and then u is
completed by executing cbc. The memory accesses are now abaabccbc and again
we can use two memory cells to first store values a and b and then reuse the same
cells in order to store values b and c.

We observe that this scheduling problem is actually a problem on shuffling words.
More precisely, the problem of finding the best way of organising the memory
accesses of all processes directly translates into computing a shuffle word of all
the processes that minimises the parameter determining the number of memory
cells required. The naive way of solving this problem, i. e., investigating all possible
shuffle words, seems inappropriate, since there is an exponential number of them.
However, we can present an algorithm solving this problem for arbitrary input
words and a fixed alphabet size in polynomial time.

The problem described above shows similarities to the problem of register alloca-
tion (see, e. g., [4, 6]), a problem that plays an important role for the optimisation of
compilers. However, a closer look reveals substantial differences between these two
tasks of allocating values to memory cells. In register allocation we deal with the
problem that there are not enough registers to store all necessary values and, thus,
some values need to be stored in the main memory. Consequently, the optimisa-
tion objective is to find an allocation such that the number of accesses to the main
memory is minimised, since these constitute a much more expensive CPU operation
compared to accessing a register. On the other hand, in our scheduling problem
the number of registers is not fixed and our objective is to minimise the number
of these registers. Furthermore, in register allocation the periods during which the
values must be accessible in registers can be arbitrarily changed by storing them in
the main memory, and there is usually not the problem of sequentialising several
processes.

Another motivation for the introduced problem on shuffling words results from
an application of a new automaton model with two input heads [7]. Within the
scope of [7], these two input heads are moved over whole factors of the input word,
thus, each input head trajectory can be interpreted as a process that needs to access
lengths of factors in a certain order. By interleaving these trajectories in a specific
way, the number of factor lengths that need to be stored simultaneously can be
decreased, which does not only affect the memory usage of the automaton, but
it also has a significant impact on the runtime of its computations. Consequently,
the main result of the present paper can be used to improve the approach in [7],
but we shall not discuss this aspect explicitly here. We believe that this nontrivial
problem might occur in other practical situations as well, but, to the knowledge
of the authors, it is not covered by any literature on scheduling (see, e. g., [1, 3])
and the same holds for the research on the related common supersequence problem
(see, e. g., [5]).

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

Finding Shuffle Words that represent optimal Scheduling of Shared Memory Access 3

2. Basic Definitions

In the following, let Σ be a finite alphabet. A word (over Σ) is a finite sequence of
symbols from Σ, and ε stands for the empty word. The symbol Σ+ denotes the set
of all nonempty words over Σ, and Σ∗ := Σ+ ∪ {ε}. For the concatenation of two
strings w1, w2 we write w1 · w2 or simply w1w2. We say that a string v ∈ Σ∗ is a
factor of a string w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1 · v ·u2. If u1 = ε
(or u2 = ε), then v is a prefix of w (or a suffix, respectively). The notation |K|
stands for the size of a set K or the length of a string K. The term alph(w) denotes
the set of all symbols occurring in w and, for each a ∈ alph(w), |w|a refers to the
number of occurrences of a in w. A word w′ is a permutation of a word w if and
only if alph(w) = alph(w′) and, for every a ∈ alph(w), |w|a = |w′|a. If we wish to
refer to the symbol at a certain position j, 1 ≤ j ≤ n, in a word w = a1 · a2 · · · an,
ai ∈ Σ, 1 ≤ i ≤ n, we use w[j] := aj . Furthermore, for each j, j′, 1 ≤ j < j′ ≤ |w|,
let w[j, j′] := aj ·aj+1 · · · aj′ and w[j,−] := w[j, |w|]. In case that j > |w|, we define
w[j,−] = ε.

Next, we formally define the notion of shuffle words, which have already been
informally explained in the introduction. Let u and v be words over the alphabet
Σ. The shuffle operation, denoted by , is a binary operation on words, defined
by

u v := {x1y1x2y2 · · ·xnyn | n ∈ N, xi, yi ∈ (Σ ∪ {ε}), 1 ≤ i ≤ n,

u = x1x2 · · ·xn, v = y1y2 · · · yn} .

The shuffle operation is extended to the case of more than two words in an inductive
way. Let w1, w2, . . . , wk ∈ Σ∗ be arbitrary words. Then w1 w2 . . . wk :=
{w1 u | u ∈ w2 . . . wk}. Furthermore, Γ := w1 w2 . . . wk is called
the shuffle of w1, . . . , wk and each word w ∈ Γ is a shuffle word of w1, . . . , wk. For
example, cbaaabcbcb ∈ bbc caab bac.

Finally, we introduce a special property of words that is important for our main
problem. For an arbitrary w ∈ Σ∗ and any b ∈ alph(w) let l, r, 1 ≤ l, r ≤ |w|, be
chosen such that w[l] = w[r] = b and there exists no k, k < l, with w[k] = b and no
k′, r < k′, with w[k′] = b. Then the scope of b in w (scw(b) for short) is defined by
scw(b) := (l, r). Note that in the case that for some word w we have w[j] = b and
|w|b = 1, the scope of b in w is (j, j). Now we are ready to define the so called scope
coincidence degree: Let w ∈ Σ∗ be an arbitrary word and, for each i, 1 ≤ i ≤ |w|,
let

scdi(w) := |{b ∈ Σ | b 6= w[i], scw(b) = (l, r) and l < i < r}| .

We call scdi(w) the scope coincidence degree of position i in w. Furthermore, the
scope coincidence degree of the word w is defined by

scd(w) := max{scdi(w) | 1 ≤ i ≤ |w|} .

As an example, we now consider the word w := acacbbdeabcedefdeff . It can
easily be verified that scd8(w) = scd9(w) = 4 and scdi(w) < 4 if i /∈ {8, 9}. Hence,
scd(w) = 4.

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

4 Daniel Reidenbach and Markus L. Schmid

3. The Problem of Computing Shuffle Words with Minimum Scope
Coincidence Degree

As described in the practical motivation given in the introduction, it is our goal to
solve the following problem: for given input words which model sequences of mem-
ory accesses, construct a shuffle word, such that, for any memory access in the shuf-
fle word, the maximum number of different values that already have been accessed
and shall again be accessed later on is minimal. For example, w := abaabccbc is a
shuffle word of abacbc and abc and we can observe that, for each position i in w,
there exists at most one other symbol different from w[i] that has an occurrence to
both sides of position i. On the other hand, for the shuffle word abacbcabc, there
is an occurrence of a and b to both sides of the occurrence of c at position 4. The
maximum over all these numbers of symbols occurring to both sides of an occur-
rence of another symbol is precisely the scope coincidence degree. Consequently,
our main problem can be described as the problem of computing, for given input
words, a shuffle word with a minimum scope coincidence degree.

Problem 3.1 For an arbitrary alphabet Σ, let the problem SWminSCDΣ be the
problem of finding, for given wi ∈ Σ∗, 1 ≤ i ≤ k, a shuffle word w ∈ w1 . . . wk
with minimum scope coincidence degree.

We wish to point out that the alphabet Σ in the definition of SWminSCDΣ is a
constant and not part of the input. More precisely, the input words for the problem
SWminSCDΣ are required to exclusively contain symbols from the alphabet Σ,
which shall be important for complexity considerations.

Let w1, w2, . . . , wk be some words over the alphabet Σ. We can note that the
cardinality of the shuffle w1 w2 . . . wk is, in the worst case, given by the
multinomial coefficient [2]:

|w1 w2 . . . wk| ≤
(

n

|w1|, |w2|, . . . , |wk|

)
=

n!

|w1|!× |w2|!× . . .× |wk|!
.

This directly implies that the naive approach to solving SWminSCDΣ, i. e., to
enumerate all elements in the shuffle w1 w2 . . . wk in order to find one
with minimum scope coincidence degree, is not suitable, since the search space
of this procedure can be exponentially large. Hence, a polynomial time algorithm
cannot simply search the whole shuffle w1 w2 . . . wk, which implies that a
more sophisticated strategy is required. Before we present a successful approach to
SWminSCDΣ in Section 5, we wish to discuss some simple observations. First,
we note that solving SWminSCDΣ on input w1, w2, . . . , wk by first computing
a minimal shuffle word w of w1 and w2 (ignoring w3, . . . , wn) and then solving
SWminSCDΣ on the smaller input w,w3 . . . , wn and so on is not possible. This
can be easily comprehended by considering the words w1 := ab and w2 := bc and
observing that w := abbc is a shuffle word of w1 and w2 that is optimal, since
scd(w) = 0. Now, it is not possible to shuffle w with w3 := cba in such a way that
the resulting shuffle word has a scope coincidence degree of less than 2; however,
w′ := w2 · w3 · w1 = bccbaab ∈ w1 w2 w3 and scd(w′) = 1. We can further
note that w is in fact the only optimal shuffle word of w1 and w2, thus, in terms
of the above described approach, we necessarily have to start with a shuffle word
of w1 and w2 that is not optimal in order to obtain an optimal shuffle word of all
three words w1, w2 and w3.

Intuitively, it seems obvious that the scope coincidence degree only depends on
the leftmost and rightmost occurrences of the symbols. In other words, removing
a symbol from a word that does not constitute a leftmost or rightmost occurrence

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

Finding Shuffle Words that represent optimal Scheduling of Shared Memory Access 5

should not change the scope coincidence degree of that word. For instance, if we
consider a word w := α · c · β, where c is a symbol occurring in both α and β,
then all symbols in the word w that are in the scope of c are still in the scope
of c with respect to the word α · β. Consequently, we can first remove all occur-
rences of symbols that are neither leftmost nor rightmost occurrences, then solve
SWminSCDΣ on these reduced words and finally insert the removed occurrences
into the shuffle word in such a way that the scope coincidence degree does not
increase. This reduction of the input words results in a smaller, but still exponen-
tially large search space. Hence, this approach does not seem to help us solving
SWminSCDΣ in polynomial time. For completeness, we discuss this matter in a
bit more detail in the following subsection.

3.1 Scope Reduced Words

As mentioned above, all symbols in the word w := α · c · β that are in the scope of
c, where c is a symbol occurring in both α and β, are still in the scope of c with
respect to the word α ·β. However, in order to conclude scd(w) = scd(α ·β), we also
have to consider the following situation. In case that scd|α|+1(w) = scd(w) (i. e.,
the position of the symbol c under consideration has maximum scope coincidence
degree in w) it is no longer as obvious that this particular occurrence of c can be
removed without changing the scope coincidence degree of w.

In this case, we can show that there must exist a position i in w, different
from position |α| + 1, that also has a maximum scope coincidence degree, i. e.,
scdi(w) = scd|α|+1(w):

Lemma 3.2 Let w := α · c · β ∈ Σ∗, where c ∈ Σ, 1 ≤ |α|, 1 ≤ |β|. If c ∈
(alph(α) ∩ alph(β)), then scd(w) = scd(α · β).

Proof Let w′ := α · β. Since the occurrence of c at position |α| + 1 is neither a
leftmost nor a rightmost occurrence, it is obvious that scdi(w) = scdi(w

′), 1 ≤
i ≤ |α|, and scdi+1(w) = scdi(w

′), |α| + 1 ≤ i ≤ |α · β|. First, we observe that if
scd|α|+1(w) ≤ scd|α|(w), then we can conclude

scd(w) = max{scdi(w) | 1 ≤ i ≤ |w|, i 6= |α|+ 1}

= max{scdi(w
′) | 1 ≤ i ≤ |w′|}

= scd(w′) .

So in order to prove the statement of the lemma, it is sufficient to show that
scd|α|+1(w) ≤ scd|α|(w). Now, as 1 ≤ |α|, there exists a b ∈ Σ such that α = α′ · b.
In case that b = c, scd|α|+1(w) = scd|α|(w). Therefore, in the following, we assume
that b 6= c and define the set Γ := {a | a ∈ (alph(α) ∩ alph(β)) \ {b, c}}. There are
two cases depending on whether or not b ∈ alph(β).

If b ∈ alph(β), then scd|α|+1(w) = |Γ|+ |{b}| and scd|α|(w) = |Γ|+ |{c}|. Hence,
scd|α|+1(w) = scd|α|(w). If, on the other hand, b /∈ alph(β), then scd|α|+1(w) = |Γ|
and scd|α|(w) = |Γ|+ |{c}|, which implies scd|α|+1(w) < scd|α|(w). �

By iteratively applying Lemma 3.2, it can easily be seen that all occurrences of
symbols from a word that are neither leftmost nor rightmost occurrences can be
removed without changing its scope coincidence degree. The next definition shall
formalise that procedure.

Definition 3.3 Let w = b1 · b2 · · · bn, bi ∈ Σ, 1 ≤ i ≤ n, be arbitrarily chosen
and, for each i, 1 ≤ i ≤ n, let ci := ε if bi ∈ (alph(w[1, i− 1]) ∩ alph(w[i+ 1,−]))

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

6 Daniel Reidenbach and Markus L. Schmid

and ci := bi otherwise. The word c1 · c2 · · · cn (denoted by sr(w)) is called the scope
reduced version of w. An arbitrary word v ∈ Σ∗, such that, for each b ∈ alph(w),
|w|b ≤ 2, is said to be scope reduced.

We can now use the previous result and Definition 3.3 in order to show that,
regarding the problem SWminSCDΣ, we can restrict our considerations to input
words that are scope reduced:

Lemma 3.4 Let w1, w2, . . . , wk ∈ Σ∗. There is a word u ∈ w1 w2 . . . wk
with scd(u) = m if and only if there is a word v ∈ sr(w1) sr(w2) . . . sr(wk)
with scd(v) = m.

Proof We prove the only if direction by showing that any u ∈ w1 w2 . . . wk
can be transformed into a v ∈ sr(w1) sr(w2) . . . sr(wk) with scd(u) =
scd(v). The if direction shall be shown in a similar way.

The basic idea is that all the symbols from the words wi, 1 ≤ i ≤ k, that are
neither leftmost nor rightmost occurrences, can simply be removed from a shuffle
word of w1, . . . , wk in order to obtain a shuffle word of sr(w1), . . . , sr(wk), and,
analogously, inserting these symbols anywhere, but always between two occurrences
of the same symbol, into a shuffle word of sr(w1), . . . , sr(wk) results in a shuffle
word of w1, . . . , wk. The equivalence of the scope coincidence degree can then be
established by Lemma 3.2.

Let u ∈ w1 w2 . . . wk be arbitrarily chosen. By definition of a shuffle, we
can assume that all symbols in u are marked with one of the numbers in {1, 2, . . . , k}
in such a way that, for each i, 1 ≤ i ≤ k, by deleting all symbols from u that are
not marked with i, we obtain exactly wi. Hence, all symbols in u are of form b(i),
where b ∈ Σ and 1 ≤ i ≤ k. Next, we obtain a word v from u in the following way.
For each b ∈ Σ and each i, 1 ≤ i ≤ k, we delete all occurrences of symbols b(i)

that are neither leftmost nor rightmost occurrences of the symbol b(i). After that,
we unmark all symbols. Since, for each i, 1 ≤ i ≤ k, we removed all symbols in u
originating from wi except the left- and rightmost occurrences in wi, we conclude
that v is a shuffle word of sr(w1), sr(w2), . . . , sr(wk) and, by Lemma 3.2, we can
conclude that scd(u) = scd(v).

In order to prove the if direction, we arbitrarily choose a word v ∈
sr(w1) sr(w2) . . . sr(wk). Again, we may assume that all symbols in v are
marked in the same way as before. Now, for every b ∈ Σ and every i, 1 ≤ i ≤ k,
if |wi|b > 2, we define nb,i := |wi|b − 2. Next, we construct a word u from v by
applying the following algorithm:

1: Set u← v
2: for all b ∈ Σ do
3: for all i, 1 ≤ i ≤ k, do
4: if |wi|b > 2 then
5: Let α, β, γ such that u = α · b(i) · β · b(i) · γ
6: Set u← α · b · bnb,i · β · b · γ
7: end if
8: end for
9: end for

For every b ∈ Σ and every i, 1 ≤ i ≤ k, with |wi|b > 2, we can conclude that there
are exactly 2 occurrences of b(i) in u, thus, the factorisation in line 5 is unique. In
line 6, we simply insert nb,i = |wi|b− 2 occurrences of symbol b in between the two

occurrences of b(i), which we unmark. Consequently, the word u constructed by the
above given algorithm is a shuffle word of w1, w2, . . . , wk and, by Lemma 3.2, we
can conclude that scd(u) = scd(v). �

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

Finding Shuffle Words that represent optimal Scheduling of Shared Memory Access 7

The previous result also shows how to obtain a solution for SWminSCDΣ on
input words w1, w2, . . . , wk from a solution for SWminSCDΣ on the scope reduced
input words sr(w1), sr(w2), . . . , sr(wk). Although the above made observations are
more or less irrelevant for our main results, we shall use them at the very end of
this work in order to obtain a better complexity bound.

In the following section, we shall establish basic results on the scope coincidence
degree of words. These results shall then be applied later on in order to analyse
the scope coincidence degree of shuffle words.

4. Further Properties of the Scope Coincidence Degree

In the present section, we investigate the scope coincidence degree in more detail.
Our central question is how we can transform a word without increasing its scope
coincidence degree. We can first note that, for some word w and some position i,
1 ≤ i ≤ |w|, if we permute the prefix w[1, i − 1] or the suffix w[i + 1,−], then the
scope coincidence degree of position i in w, i. e., scdi(w), does not change. This is
due to the fact that scdi(w) is the number of distinct symbols that occur to both
sides of position i, which is not affected by a permutation of w[1, i−1] or w[i+1,−].

Proposition 4.1 Let u, v ∈ Σ∗ with |u| = |v|. If, for some i, 1 ≤ i ≤ |u|,
u[i] = v[i] and u[1, i−1] is a permutation of v[1, i−1] and u[i+1,−] is a permutation
of v[i+ 1,−], then scdi(u) = scdi(v).

This implies that we can permute the part to the right and to the left of some
position in a word without changing the scope coincidence degree of this specific
position. On the other hand, the scope coincidence degree of the positions in the
permuted parts do not necessarily remain unchanged, which means that the scope
coincidence degree of the whole word may change. It can be shown, however, that
if a factor of a word w contains no leftmost occurrence of a symbol with respect
to w (it may contain rightmost occurrences of symbols), then this factor can be
replaced by a permutation of itself without changing the scope coincidence degree
of the whole word:

Lemma 4.2 Let α, β, π, π′ ∈ Σ∗, where π is a permutation of π′ and alph(π) ⊆
alph(α). Then scd(α · π · β) = scd(α · π′ · β).

Proof We prove scd(v) = scd(v′), where v := α · π · β and v′ := α · π′ · β. By
Proposition 4.1, we can conclude that, for each i, with 1 ≤ i ≤ |α| or |α · π|+ 1 ≤
i ≤ |v|, scdi(v) = scdi(v

′). So it remains to examine the numbers scdi(v), scdi(v
′),

where |α| + 1 ≤ i ≤ |α · π|. In particular, we take a closer look at scd|α|+1(v)
and scd|α|+1(v′), which are determined by the number of symbols different from
π[1] (π′[1], respectively) that occur in both factors α and π[2,−] · β (π′[2,−] ·
β, respectively). These symbols can be divided into two sets, the set of symbols
occurring in alph(α)∩alph(β) but not in alph(π) (alph(π′), respectively) on the one
hand, and the set alph(π)\{π[1]} (alph(π′)\{π′[1]}, respectively) on the other hand.
This is due to the fact that alph(π) ⊆ alph(α); thus, all symbols in alph(π)\{π[1]}
(alph(π′) \ {π′[1]}, respectively) have an occurrence to the left and to the right
of position |α| + 1 in v (v′, respectively). Therefore, scd|α|+1(v) = scd|α|+1(v′) =
(m − 1) + r, where m := | alph(π)| and r := |(alph(α) ∩ alph(β)) \ alph(π)|. If
we consider the numbers scdi(v), scdi(v

′), |α| + 2 ≤ i ≤ |α · π| we encounter the
same situation with the only difference that not necessarily all m − 1 symbols in
alph(π)\{v[i]} (alph(π′)\{v′[i]}, respectively) have to occur to the right of position
i. Hence, scd|α|+i(v) = r + m′ and scd|α|+i(v) = r + m′′, where m′ ≤ (m − 1) and
m′′ ≤ (m− 1). In conclusion,

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

8 Daniel Reidenbach and Markus L. Schmid

• max{scdi(v) | |α|+ 1 ≤ i ≤ |α · π|} = scd|α|+1(v),

• max{scdi(v
′) | |α|+ 1 ≤ i ≤ |α · π′|} = scd|α|+1(v′), and

• scd|α|+1(v) = scd|α|+1(v′).

Thus, scd(v) = scd(v′). �

In the next two lemmas, we show how words can be manipulated, such that their
scope coincidence degree does not increase. The statement of the first lemma can be
paraphrased in the following way. Let w be a word and let i and j, 1 ≤ i < j ≤ |w|,
be two positions of w with w[i] = w[j] = b, b ∈ Σ. Furthermore, we assume that
w[1, i− 1]b = 0, i. e., the occurrence of b at position i is the leftmost occurrence of
b. We can now move the occurrence of b at position j to the left and, as long as this
symbol is not moved to the left of position i, such an operation does not increase
the scope coincidence degree of w. At first glance, this observation seems evident,
since moving an occurrence of b in this way shortens the scope of symbol b or leaves
it unchanged. However, it can happen that, after moving the occurrence of b, the
scope coincidence degree of the new position of b has increased compared to its old
position. Intuitively, this is the case if we move this certain b into a region of the
word where many scopes coincide. This possible increase of the scope coincidence
degree of that certain position, as shown in the next lemma, does not affect the
scope coincidence degree of the whole word.

Lemma 4.3 For all α, β, γ ∈ Σ∗ and for each b ∈ Σ with b ∈ alph(α),

scd(α · b · β · γ) ≤ scd(α · β · b · γ) .

Proof Let w := α · b · β · γ and w′ := α · β · b · γ. Furthermore, let j := |α · b|. We
prove the statement of the lemma by showing that scdi(w) ≤ scd(w′), for each i,
1 ≤ i ≤ |w|.

By applying Proposition 4.1, we can conclude that for each i with 1 ≤ i ≤ j − 1
or |α · b · β| + 1 ≤ i ≤ |w|, scdi(w) = scdi(w

′). For the positions in w that are in
factor β, i. e. the positions i with j + 1 ≤ i ≤ j + |β|, we observe the following.
For each i, j + 1 ≤ i ≤ j + |β|, there is a certain number of symbols different from
symbol w[i] that occur to the left and to the right of position i in w. Regarding
w′, as in w′ the factor β is simply shifted one position to the left, the very same
symbols occur to the left and to the right of position i−1 in w′. In addition to that,
we know that symbol b has an occurrence to the left and to the right of position
i− 1 in w′, whereas in w and with respect to position i, this is not necessarily the
case. Therefore, we can conclude that scdi(w) ≤ scdi−1(w′), j + 1 ≤ i ≤ j + |β|.

So far, we showed that scdi(w) ≤ scd(w′) for each i with 1 ≤ i ≤ |w| and i 6= j.
Thus, it only remains to take a closer look at position j in w and, in particular,
at the number scdj(w). In general, it is possible that scdj(w) > scd|α·β|+1(w′), but
we shall see that always scdj(w) ≤ scd(w′) holds. We consider the symbol y at
position j − 1 in w, i. e. the last symbol of the factor α (recall that |α| ≥ 1). Now
we can write w as w := α′ · y · b · β · γ, where α = α′ · y. If y = b, then obviously
scdj(w) = scdj−1(w) and we already know that scdj−1(w) = scdj−1(w′), hence,
scdj(w) ≤ scd(w′). We assume that, on the other hand, y 6= b. Furthermore, we
assume to the contrary that scdj(w) = m > scd(w′). This implies that |Γ| = m,
where Γ := |(alph(α)∩alph(β ·γ))\{b}|. Next we consider the set Γ′ = (alph(α′)∩
alph(β · b · γ)) \ {y} and note that, since b ∈ alph(α′), b ∈ Γ′. We observe now
that we have |Γ| = |Γ′| if y ∈ Γ, and |Γ| < |Γ′| if y /∈ Γ, hence, |Γ| ≤ |Γ′| and, as
|Γ′| = scdj−1(w′), m ≤ scdj−1(w′) is implied, which is a contradiction. �

By a repeated application of Lemma 4.3, it can be easily shown that it is also
possible to move several symbols in a word to the left without increasing the scope

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

Finding Shuffle Words that represent optimal Scheduling of Shared Memory Access 9

coincidence degree. For the sake of convenience, we now state this observation in
a form that is particularly tailored to our later applications for shuffle words.

Lemma 4.4 Let α, γ, βi ∈ Σ∗, 0 ≤ i ≤ n, n ∈ N, and let di ∈ Σ, 1 ≤ i ≤ n, such
that di ∈ alph(α), 1 ≤ i ≤ n. Then

scd(α · d1 · d2 · · · dn · β1 · β2 · · ·βn · γ) ≤ scd(α · β1 · d1 · β2 · d2 · · ·βn · dn · γ) .

Proof We prove scd(w) ≤ scd(w′), where

• w := α · d1 · d2 · · · dn · β1 · β2 · · ·βn · γ ,

• w′ := α · β1 · d1 · β2 · d2 · · ·βn · dn · γ .

We can obtain a word u1 from w′ by moving d1 to the left until it is positioned
directly to the left of factor β1. Furthermore, for each i, 2 ≤ i ≤ n, we can obtain
a word ui from ui−1 by moving the symbol di to the left in the same way (i. e. di
is then positioned between di−1 and β1). Obviously, un = w and, by Lemma 4.3,
scd(u1) ≤ scd(w′) and scd(ui) ≤ scd(ui−1), 2 ≤ i ≤ n, hence, scd(w) ≤ scd(w′). �

We can observe that, in the previous lemma, the di, 1 ≤ i ≤ n, can be any
symbols and the only condition that needs to be satisfied is that all these symbols
have at least one occurrence in the prefix α. Furthermore, from Lemma 4.2, it
directly follows that the order of the symbols di, 1 ≤ i ≤ n, between α and β1

can be arbitrarily changed without increasing the scope coincidence degree of the
word. However, since in the following we are concerned with shuffle words, it is
convenient to state Lemma 4.4 as given above, i. e., in such a way that the relative
order of the symbols that are moved is preserved.

5. Solving the Problem SWminSCDΣ

In this section, we show how the problem SWminSCDΣ can be solved efficiently.
To this end, we first define a general way of constructing shuffle words. After that,
we identify a simpler and standardised way of producing well-formed shuffle words
and then, by applying the lemmas given in the previous section, we show that
among all those well-formed shuffle words that can be constructed in the simple
way, there must be at least one with minimum scope coincidence degree. Since the
set of well-formed shuffle words is considerably smaller than the set of all shuffle
words, it follows that this method can be carried out in polynomial time.

In the following, we consider words as stack-like data structures, i. e., we interpret
words w1, w2, . . . , wk ∈ Σ∗ as stacks where the leftmost symbols wi[1], 1 ≤ i ≤ k,
are the topmost stack elements of these stacks. Now, by successively applying the
pop operation, we can empty these stacks and every time we pop a symbol from
the stack, it is appended to the end of an initially empty word w. Obviously, the
word w that is obtained as soon as all the stacks are empty is a shuffle word of
w1, w2, . . . , wk.

It seems useful to reason about different ways of constructing a shuffle word
rather than about actual shuffle words, as this allows us to ignore the fact that in
general a shuffle word can be constructed in several completely different ways. In
particular the following unpleasant situation seems to complicate the analysis of
shuffle words. If we consider a shuffle word w of the words w1, w2, . . . , wk, it might
be desirable to know, for a symbol b on a certain position j, which wi, 1 ≤ i ≤ k, is
the origin of that symbol. Obviously, this depends on how the shuffle word has been
constructed from the words wi, 1 ≤ i ≤ k, and for different ways of constructing
w, the symbol b on position j may originate from different words wi, 1 ≤ i ≤ k.

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

10 Daniel Reidenbach and Markus L. Schmid

In particular, if we want to alter shuffle words by moving certain symbols, it is
essential to know the origin words wi, 1 ≤ i ≤ k, of the symbols, as this determines
how they can be moved without destroying the shuffle properties.

We now formalise the way of constructing a shuffle word by utilising the stack
analogy introduced above. An arbitrary configuration (of the content) of the stacks
corresponding to words wi, 1 ≤ i ≤ k, can be given as a tuple (v1, . . . , vk) of suffixes,
i. e. wi = ui · vi, 1 ≤ i ≤ k. Such a configuration (v1, . . . , vk) is then changed
into another configuration (v1, . . . , vi−1, v

′
i, vi+1, . . . , vk), by a pop operation, where

vi = b · v′i for some i, 1 ≤ i ≤ k, and for some b ∈ Σ. Initially, we start with the
stack content configuration (w1, . . . , wk) and as soon as all the stacks are empty,
which can be represented by (ε, . . . , ε), our shuffle word is complete. Hence, we can
represent a way to construct a shuffle word by a sequence of these tuples of stack
contents:

Definition 5.1 A construction sequence for words w1, w2, . . . , wk, wi ∈ Σ∗, 1 ≤
i ≤ k, is a sequence s := (s0, s1, . . . , sm), m := |w1 · · ·wk| such that

• si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m, where, for each i, 0 ≤ i ≤ m, and for each
j, 1 ≤ j ≤ k, vi,j is a suffix of wj ,

• s0 = (w1, . . . , wk) and sm = (ε, ε, . . . , ε),

• for each i, 0 ≤ i ≤ m − 1, there exists a ji, 1 ≤ ji ≤ k, and a bi ∈ Σ such that
vi,ji = bi · vi+1,ji and vi,j′ = vi+1,j′, j

′ 6= ji.

The shuffle word w = b0 · b1 · · · bm−1 is said to correspond to s. In a step from si
to si+1, 0 ≤ i ≤ m− 1, of s, we say that the symbol bi+1 is consumed.

To illustrate the definition of construction sequences, we consider an example
construction sequence s := (s0, s1, . . . , s9) corresponding to a shuffle word of the
words w1 := abacbc and w2 := abc:

s := ((abacbc, abc), (bacbc, abc), (bacbc, bc), (bacbc, c),

(acbc, c), (acbc, ε), (cbc, ε), (bc, ε), (c, ε), (ε, ε)) .

The shuffle word corresponding to s is w := aabbcacbc, and it is easy to see that
scd(w) = 2.

In the next definition, we introduce a certain property of construction sequences
that can be easily described in an informal way. Recall that in an arbitrary step
from si to si+1 of a construction sequence s, exactly one symbol b is consumed.
Hence, at each position si = (v1, . . . , vk) of a construction sequence, we have a part
u of already consumed symbols, which is actually a prefix of the shuffle word we
are about to construct and some suffixes v1, . . . , vk that remain to be consumed. A
symbol b that is consumed can be an old symbol that already occurs in the part
u or it can be a new symbol that is consumed for the first time. Now the special
property to be introduced next is that this consumption of symbols is greedy with
respect to old symbols: Whenever a new symbol b is consumed in a step from si to
si+1 = (v1, . . . , vk), we require the construction sequence to first consume as many
old symbols as possible from the remaining v1, . . . , vk before another new symbol
is consumed. For the sake of uniqueness, this greedy consumption of old symbols
shall be defined in a canonical order, i. e. we first consume all the old symbols
from v1, then all the old symbols from v2 and so on. However, this consumption
is canonical only with respect to old symbols. Thus, there are still several possible
greedy construction sequences for some input words wi, 1 ≤ i ≤ k, since whenever
a new symbol is consumed, we have a choice of k possible suffixes to take this
symbol from. We formally define this greedy property of construction sequences.

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

Finding Shuffle Words that represent optimal Scheduling of Shared Memory Access 11

Definition 5.2 Let w ∈ w1 w2 . . . wk, wi ∈ Σ∗, 1 ≤ i ≤ k, and let
s := (s0, s1, . . . , s|w|) with si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ |w|, be an arbitrary
construction sequence for w. An element si, 1 ≤ i ≤ |w| − 1, of s satisfies the
greedy property if and only if w[i] /∈ alph(w[1, i − 1]) implies that for each j,
1 ≤ j ≤ k, si+|u1···uj | = (vi,1, . . . , vi,j , vi,j+1, . . . , vi,k), where vi,j = uj · vi,j and uj
is the longest prefix of vi,j such that alph(uj) ⊆ alph(w[1, i]).

A construction sequence s := (s0, s1, . . . , s|w|) for some w ∈ Σ∗ is a greedy
construction sequence if and only if, for each i, 1 ≤ i ≤ |w| − 1, si satisfies the
greedy property. A shuffle word w that corresponds to a greedy construction sequence
is a greedy shuffle word.

As an example, we again consider the words w1 = abacbc and w2 = abc. This
time, we present a greedy construction sequence s := (s0, s1, . . . , s9) for w1 and w2:

s := ((abacbc, abc), (bacbc, abc), (bacbc, bc), (bacbc, c),

(acbc, c), (cbc, c), (cbc, ε), (bc, ε), (c, ε), (ε, ε)) .

Obviously, the shuffle word w := aabbaccbc corresponds to the construction se-
quence s and scd(w) = 1. To show that s is a greedy construction sequence, it is suf-
ficient to observe that s1, s3 and s6 (the elements where a new symbol is consumed)
satisfy the greedy property. We only show that s3 satisfies the greedy property as
s1 and s6 can be handled analogously. First, we recall that s3 = (bacbc, c) and
note that, in terms of Definition 5.2, we have u1 := ba, v3,1 := cbc, u2 := ε and
v3,2 := c. By definition, s3 only satisfies the greedy property if s3+|u1| = (v3,1, v3,2)
and s3+|u1·u2| = (v3,1, v3,2). Since |u1| = |u1 · u2| = 2, v3,1 = cbc, v3,2 = v3,2 = c
and s5 = (cbc, c), this clearly holds.

In the next definition, an algorithm shall be presented that converts an arbitrary
construction sequence into a greedy one. In order to illustrate how this can be
done, we define s := (s0, s1, . . . , sm) to be an arbitrary construction sequence that
is not a greedy construction sequence. Thus, there exists an element si that does
not satisfy the greedy property and, without loss of generality, we assume that si is
the leftmost such element. Now our algorithm simply redefines all the elements sj ,
i+1 ≤ j ≤ m, in such a way that si satisfies the greedy property (and the resulting
sequence is still a construction sequence). By applying this algorithm iteratively,
we can obtain a greedy construction sequence.

Definition 5.3 We define an algorithm G that transforms a construction se-
quence. Let s := (s0, s1, . . . , sm) with si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m, be an
arbitrary construction sequence that corresponds to a shuffle word w. In the case
that s is a greedy construction sequence, we define G(s) := s. If s is not a greedy
construction sequence, then let p, 1 ≤ p ≤ m, be the smallest number such that
sp does not satisfy the greedy property. Furthermore, for each j, 1 ≤ j ≤ k, let uj
be the longest prefix of vp,j with alph(uj) ⊆ alph(w[1, p]) and let vp,j = uj · vp,j.
For each j, 1 ≤ j ≤ k, let σj : Σ∗ → Σ∗ be a mapping defined by σj(x) := vp,j
if |x| > |vp,j | and σj(x) := x otherwise, for each x ∈ Σ∗. Furthermore, let the
mapping σ : (Σ∗)k → (Σ∗)k be defined by σ((v1, . . . , vk)) := (σ1(v1), . . . , σk(vk)),
vj ∈ Σ∗, 1 ≤ j ≤ k. Finally, we define G(s) := (s′0, s

′
1, . . . , s

′
m′), where the elements

s′i, 0 ≤ i ≤ m′, are defined by the following procedure.

1: s′i := si, 0 ≤ i ≤ p
2: for all j, 1 ≤ j ≤ k, do
3: s′p+|u1···uj | := (vp,1, . . . , vp,j , vp,j+1, . . . , vp,k)

4: for all lj, 2 ≤ lj ≤ |uj |, do
5: sp+|u1···uj−1|+lj−1 := (vp,1, . . . , vp,j−1, uj [lj ,−] · vp,j , vp,j+1, . . . , vp,k)

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

12 Daniel Reidenbach and Markus L. Schmid

6: end for
7: end for
8: q′ ← p+ 1
9: q′′ ← p+ |u1 · · ·uk|+ 1

10: while q′ ≤ m do
11: if σ(sq′−1) 6= σ(sq′) then
12: s′q′′ := σ(sq′)
13: q′′ ← q′′ + 1
14: end if
15: q′ ← q′ + 1
16: end while

As mentioned above, we explain the previous definition in an informal way and
shall later consider an example. Let s := (s0, s1, . . . , sm) be an arbitrary construc-
tion sequence and let p and the uj , 1 ≤ j ≤ k, be defined as in Definition 5.3.
The sequence s′ := (s′0, s

′
1, . . . , s

′
m′) := G(s) is obtained from s in the following

way. We keep the first p elements and then redefine the next |u1 · · ·uk| elements
in such a way that s′p satisfies the greedy property as described by Definition 5.2.
This is done in lines 1 to 9 of the algorithm. Then, in order to build the rest of
s′, we modify the elements si, p + 1 ≤ i ≤ m. First, for each component vi,j ,
p+ 1 ≤ i ≤ m, 1 ≤ j ≤ k, if |vp,j | < |vi,j | we know that vi,j = uj · vp,j , where uj is
a suffix of uj . In s′, this part uj has already been consumed by the new elements
s′i, p + 1 ≤ i ≤ p + |u1 · · ·uk|, and is, thus, simply cut off and discarded by the
mapping σ in Definition 5.3. More precisely, if a component vi,j , p + 1 ≤ i ≤ m,
1 ≤ j ≤ k, of an element si is longer than vp,j , then σj(vi,j) = vi,j . If on the
other hand |vi,j | ≤ |vp,j |, then σ(vi,j) = vi,j . This is done in lines 10 to 16 of the
algorithm.

The following proposition shows that G(s) actually satisfies the conditions to be
a proper construction sequence:

Proposition 5.4 For each construction sequence s of some words w1, . . . , wk,
G(s) is also a construction sequence of the words w1, . . . , wk.

Proof Let s := (s0, s1, . . . , sm) and s′ := (s′0, s
′
1, . . . , s

′
m′) := G(s), where si :=

(vi,1, . . . , vi,k), 0 ≤ i ≤ m, s′i′ := (v′i′,1, . . . , v
′
i′,k), 0 ≤ i′ ≤ m′. We assume that s is

not greedy, as otherwise G(s) = s and the statement of the proposition trivially
holds. Hence, let p, 1 ≤ p ≤ m, be the smallest number such that sp does not
satisfy the greedy property. In order to show that s′ is a construction sequence, we
need to show that the following conditions hold:

(1) s′0 = (w1, w2, . . . , wk).
(2) s′m′ = (ε, ε, . . . , ε).
(3) For each i, 0 ≤ i ≤ m′ − 1, there exists a ji, 1 ≤ ji ≤ k, and a bi ∈ Σ, such

that v′i,ji = bi · v′i+1,ji
and v′i,j′ = v′i+1,j′ , j

′ 6= ji.

Condition 1 is clearly satisfied as s′0 = s0 = (w1, . . . , wk). We note that it is
sufficient to prove that condition 3 is satisfied, as this implies condition 2 and,
furthermore, m = m′. For each i, 0 ≤ i ≤ p+ |u1 · · ·uk| − 1, condition 3 is clearly
satisfied. To show the same for each i, p + |u1 · · ·uk| ≤ i ≤ m′, we consider the
mapping σ from Definition 5.3. This mapping is defined in a way that, for an
arbitrary si = (vi,1, . . . , vi,k), σ(si) = (ṽi,1, . . . , ṽi,k), with, for each j, 1 ≤ j ≤ k,
either ṽi,j = vi,j , if |vi,j | ≤ |vp,j | or ṽi,j = vp,j , if |vi,j | > |vp,j |, where vp,j is defined
as in Definition 5.3. Consequently, for each i, p + 1 ≤ i ≤ m, we have either
σ(si−1) = σ(si) or σ(si−1) = (ṽi,1, . . . , ṽi,j−1, b · ṽi,j , ṽi,j+1, . . . , ṽi,k) and σ(si) =
(ṽi,1, . . . , ṽi,k), for some j, 1 ≤ j ≤ k. In lines 10 to 16 of the algorithm, we

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

Finding Shuffle Words that represent optimal Scheduling of Shared Memory Access 13

ignore the σ(si) with σ(si) = σ(si−1) and only keep σ(si) in the sequence s′ if
σ(si) 6= σ(si−1). Hence, condition 1 holds for all i, 0 ≤ i ≤ m− 1, and, moreover,
this implies m′ = m. �

Now, as an example for Definition 5.3, we consider the construction sequence

s := ((abacbc, abc), (bacbc, abc), (bacbc, bc), (bacbc, c),

(acbc, c), (acbc, ε), (cbc, ε), (bc, ε), (c, ε), (ε, ε))

of the words w1 = abacbc and w2 = abc, as given below Definition 5.1. The
shuffle word that corresponds to this construction sequence is w := aabbcacbc.
We now illustrate how the construction sequence s′ := (s′0, s

′
1, . . . , s

′
m) := G(s) is

constructed by the algorithm G. First, we note that s3 = (bacbc, c) is the first
element that does not satisfy the greedy property, since in the step from s4 to
s5, the symbol c is consumed before the leftmost (and old) symbol a from v4,1 is
consumed. Thus, s′i = si, 1 ≤ i ≤ 3. As w[1, 3] = aab, we conclude that u1 := ba
and u2 := ε. So the next two elements s′4 and s′5 consume the factor u1 from bacbc,
hence, s′4 = (acbc, c) and s′5 = (cbc, c). Now let σ be defined as in Definition 5.3,
thus,

σ(s3) = (cbc, c), σ(s4) = (cbc, c), σ(s5) = (cbc, ε),

σ(s6) = (cbc, ε), σ(s7) = (bc, ε), σ(s8) = (c, ε), σ(s9) = (ε, ε) .

Since σ(s3) = σ(s4) and σ(s5) = σ(s6), we ignore σ(s4) and σ(s6); hence,

s′6 = σ(s5) = (cbc, ε), s′7 = σ(s7) = (bc, ε),

s′8 = σ(s8) = (c, ε), s′9 = σ(s9) = (ε, ε) .

In conclusion,

s′ = ((abacbc, abc), (bacbc, abc), (bacbc, bc), (bacbc, c),

(acbc, c), (cbc, c), (cbc, ε), (bc, ε), (c, ε), (ε, ε)) .

As claimed above, the algorithm presented in Definition 5.3 can be used in order
to transform a construction sequence into a greedy construction sequence. In the
following proposition, we formally prove this by showing that if in a construction
sequence s := (s0, s1, . . . , sm) an element sp is the first element that does not satisfy
the greedy property, then in G(s) := (s′0, s

′
1, . . . , s

′
m) the element s′p satisfies the

greedy property.

Proposition 5.5 Let s := (s0, s1, . . . , sm) be any construction sequence that is
not greedy, and let p, 0 ≤ p ≤ m, be the smallest number such that sp does not
satisfy the greedy property. Let s′ := (s′0, s

′
1, . . . , s

′
m) := G(s) and, if s′ is not greedy,

let q, 0 ≤ q ≤ m, be the smallest number such that s′q does not satisfy the greedy
property. Then p < q.

Proof Let si := (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m. We assume that s′ is not greedy
and note that, by Definition 5.3, s′i = si, 1 ≤ i ≤ p. Hence, all the elements s′i,
1 ≤ i ≤ p − 1, satisfy the greedy property. To prove p < q it is sufficient to show
that s′p satisfies the greedy property.

Since w[1, p] = w′[1, p], we can conclude that w′[p] /∈ alph(w′[1, p− 1]). Further-
more, line 5 of the algorithm given in Definition 5.3 makes sure that, for every j,

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

14 Daniel Reidenbach and Markus L. Schmid

1 ≤ j ≤ k,

s′p+|u1···uj | = (vp,1, . . . , vp,j , vp,j+1, . . . , vp,k) ,

where the vp,j are defined as in Definition 5.3. Consequently, s′p satisfies the greedy
property, and therefore p < q. �

This directly implies that, by iteratively applying the algorithm presented in
Definition 5.3, any construction sequence can be turned into a greedy one. More
importantly, these repeated applications of the algorithm on the construction se-
quence do not increase the scope coincide degree of the corresponding shuffle words:

Lemma 5.6 Let s be an arbitrary construction sequence that corresponds to the
shuffle word w and let w′ be the shuffle word corresponding to G(s). Then scd(w′) ≤
scd(w).

Proof Let s := (s0, s1, . . . , sm), s′ := G(s) := (s′0, s
′
1, . . . , s

′
m) and, for each i,

0 ≤ i ≤ m, si := (vi,1, vi,2, . . . , vi,k), s
′
i := (v′i,1, v

′
i,2, . . . , v

′
i,k). In this proof we shall

use a special terminology: If for some i, i′ with 1 ≤ i < i′ ≤ m, vi,j := ui,j · vi′,j ,
1 ≤ j ≤ k, then we say that the ui,j , 1 ≤ j ≤ k, are consumed from the vi,j ,
1 ≤ j ≤ k, by the part si, si+1, . . . , si′ .

If s is a greedy construction sequence, then G(s) = s and we are done. Therefore,
we assume that s is not a greedy construction sequence and let p, 0 ≤ p ≤ m, be
the smallest number such that sp does not satisfy the greedy property. For each
vp,j , 1 ≤ j ≤ k, we define vp,j = uj · vp,j , where uj is the longest prefix of vp,j with
alph(uj) ⊆ alph(w[1, p]).

To prove scd(w′) ≤ scd(w), we have to consider two possible cases. The first case
is that alph(w[p + 1,−]) ⊆ alph(w[1, p]), i. e. w[p] is the last new symbol that is
consumed in s; thus vp,j = ε, 1 ≤ j ≤ k. The second case is that this property
is not satisfied, so there exists a c ∈ Σ, such that w[p + 1,−] = α · c · β with
c /∈ alph(w[1, p+ |α|]). In other words, c is the next new symbol that is consumed
in s after b is consumed in the step from sp−1 to sp.

We start with the latter case and note that we can write w as follows:

w = α1 · b · α2 · c · β ,

where |α1| = p − 1, c /∈ alph(α1 · b · α2) and alph(α2) ⊆ alph(α1 · b). Before we
continue, we explain the main idea of the proof. By definition of the transformation
G, we know that the shuffle word w′ begins with the same prefix as w, i e. w′ =
α1 · b · δ, but the suffix δ may differ from α2 · c · β. In the following we show that
the suffix α2 · c · β from w can be gradually transformed into δ without increasing
the scope coincidence degree of w.

Next, we take a closer look at w and notice that α2 exclusively consists of symbols
from the prefixes uj , 1 ≤ j ≤ k. That is due to the fact that alph(α2) ⊆ alph(α1 ·b)
and, for each j, 1 ≤ j ≤ k, uj is the longest prefix of vp,j with alph(uj) ⊆ alph(α1·b).
Consequently, we can consider the prefixes uj , 1 ≤ j ≤ k, as being factorised into
uj = ũj · ûj such that

sp+|α2| = (û1 · vp,1, û2 · vp,2, . . . , ûk · vp,k) .

In other words, as sp = (ũ1 ·û1 ·vp,1, . . . , ũk ·ûk ·vp,k), exactly the prefixes ũj are con-
sumed by the part sp, sp+1, . . . , sp+|α2| of s, and, hence, α2 ∈ ũ1 ũ2 . . . ũk.
Moreover, the suffix c · β exclusively consists of symbols consumed in steps from
si to si+1, p+ |α2| ≤ i ≤ m− 1. Thus, c · β ∈ û1 · vp,1 û2 · vp,2 . . . ûk · vp,k.

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

Finding Shuffle Words that represent optimal Scheduling of Shared Memory Access 15

Now let n := |û1 · û2 · · · ûk|. We can conclude that the n symbols from the factors
ûj , 1 ≤ j ≤ k, occur somewhere in c · β, and, furthermore, since c /∈ alph(ûj),
1 ≤ j ≤ k, we also know that all these n symbols occur in β. Thus we can write

β = β1 · d1 · β2 · d2 · · ·βn · dn · γ ,

where the symbols dj , 1 ≤ j ≤ n, are exactly the symbols consumed from the ûj ,
1 ≤ j ≤ k, i. e., for each i ∈ {|α1 ·b ·α2 ·c ·β1 ·d1 · · ·βi′ | | 1 ≤ i′ ≤ n} there exists a ji,
1 ≤ ji ≤ k, such that vi,ji = di · vi+1,ji and vi,j′ = vi+1,j′ , j

′ 6= ji, and, furthermore,
|vi+1,ji | ≥ |vp,ji |. This means, in particular, that d1 ·d2 · · · dn ∈ û1 û2 . . . ûk
and c · β1 · β2 · · ·βn · γ ∈ vp,1 vp,2 . . . vp,k, and therefore,

α2 · d1 · d2 · · · dn ∈ ũ1 · û1 ũ2 · û2 . . . ũk · ûk = u1 u2 . . . uk .

On the other hand, by Definition 5.3, we know that s′ is constructed such that
the prefixes uj , 1 ≤ j ≤ k, are consumed by s′p, s

′
p+1, . . . , s

′
|u1·u2···uk| in a canonical

way, i. e. we can write w′ as

w′ = α1 · b · u1 · u2 · · ·uk · c′ · β′ .

Since, for each j, 1 ≤ j ≤ k, uj is the longest prefix of vp,j with alph(uj) ⊆ alph(α1 ·
b), we know that c′ /∈ alph(α1 ·b ·u1 · · ·uk). In the following, we show that c′ = c. To
this end, we recall that sp+|α2| = (û1·vp,1, . . . , ûk ·vp,k) and the symbol c is consumed
in the step from sp+|α2| to sp+|α2|+1. More precisely, for some j′, 1 ≤ j′ ≤ k, ûj′ = ε,
vp,j′ [1] = c and vp+|α2|+1,j′ = vp,j′ [2,−]. Since |ûj · vp,j | ≥ |vp,j |, 1 ≤ j ≤ k, we
can conclude that σ(sp+|α2|) = (vp,1, . . . , vp,k) and, for the same reason, σ(si) =
(vp,1, . . . , vp,k), for each i, p ≤ i ≤ p + |α2|. Hence, σ(si−1) = σ(si), p + 1 ≤ i ≤
p+ |α2|, and σ(sp+|α2|) 6= σ(sp+|α|+1). By recalling lines 10 to 16 of Definition 5.3,
we can observe that this implies s′p+|u1···uk| = (vp,1, . . . , vp,k) and, furthermore,

s′p+|u1···uk|+1 = σ(sp+|α2|+1) = (vp,1, . . . , vp,j′−1, vp,j′ [2,−], vp,j′+1, . . . , vp,k), where

vp,j′ [1] = c. This directly implies w′[p+ |u1 · · ·uk|+ 1] = c and thus, c = c′.
Next, we show that β′ = β1 ·β2 · · ·βn ·γ. We already know that β1 ·β2 · · ·βn ·γ ∈

vp,1 vp,2 . . . vp,k and clearly β′ ∈ vp,1 vp,2 . . . vp,k, too. Now we
recall that β = β1 · d1 · β2 · d2 · · ·βn · dn · γ is constructed by the part t :=
(sp+|α2|+1, sp+|α2|+2, . . . , sm) of the construction sequence s and β′ is constructed
by t′ := (s′p+|u1···uk|+1, s

′
p+|u1···uk|+2, . . . , s

′
m). By Definition 5.3, t′ is the same as

(σ(sp+|α2|+1), σ(sp+|α2|+2), . . . , σ(sm)) with the only difference, that duplicate ele-
ments have been removed. These duplicate elements are exactly the elements that
consume the symbols di, 1 ≤ i ≤ n, and therefore, we can conclude that t and t′

construct the same shuffle word.
We consider now the scope coincidence degree of w. Obviously,

scd(w) = scd(α1 · b · α2 · c · β) = scd(α1 · b · α2 · c · β1 · d1 · · ·βn · dn · γ) .

Next, we recall that di ∈ alph(α1 · b · α2), 1 ≤ i ≤ n, and therefore, by applying
Lemma 4.4, we can move all the symbols di, 1 ≤ i ≤ n, to the left, directly next to
symbol c, without increasing the scope coincidence degree, i. e.

scd(α1 · b · α2 · c · β1 · d1 · · ·βn · dn · γ) ≥ scd(α1 · b · α2 · d1 · · · dn · c · β1 · · ·βn · γ) .

Now we recall that α2 · d1 · · · dn ∈ u1 . . . uk, and, thus, is actually a per-
mutation of u1 · · ·uk. Moreover, by definition, for each j, 1 ≤ j ≤ k, alph(uj) ⊆

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

16 Daniel Reidenbach and Markus L. Schmid

alph(α1 ·b). Consequently, by Lemma 4.2, we can substitute u1 · · ·uk for α2 ·d1 · · · dn
without changing the scope coincidence degree and, furthermore, we can substitute
β′ for β1 · β2 · · ·βn · γ:

scd(α1 · b · α2 · d1 · · · dn · c · β1 · · ·βn · γ) = scd(α1 · b · u1 · · ·uk · c · β′) = scd(w′) .

Hence, scd(w′) ≤ scd(w).
It remains to prove scd(w′) ≤ scd(w) for the case that alph(w[p + 1,−]) ⊆

alph(w[1, p]). In this case, the situation is not as difficult as before. We can write
w′ as

w′ = α1 · b · u1 · · ·uk .

Furthermore, alph(w[p+ 1,−]) ⊆ alph(w[1, p]) implies sp = (u1, u2, . . . , uk); thus,

w = α1 · b · α2 ,

where α2 is a permutation of u1 · · ·uk. As alph(α2) = alph(u1 · · ·uk) ⊆ alph(α1 ·b),
we can apply Lemma 4.2 and conclude scd(w′) = scd(w). �

This lemma now enables us to prove our main result, which can be stated as
follows. Every construction sequence can be transformed into a greedy construction
sequence in such a way that the scope coincidence degree of the corresponding
shuffle words does not increase. Since this also applies to the construction sequences
corresponding to shuffle words with minimum scope coincidence degree, we can
conclude that there necessarily exists a greedy shuffle word with minimum scope
coincidence degree. Consequently, SWminSCDΣ can be solved by investigating only
the greedy shuffle words.

Theorem 5.7 Let w ∈ w1 . . . wk, wi ∈ Σ∗, 1 ≤ i ≤ k, be an arbitrary shuffle
word. There exists a greedy shuffle word w′ such that scd(w′) ≤ scd(w).

Proof Let s be an arbitrary construction sequence of w. We define s′ := G|Σ|(s),
where Gk(s) is the k-fold application of the mapping G on s, i. e. Gk(s) =
G(G(. . . G(s)) . . .). Obviously, in w there exist |Σ| positions i, 1 ≤ i ≤ |w|, such
that w[i] /∈ alph(w[1, i − 1]). Thus, in s there exist at most |Σ| elements si,
1 ≤ i ≤ |w|, that do not satisfy the greedy property. Therefore, by Proposition 5.5,
we conclude that s′ is a greedy construction sequence and Lemma 5.6 implies that
scd(w′) ≤ scd(w), where w′ is the shuffle word corresponding to s′. �

We now present an algorithm – referred to as SolveSWminSCD – that applies
the above established way to construct greedy shuffle words and enumerates all
possible greedy shuffle words in order to solve SWminSCDΣ.

As a central data structure in our algorithm, we use a stack that is able to store
tuples of the form (w, (v1, v2, . . . , vk)), where w, vi ∈ Σ∗, 1 ≤ i ≤ k. In the fol-
lowing, all push or pop operations refer to this stack. Initially, the stack stores
(ε, (w1, w2, . . . , wk)) (line 1), where (w1, w2, . . . , wk) is the input of the algorithm.
We shall see that throughout the whole execution of the algorithm, the stack ex-
clusively stores elements (w, (v1, v2, . . . , vk)), where, for each i, 1 ≤ i ≤ k, either
vi[1] /∈ alph(w) or vi = ε. For the initial element (ε, (w1, w2, . . . , wk)), this prop-
erty is clearly satisfied. In the main part of the algorithm, we first pop an element
(w, (v1, v2, . . . , vk)) (line 3) and then, for each i, 1 ≤ i ≤ k, with vi 6= ε, we carry
out the following steps (lines 7 to 12). First we append b := vi[1] to the end of w,
i. e. w := w ·b and vi := vi[2,−] (lines 8 and 9), then, for each j, 1 ≤ j ≤ k, we com-
pute the longest prefix uj of vj , such that alph(uj) ∈ alph(w · vi[1]) (line 11). After

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

Finding Shuffle Words that represent optimal Scheduling of Shared Memory Access 17

Algorithm 1 SolveSWminSCD

1: optShuffle := ε, minscd := |Σ|, push (ε, (w1, . . . , wk))
2: while the stack is not empty do
3: Pop element (w, (v1, . . . , vk))
4: if |v1 · v2 · · · vk| = 0 and scd(w) < minscd then
5: optShuffle := w
6: minscd := scd(w)
7: else
8: for all i, 1 ≤ i ≤ k, with vi 6= ε do
9: b := vi[1]

10: vi := vi[2,−]
11: Let uj , 1 ≤ j ≤ k, be the longest prefix of vj with alph(uj) ⊆ alph(w · b)
12: Push (w ·b·u1 ·u2 · · ·uk, (v1[|u1|+1,−], v2[|u2]+1,−], . . . , vk[|uk|+1,−]))
13: end for
14: end if
15: end while
16: Output optShuffle

that, we append all these factors uj , 1 ≤ j ≤ k, to w, i. e. w := w ·u1 ·u2 · · ·uk and
vj := vj [|uj | + 1,−]. Finally, (w, (v1, v2, . . . , vk)) is pushed on the stack (line 12).
When this is done for each i, 1 ≤ i ≤ k, with vi 6= ε, we pop another element and
repeat these steps. Sooner or later, we necessarily pop a tuple (w, (ε, ε, . . . , ε)) and
according to how the algorithm constructs the new elements that are pushed on the
stack, we can conclude that w is a greedy shuffle word of the words w1, w2, . . . , wk.
Thus, we compute scd(w) and save both w and scd(w) in case that scd(w) is smaller
than our current minimum (lines 5 and 6). The algorithm terminates as soon as
the stack is completely empty.

The next proposition states that the number scd(w), which is required in lines 4
and 6 of the algorithm SolveSWminSCD, can be computed efficiently:

Proposition 5.8 Let w ∈ Σ be arbitrarily chosen. Then the number scd(w) can
be computed in time O(|w| × |Σ|).

Proof We illustrate a procedure that computes scd(w). First of all, we move over
the word w from left to right, determining the scopes of the symbols in alph(w) :=
{b1, b2, . . . , bm}, i. e. for each bi, 1 ≤ i ≤ m, we obtain (li, ri) := scw(bi). Then we
initialise |w| counters c1 := 0, c2 := 0, . . . , c|w| := 0, and, for each i, 1 ≤ i ≤ m, j,
li < j < ri, we increment cj if w[j] 6= bi. Finally, scd(w) = max{ci | 1 ≤ i ≤ n}. �

It remains to establish the time complexity of algorithm SolveSWminSCD and
to prove its correctness.

Theorem 5.9 On an arbitrary input (w1, w2, . . . , wk) ∈ (Σ∗)k, the algo-
rithm SolveSWminSCD computes its output w ∈ w1 w2 . . . wk in time
O(|w1 · · ·wk| × |Σ| × k|Σ|), and there exists no word w′ ∈ w1 w2 . . . wk
with scd(w′) < scd(w).

Proof We shall first prove the correctness of the algorithm SolveSWminSCD, i. e.,
SolveSWminSCD computes a shuffle word with minimum scope coincidence degree,
and then we take a closer look at its runtime.

By definition of the algorithm SolveSWminSCD, it is obvious that the output
is a greedy shuffle word of the input words w1, w2, . . . , wk. From Theorem 5.7, we
can derive that, in order to prove that w is a shuffle word with minimum scope
coincidence degree, it is sufficient to show that the algorithm SolveSWminSCD
considers all possible greedy shuffle words and therefore outputs a greedy shuffle

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

18 Daniel Reidenbach and Markus L. Schmid

word with minimum scope coincidence degree. To this end, let s := (s0, s1, . . . , sm)
be an arbitrary greedy construction sequence that corresponds to the shuffle word
w ∈ w1 w2 . . . wk. We can factorise w into w = b1 · α1 · b2 · α2 · · · b|Σ| · α|Σ|,
where, for each i, 2 ≤ i ≤ |Σ|, bi /∈ alph(b1 · α1 · b2 · α2 · · · bi−1 · αi−1). Let, for each
i, 1 ≤ i ≤ |Σ|, pi := |b1 · α1 · · · bi−1 · αi−1|. We observe, furthermore, that in the
construction sequence s, for each i, 1 ≤ i ≤ |Σ|, we can associate the element spi
with the symbol bi at position |b1 · α1 · · · bi−1 · αi−1| + 1 in w, as the symbol bi is
consumed in the step from spi to spi+1. More precisely, for each i, 1 ≤ i ≤ |Σ|, there
exists a qi, 1 ≤ qi ≤ k, such that spi = (vpi,1, . . . , vpi,k), where vpi,qi = bi · vpi+1,qi .
Moreover, since s is a greedy construction sequence, we know that for each j,
1 ≤ j ≤ k, either vpi,j [1] /∈ alph(b1 · α1 · · · bi−1 · αi−1) or vpi,j = ε. Consequently,
by definition of the algorithm and since s is a greedy construction sequence, we
can conclude that, for each i, 1 ≤ i ≤ |Σ| − 1, if we pop the tuple (b1 · α1 · · · bi−1 ·
αi−1, (vpi,1, . . . , vpi,k)) from the stack in line 3, then in iteration qi of the loop in
lines 7 to 12, we push the element (b1 ·α1 · · · bi ·αi, (vpi+1,1, . . . , vpi+1,k)) on the stack.
Moreover, if we pop the tuple (b1 ·α1 · · · b|Σ|−1 ·α|Σ|−1, (vp|Σ|−1,1, . . . , vp|Σ|−1,k)) in line
3, then the tuple (b1 ·α1 · · · b|Σ| ·α|Σ|, (ε, ε, . . . , ε)) is pushed on the stack in iteration
q|Σ| of the loop in lines 7 to 12. As (ε, (vp1,1, . . . , vp1,k)) = (ε, (w1, . . . , wk)) and
(ε, (w1, . . . , wk)) is pushed on the stack in line 1, we can conclude that all the tuples
(b1·α1 · · · bi−1·αi−1, (vpi,1, . . . , vpi,k)), 1 ≤ i ≤ |Σ|, are pushed on the stack and thus,
also popped from it, at some point of the execution of the algorithm. As shown
above, this implies that in particular the tuple (b1 · α1 · · · b|Σ| · α|Σ|, (ε, ε, . . . , ε)) =
(w, (ε, ε, . . . , ε)) is popped from the stack.

Since w has been arbitrarily chosen, we can conclude that each possible
greedy shuffle word of the words w1, w2, . . . , wk is considered by the algorithm
SolveSWminSCD. Thus, SolveSWminSCD computes a shuffle word with minimum
scope coincidence degree.

Next, we consider the runtime of SolveSWminSCD. First, we determine the
total number of elements that are pushed on the stack during the execution of
algorithm SolveSWminSCD. To this end, we note that if we pop an element
(w, (v1, v2, . . . , vk)) from the stack in line 3, then in lines 7 to 12 we push at
most k elements (w′, (v′1, v

′
2, . . . , v

′
k)) on the stack and, furthermore, | alph(w′)| =

| alph(w)| + 1. Hence, we cannot push more than k|Σ| elements on the stack. We
conclude the proof by estimating the time complexity caused by a single stack el-
ement (w, (v1, v2, . . . , vk)). The lines 8 to 13 as well as line 3 can each be executed
in time O(|w · v1 · · · vk|). In lines 4 and 6, we have to know the number scd(w),
which, by Proposition 5.8, can be computed in time O(|w| × |Σ|). Hence, for each
element that is pushed on the stack at some point of the algorithm, we require time
O(|w · v1 · · · vk| × |Σ|) = O(|w1 · w2 · · ·wk| × |Σ|). Since, as explained initially, at
most k|Σ| elements are pushed on the stack, we can conclude that the total runtime
of the algorithm SolveSWminSCD is O(|w1 · · ·wk| × |Σ| × k|Σ|). �

In Section 3.1, it is shown how SWminSCDΣ can be solved on scope reduced
words, i. e., we first delete all the occurrences of symbols in the input words that
are neither leftmost nor rightmost occurrences, we solve SWminSCDΣ for these
reduced input words and then, as described in the proof of Lemma 3.4, we reinsert
the deleted symbols in an appropriate way in order to obtain a shuffle word of the
original input words. Taking these considerations into account, we can prove the
following result about the time complexity of SWminSCDΣ:

Theorem 5.10 The problem SWminSCDΣ on an arbitrary input
(w1, w2, . . . , wk) ∈ (Σ∗)k can be solved in time O(|Σ|2 × k|Σ|+1).

Proof We observe that we can solve the problem SWminSCDΣ on an arbi-

August 22, 2013 14:18 International Journal of Computer Mathematics Reiden-
bach˙Schmid˙IJCM˙2011

REFERENCES 19

trary input w1, w2, . . . , wk in the following way. First, we use the algorithm
SolveSWminSCD to compute a w′ ∈ sr(w1) sr(w2) . . . sr(wk) with
minimum scope coincidence degree. After that, from w′, we obtain a w ∈
w1 w2 . . . wk with scd(w) = scd(w′) by inserting the symbols into w′ that
have been removed in order to scope reduce the words w1, w2, . . . , wk. By the proof
of Lemma 3.4, it is obvious that both, scope reducing the input words and obtaining
w from w′ by inserting the removed symbols, can be done in time O(|w1 ·w2 · · ·wk|).
Since | sr(w1) · sr(w2) · · · sr(wk)| = O(2|Σ|k), we can conclude that, in case that the
input words are scope reduced, the runtime of SolveSWminSCD is O(|Σ|2×k|Σ|+1).
Hence, with the assumption that |w1 · w2 · · ·wk| = O(|Σ|2 × k|Σ|+1), we conclude
that SWminSCDΣ can be solved in time O(|Σ|2 × k|Σ|+1). �

6. Conclusion

In this paper, we have introduced and investigated the problem SWminSCDΣ, i. e.,
the problem of computing a shuffle word for given input words over the alphabet
Σ that is optimal with respect to the scope coincidence degree. We have presented
an algorithm solving SWminSCDΣ, which makes use of the fact that there neces-
sarily exists a shuffle word with a minimum scope coincidence degree that can be
constructed in a canonical way. Consequently, we obtain an upper bound for the
time complexity of this problem, which is dominated by the number of input words
and the alphabet size; the length of the input words, on the other hand, is not a
crucial factor. Since we have assumed the alphabet to be a constant, the problem
is solvable in polynomial time, but the complexity of the problem remains open
for the general case, i. e., if the alphabet is considered part of the input (we de-
note this problem by SWminSCD). We further note that in case that SWminSCD
is NP-complete, then our algorithm is of special interest as it demonstrates the
fixed-parameter tractability of this problem, with respect to the parameters of the
number of input words and the alphabet size.

References

[1] R.W. Conway, W.L. Maxwell, and L.W. Miller, Theory of Scheduling, Addison-Wesley Publishing
Company, Reading, Mass. (1967).

[2] P. Flajolet, D. Gardy, and L. Thimonier, Birthday paradox, coupon collectors, caching algorithms and
self-organizing search, Discrete Applied Mathematics 39 (1992), pp. 207–229.

[3] R. Graham, E. Lawler, J. Lenstra, and A. Kan, Optimization and approximation in deterministic
sequencing and scheduling: a survey, Annals of Discrete Mathematics 5 (1979), pp. 287–326.

[4] L.P. Horwitz, R.M. Karp, R.E. Miller, and S. Winograd, Index register allocation, Journal of the ACM
13 (1966), pp. 43–61.

[5] D. Maier, The complexity of some problems on subsequences and supersequences, Journal of the ACM
25 (1978), pp. 322–336.

[6] F.M.Q. Pereira, A survey on register allocation (2008), http://compilers.cs.ucla.edu/fernando/
publications/drafts/survey.pdf.

[7] D. Reidenbach and M.L. Schmid, A Polynomial Time Match Test for Large Classes of Extended
Regular Expressions, in Proc. 15th International Conference on Implementation and Application of
Automata, CIAA 2010, Lecture Notes in Computer Science, vol. 6482, 2011, pp. 241–250.

