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Abstract Contextual array grammars, with selectors not having empty cells, are
considered. A P system model, called contextual array P systems, that makes use
of array objects and contextual array rules, is introduced and its generative power
for the description of picture arrays is examined. A main result of the paper is
that there is a proper infinite hierarchy with respect to the classes of languages
described by contextual array P systems. Such a hierarchy holds as well in the
case when the selector is also endowed with the #−sensing ability.
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1 Introduction

Theoretical array grammar models [17,19,27] for the generation of digitized pic-
tures are known to constitute formal syntactic methods for dealing with prob-
lems such as character recognition, cluster analysis of patterns, and other appli-
cations [5,26,24]. Several kinds of array grammar models (for example, see [9,17,
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19,23,27] and references therein) have been proposed for generation of picture ar-
rays in the two-dimensional plane extending the techniques of string generation in
formal string language theory [20,21]. The contextual array grammars introduced
and investigated by Freund et al. [8] are an interesting array counterpart of the
string contextual grammars introduced by Marcus [13], and they have intensively
been investigated subsequently (for example, see [4,15]). In the string case, contex-
tual grammars are motivated from certain fundamental linguistic phenomena [15].
In contrast to Chomsky grammars [20] or Lindenmayer systems [20], in contextual
grammars symbols are never modified (rewritten). Instead, strings of symbols are
adjoined to the current string and the symbols once introduced remain in the fi-
nally generated string. In contextual array grammars [8], starting from an axiom
array, a production of the form (s, c) where both s and c are finite patterns, can be
applied if in the current array we can identify a subarray identical with s and if the
places corresponding to c are empty. Then in the current array, c can be adjoined
to s, thus producing a new array. In the generated language we may retain either
all the arrays produced in this way or only the arrays to which no production is
applicable (which corresponds to maximal derivations).

In the area of membrane computing, a computability model now known as P
systems was introduced by Gheorghe Păun [14,16], inspired by the structure and
the functioning of the living cells. P systems have turned out to be a rich frame-
work for dealing with several types of computing related problems. Among different
kinds of P systems, rewriting P systems, in which objects are given as finite strings
over an alphabet and the evolution rules are given as context-free rewriting rules,
have been investigated extensively [1,6,14,28]. The contextual way of handling
string objects in P systems has been considered in [12] and contextual P sys-
tems are found to be more powerful than string contextual grammars. Extending
string rewriting P systems to arrays, Ceterchi et al. [2] introduced and investi-
gated array P systems using a context-free type of isometric array productions.
Subsequently, several P system models for array generation, using either isomet-
ric or non-isometric array productions, have been considered in the literature (for
example, see [22]).

In Section 3 of this paper, we first consider contextual array grammars with
the restriction that both the selector and the context in a contextual array pro-
duction are connected but do not have empty cells labeled by the blank symbol
#. The family of picture languages generated by contextual array grammars in
the maximal mode, also called t-mode, is denoted by L(cont, t). It is natural to
introduce and examine the power of using a contextual type of rules in array
P systems. Based on the contextual style of array generation considered in Sec-
tion 3, in Section 4 we introduce a P system model with array objects and array
contextual rules of the kind considered in Section 3, and we call this a contextual
array P system. The family of all picture languages generated by such a system
with at most m membranes is denoted by APm(cont). We then illustrate this
model by generating, in the maximal mode, a picture language called “stars with
balanced arms”,within both a linear and a non-linear membrane structure. In Sec-
tion 5, we prove that L(cont, t) ⊂ AP2(cont), correcting an error in the proof
of this result in [25] in establishing the proper inclusion, and we also prove that
AP2(cont) ⊂ AP3(cont). This leads to the interesting main result of the paper on
the proper infinite hierarchy of language classes described by contextual array P
systems considered in Section 3. In fact, we prove that APk(cont) ⊂ AP3k(cont),
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by considering the picture language of “combs with teeth”. We conclude this work
by pointing out how the gap of the hierarchy can be reduced from 3k to 2k and
by observing that a corresponding infinite hierarchy can be obtained as well when
we allow the #−sensing feature in the contextual array rules in the sense that the
selector can contain the blank symbol #, which was not allowed in the definition
given in Section 3.

2 Preliminaries

We briefly recall basic notions for arrays and array contextual grammars [8]. For
notions related to formal language theory we refer to [20,21], and for array gram-
mars and two-dimensional languages we refer to [8,9].

A point in the two-dimensional digital plane ZZ2, where ZZ is the set of integers,
is called a pixel. Each pixel p is identified with the unit closed square whose center
is p and so, it is common to also name a pixel a square or a cell. Two pixels p =
(p1, p2), q = (q1, q2) ∈ ZZ2 are called neighbors (more precisely, 8-neighbors [18])
if ‖ p− q ‖max= max{|p1 − q1|, |p2 − q2|} = 1. The neighborhood relation defines
an undirected graph on ZZ2. A subset M ⊆ ZZ2 is called connected if for any two
points p, q ∈M , there is a sequence (a path in the graph) p = m1,m2, · · · ,mk = q
of points of M where any two consecutive points are neighbors. Interpreting the
digital plane as set of squares, two squares p, q are neighbors if they intersect. The
connectivity used here coincides with the well-known 8-connectivity on the two-
dimensional digital plane ZZ2 [18], and with the 1-connectivity on ZZ2 considered
in [8].

Now let V be a finite alphabet, and # a symbol not belonging to V . A two-
dimensional array is a set of pixels labeled by the symbols of V or the so-called
blank symbol #, where # indicates that the pixel is empty or unlabeled. Formally, a
two-dimensional array or a picture is a function α : ZZ2 → V ∪{#} with finite and
connected support supp(α), which is defined by supp(α) = {v ∈ ZZ2 | α(v) 6= #}.
Although an array could be given as a function defined on a proper (finite) subset
of ZZ2, it can be extended to an array defined on the whole plane ZZ2, assigning
the blank symbol # to any pixel not labeled by any symbol of V . For specifying
an array, it is therefore sufficient to specify some finite (super)set (of) supp(α)
and to give the label (element of V ) which the function α assigns to each pixel
p ∈ supp(α). The restriction of an array to its support, which is a connected finite
set of pixels labeled by elements of V , is named a picture or a two-dimensional
connected finite array.

By V +2 we denote the set of all non-empty connected finite picture arrays over
V ; the empty array is considered as the function which assigns the blank symbol
to all pixels of ZZ2. An array language or a picture language is a subset of V +2.
For example, Fig. 1 shows an array (which is a pattern) L describing the letter L
that has pixels labeled by a. Assuming that the pixel having label a in the corner
of the letter L has coordinates (0, 0) ∈ ZZ2, the array in Fig. 1 can be described
in a formal manner by giving the label α(p) ∈ V = {a} to each pixel p belonging
to the picture as follows:

L = {((0, 0), a), ((1, 0), a), ((2, 0), a), ((3, 0), a), ((4, 0), a), ((5, 0), a),

((6, 0), a), ((7, 0), a), ((0, 1), a), ((0, 2), a), ((0, 3), a), ((0, 4), a), ((0, 5), a)}
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a
a
a
a
a
a a a a a a a a

Fig. 1: An array representing the letter L

For any v ∈ ZZ2, the translation τv : ZZ2 → ZZ2, given by τv(w) = w + v for all
v ∈ ZZ2, provides a bijection between supp(α) and τv(supp(α)) for any array α.
Defining α′(τv(p)) = α(p) for any p ∈ supp(α), we obtain an array α′ which is the
translation of the array α. On the set of all arrays, the binary relation defined for
any two arrays by the fact that one array is a translation of the other one, clearly
is an equivalence relation. Arrays therefore can be regarded as equivalence classes
of arrays with respect to translations on ZZ2. Hence, only relative positions of the
symbols different from the blank symbol are essential for describing an array. In
order to keep the description simple, we refer to a member of such an equivalence
class as the array itself. We will use the usual pictorial method to denote an
array by a figure indicating only the non-blank labels of the pixels belonging to
its support, but without mentioning the coordinates of the pixels themselves. For
example, the array in Fig. 1 is shown in this manner.

Given two arrays α, β, array β is called a sub-array of α if there exists a vector
v ∈ ZZ2 such that for the translation τv we have that τv(supp(β)) ⊆ supp(α) as
well as β(τv(x)) = α(x) for all x ∈ supp(α). In other words, all labeled pixels of β
coincide with the corresponding labeled pixels of α when β is placed on α after a
suitable translation of the pattern β.

The diameter of a (finite) set of (2-dimensional) vectors U is

diam(U) := max {‖ u− v ‖| u, v ∈ U} .

The diameter of an array W , denoted by diam(W ), is the diameter of the set of
underlying position vectors.

3 Contextual Array Grammars

We now recall the definition of a contextual array grammar [8], in which we restrict
ourselves to the two-dimensional case and with the “selector” and the “context”
being connected and labeled only by symbols from an alphabet V and not by the
blank symbol #, which means the selector and the context do not have empty
pixels.

Definition 1 A contextual array grammar (CAG for short) is a construct G =
(V, P,A) where V is an alphabet, A is a finite set of two-dimensional arrays in V +2

called axioms, and P is a finite set of rules of the form (α, β), called contextual
array productions where

(i) α is a function defined on Uα ⊂ ZZ2 with values in V ;
(ii) β is a function defined on Uβ ⊂ ZZ2 with values in V ;



Contextual Array Grammars and Array P Systems 5

(iii) Uα ∩ Uβ = ∅ and Uα, Uβ are finite.

(Uα, α) is called the selector and (Uβ , β) the context of the production (α, β); Uα
is called the selector area, and Uβ is the context area.

For arrays C1, C2 ∈ V +2, intuitively, if in C1 we find a sub-array that cor-
responds to the selector (Uα, α), and if the places corresponding to (Uβ , β) are
labeled only by the blank symbol #, then we can add the context (Uβ , β), thus
deriving C2. Formally, C2 is called directly derivable from C1 by the contextual
array production p = (α, β) ∈ P (we write C1 =⇒p C2), if there exists a vector
v ∈ ZZ2 such that, again denoting by τv the translation by v, the following is true:

– C1 (w) = C2 (w) = α (τ−v (w)) for all w ∈ τv (Uα),
– C1 (w) = # for all w ∈ τv (Uβ),
– C2 (w) = β (τ−v (w)) for all w ∈ τv (Uβ),
– C1 (w) = C2 (w) for all w ∈ ZZ2 \ τv (Uα ∪ Uβ).

If there exists a contextual array production p ∈ P such that C1 =⇒p C2, then
C2 is called derivable from C1 and we write C1 =⇒G C2. By =⇒∗G we denote the
reflexive transitive closure of =⇒G and by =⇒t

G we denote the relation which, for
arbitrary arrays A,B ∈ V +2, is defined by A =⇒t

G B if and only if A =⇒∗G B and
there is no C ∈ V +2 such that B =⇒G C.

The picture array language generated by a CAG G in the t-mode is defined as
follows:

Lt (G) =
{
B ∈ V +2 | A =⇒t

G B for some A ∈ A
}
.

For a given CAG grammar G, the relation =⇒t
G corresponds to collecting

only the arrays produced by blocked derivations, namely, derivations which cannot
be continued. This derivation mode is known as the maximal mode or t-mode
(“termination-mode”) [3]. On the other hand, in the ∗-mode of derivation, all
pictures derivable from an axiom are taken in the picture language generated by
G. In this paper, we mainly consider the t-mode of derivation. The family of picture
languages generated by contextual array grammars of the form G = (V, P,A) in
the t-mode will be denoted by L (cont, t).

The diameter of a contextual array rule p is the diameter of the union of the
sets of position vectors in the selector and in the context. Alternatively, one can
say that the diameter of p is the diameter of the array obtained by the union of
the selector and the context arrays. The diameter of a (finite) set of arrays is the
maximum of the diameters of the arrays contained in the set. The diameter of
a (finite) set of contextual array rules is the maximum of the diameters of the
contextual array rules contained in the set. The diameter of a contextual array
grammar is the diameter of its rule set. For all the different versions of the notion
of a diameter, we use the denotation diam when necessary.

We illustrate the definitions given above by an example contextual array gram-
mar working in t-mode which generates the array language Lc consisting of all
pictures of solid squares of odd side lengths 2n + 1, n ≥ 1, with the label c in
its “central” pixel (the pixel in row n+ 1 and column n+ 1) and all other pixels
having label a. Fig. 2 shows such a 5× 5 solid square with c in its central pixel.

Example 1 Let G = ({a, c} , P,A) be a contextual array grammar with A con-
taining two axiom picture arrays A1, A2, which are given in pictorial form in the
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a a a a a
a a a a a
a a c a a
a a a a a
a a a a a

Fig. 2: A 5 × 5 solid square with c in its central position

following figure without mentioning the coordinates of the pixels:

A1 :=
a a a

a c a

a a a

, A2 :=

a

a a a

a c a

a a a

Since the selector area Uα and the context area Uβ are disjoint in a contextual
array production, the rules can be represented by the following patterns where the
pixels and symbols of the selector are indicated by enclosing them in boxes. In
that way, the set of rules P := {p1, p2, . . . , p8} is defined by

p1 :=
a a

a a a
, p2 :=

a a a

a a a
, p3 :=

a a

a a

a

, p4 :=
a a

a a

a a

,

p5 :=
a a a

a a
, p6 :=

a a a

a a a
, p7 :=

a

a a

a a

, p8 :=
a a

a a
.

A maximal (that is, t-mode) derivation in G generating a 4 × 4 picture array of
the language Lc is shown below:

a

a a a

a c a

a a a

=⇒p1

a a

a a a

a c a

a a a

=⇒p2

a a a a

a a a a

a c a

a a a

=⇒p3

a a a a

a a a a

a c a a

a a a

=⇒p4

a a a a

a a a a

a c a a

a a a a

a a

=⇒p5

a a a a

a a a a

a c a a

a a a a

a a a

=⇒p6

a a a a

a a a a

a c a a

a a a a a

a a a a a

=⇒p8

a a a a

a a a a

a a c a a

a a a a a

a a a a a

=⇒p7

a a a a a

a a a a a

a a c a a

a a a a a

a a a a a

.

Lemma 1 The contextual array grammar G of Example 1 describes the set of all
squares over a with an odd number of rows and columns and with the symbol c in
the central position.

Proof The 3×3 axiom array A1 belongs to the language Lc as no contextual array
production can be applied to this picture. Assume that in a derivation of G we
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have constructed an array of the form

a
a ... a ... a
...
. . .

... . .
. ...

a ... c ... a
... . .

. ...
. . .

...
a ... a ... a

.

Then we have to apply production p1 several times, production p2 once, produc-
tion p3 several times, production p4 once, production p5 several times and then
production p6 once, which yields the following array

a ... a ... a a
a ... a ... a a
...
. . .

... . .
. ...

...
a ... c ... a a
... . .

. ...
. . .

...
...

a a ... a ... a a
a a ... a ... a a

.

Now both productions p7 and p8 are applicable. However, no matter in which order
we now apply these two productions, we will necessarily construct either

a
a a ... a ... a a
a a ... a ... a a

a
...
. . .

... . .
. ...

...
a a ... c ... a a

a
... . .

. ...
. . .

...
...

a a ... a ... a a
a a ... a ... a a

or

a a ... a ... a a
a a ... a ... a a

a
...
. . .

... . .
. ...

...
a a ... c ... a a

a
... . .

. ...
. . .

...
...

a a ... a ... a a
a a ... a ... a a

.

In the first case this whole procedure can be repeated, and in the second case no
production is applicable any more and we terminate. Obviously, every member of
Lc can be constructed in this way. ut

Remark 1 The use of the language Lc of Example 1 to show the proper inclusion
in Theorem 1 in [25], which is a preliminary version of this revised and enlarged
version, is incorrect as Lc is generated by a contextual array grammar in the t-
mode, although the statement of Theorem 1 in [25] itself holds as shown in the
following Section 5.

4 Array P Systems with Contextual Array Productions

Among the different variants of P systems introduced in membrane computing,
string rewriting P systems [14] which use context-free rules with target indications
define string languages. Ceterchi et al. [2] introduced array P systems linking the
areas of membrane computing and picture grammars and investigated its power in
generating array languages. Array P systems are analogous to the string rewriting
kind of P systems [14], but with picture array objects and array rewriting rules in
the membrane regions of the system, with target indications here, in, out. It has
an internal output in the sense that the result is obtained in a specified elemen-
tary membrane and has halting computations to define successful computations.
We now introduce a P system that has similar features but with the difference
of having contextual array productions in its membranes as in a contextual array
grammar [8].
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Definition 2 A contextual array P system with m ≥ 1 membranes is a construct

Π = (V,#, µ, A1, . . . , Am, P1, . . . , Pm, io),

where

– V is the alphabet;
– # is the blank symbol;
– µ is a membrane structure with m membranes or regions, labeled by 1, . . . ,m,

in a one-to-one manner;
– A1, . . . , Am are finite sets of arrays over V associated with the m regions of µ;
– P1, . . . , Pm are finite sets of contextual array productions over V associated

with the m regions of µ; the productions have attached targets here, out, in,
and inj , 1 ≤ j ≤ m;

– io is the label of a membrane called output membrane, which serves for collect-
ing the results of successful computations.

The membrane structure µ of a P system with m membranes can be denoted
by a well-formed expression of parentheses over the alphabet of left and right
parentheses [i and ]i, 1 ≤ i ≤ m. For example, [1 [2 ]2 [3 [4 ]4 ]3 ]1 means that
membrane 1 is the outermost membrane, which contains membranes 2 and 3,
whereas membrane 3 contains another membrane 4.

A computation step in a contextual array P system is done as follows: for
each array A in each region of the system, if a contextual array production p in
the region can be applied to A, then it should be applied which means that the
application of a rule is sequential at the level of arrays, but maximally parallel
at the level of the whole system. If more than one rule is applicable at the same
time, then one is chosen in a nondeterministic way. The resulting array, if any, is
placed in the region indicated by the target associated with the rule having been
applied with interpreting the attached target as follows: here means that the array
remains in the same region, out means that the array exits the current membrane
and is placed in the immediately outer membrane if one exists (in this paper, we
do not allow the target out to be used by a rule assigned to the skin membrane),
inj means that the array is immediately sent to the directly inner membrane with
label j, and in means that the array is immediately sent to one of the directly inner
membranes, chosen in a nondeterministic way if several such membranes exist (if
no inner membrane exists, then a rule with the target indication in cannot be
used). A computation is called successful if and only if it halts, which means that
a configuration has been reached where no rule can be applied to the existing
arrays. The result of a halting computation consists of the arrays collected in the
membrane with label io in the halting configuration. The set of all such arrays
computed or generated by a system Π is denoted by AL(Π). The family of all
picture array languages CAL(Π) generated by systems Π as defined above, with
at most m membranes, is denoted by APm(cont). The diameter of a P system Π
with contextual array productions, denoted by diam(Π), is the diameter of the
union of the rule sets of Π.

We shall now illustrate the definition of contextual array P systems with some
examples. To this end, let Lstar,4 be the following set of stars over the alphabet
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{a, b, c} with 4 balanced arms of even length, i. e.:

Lstar,4 := {

c
a
b

b a b a b a b
b
a
b

,

c
a
b
a
b

b a b a b a b a b a b
b
a
b
a
b

,

c
a
b
a
b
a
b

b a b a b a b a b a b a b a b
b
a
b
a
b
a
b

, . . .}

Each arm is a digital version of a ray starting at the centre point (and including
that point). The resulting pixels are labeled alternately by a and b starting with
the centre pixel labeled by a. As an exception, the last pixel of the north arm gets
label c. The length of an arm is defined as the total number of appearances of all
labels of its pixels. So, the length of the arms of the stars of Lstar,4 are 4, 6, 8 and
so on.

We now define a contextual array P system with a linear membrane structure
of 5 membranes which describes the language Lstar,4. Let

Πstar,4 = ({a, b, c},#, µ, A1, . . . , A5, P1, . . . , P5, 5) ,

where µ = [1 [2 [3 [4 [5 ]5 ]4 ]3 ]2 ]1. The sets of axioms are defined by

A1 =

{
a
b

a b a b a
b
a

}
and A2 = A3 = A4 = A5 = ∅ ,

and the rules are defined by

P1 := {p1,1, p1,2} :=


 b

a

b

, in

 ,

 c

a

b

, in

 ,

P2 := {p2,1, p2,2} :=
{(

b a b, in
)
,
(
a b a, out

)}
,

P3 := {p3,1, p3,2} :=


 b

a

b

, in

 ,

 a

b

a

, out

 ,

P4 := {p4,1, p4,2} :=
{(
b a b , in

)
,
(
a b a , out

)}
,

P5 := {p5,1} :=


 a

b

a

, out

 .

Intuitively, in a computation of the contextual array P system Πstar,4, the array
moves back and forth between membrane 1 and membrane 5, without changing
directions in between. On the way down from membrane 1 to membrane 5, every
arm is extended by the symbol b and on the way back moving up every arm is
extended by the symbol a. The purpose of the special symbol c is to stop the
whole computation.

Lemma 2 AL(Πstar,4) = Lstar,4.
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Proof It can easily be seen that every computation starts with either p1,1 or p1,2
and then p2,1, p3,1, p4,1 necessarily have to follow, and after having applied these
rules, membrane 5 either contains the array

U :=

b
a
b

b a b a b a b
b
a
b

or the array U ′ :=

c
a
b

b a b a b a b
b
a
b

,

depending on whether initially p1,1 or p1,2 has been used. If U ′ has been obtained
in this way, then the computation stops and U ′ ∈ Lstar,4. If, on the other hand,
membrane 5 contains U , then the rules p5,1, p4,2, p3,2, p2,2 must be applied which
move the array back to membrane 1 and change it to

U ′′ :=

a
b
a
b

a b a b a b a b a
b
a
b
a

.

Now, the same arguments apply again, which means that either the array

W :=

b
a
b
a
b

b a b a b a b a b a b
b
a
b
a
b

or the array W ′ :=

c
a
b
a
b

b a b a b a b a b a b
b
a
b
a
b

appears in membrane 5 and again W ′ ∈ Lstar,4. Thus, inductively applying these
arguments, we have proved that Πstar,4 can only produce arrays of Lstar,4 and,
obviously, all arrays of Lstar,4 can be produced in this way, which in sum implies
Lstar,4 = AL(Πstar,4). ut

We note that it is possible, for every k ≥ 1, to generalize the language Lstar,4

to a language Lstar,k which contains stars like those in Lstar,4, but with k arms
instead of 4 arms. There are several ways of how this can be done; in the following,
we sketch one possibility. We wish to point out that the following constructions
rely on the digitization of rays, which is a well-known procedure (for example, see
Chapter 9 of [11]). In order to describe stars with 8 instead of 4 arms, we could
simply add a north-west, a north-east, a south-west and a south-east arm, i. e.,

Lstar,8 =



b c b
a a a
b b b

b a b a b a b
b b b

a a a
b b b

,

b c b
a a a
b b b
a a a
b b b

b a b a b a b a b a b
b b b

a a a
b b b

a a a
b b b

,

b c b
a a a
b b b
a a a
b b b
a a a
b b b

b a b a b a b a b a b a b a b
b b b

a a a
b b b

a a a
b b b

a a a
b b b

, . . .


.

Thus, in order to obtain a star with 8 arms, we extend a star with 4 arms by
adding a new arm with a gradient of 1 to the north-eastern area of the star and
then we copy it by mirroring it on the vertical and horizontal axis of symmetry of
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the star. Each of the four new arms is a diagonal pixel path which is the digitization
of a ray of gradient 1 or −1 starting at the centre point of the star. The labeling of
the pixels of the diagonal arms alternately by a and b starting at the centre pixel
can be done easily since the centre pixel already has the label a and any two of
the 8 arms intersect only at this centre.

The general construction of (labeled) stars with k arms, where k is a power
of 2, follows the idea of iteration of above: each star of k = 2l arms of length
n is constructed from a star having k = 2l−1 arms of length n. Also the idea
of mirroring all new arms constructed in the first quadrant on the vertical and
horizontal axis of symmetry of the star can be applied in general. So, we need only
to explain how to construct the first quadrant of a star.

In order to construct a star with 16 arms from a star with 8 arms, in the first
quadrant we have to add 2 arms, corresponding to the ray with gradient 1

2 and

the ray with the reciprocal gradient 2. Similarly, for obtaining a star of 32 = 25

arms, in the first quadrant we add 4 = 22 new rays with gradients 1
4 , 3

4 and (the

reciprocals) 4
3 , 4. In the next iteration, for constructing a star of 64 = 26 arms,

in the first quadrant we add 8 = 23 new rays with gradients 1
8 , 3

8 , 5
8 , 7

8 and (the
reciprocals) 8

7 , 8
5 , 8

3 , 8. For example, in order to construct stars with 16 arms, the
arm with a gradient of 1

2 and the arm with a gradient of 2 could look like

·
· ·

b b
a a

b b
a a

and

·
·
·

b
b

a
a

b
b

a
a

,

which results in stars with first quadrants of the following form:

·
· ·
· · ·
a · ·
b a ·
a a a
b b b
a b a
b a b
a a a ·
b b b · ·
a b a a a
b a b b b
a a a a a
b b b b b
a b a a a
b b b b
a b a b a b a b a b a b a b a · · ·

The stars of a language Lstar,k, where k is not a power of two, can be con-
structed like the stars of Lstar,2l , l := dlog(k)e, with the only difference, that we

simply produce only k of the l possible arms and omit the other 2l − k arms.
Now in order to define a P system that describes the language Πstar,k, k ≥ 1,

we can modify Πstar,4 in a straightforward way. Instead of a linear structure of
5 membranes we use a linear structure of k + 1 membranes, where every inner
membrane is responsible for one of the arms just as it is the case for Πstar,4. For
example, if membrane i is responsible for the arm with gradient 1, then we have
to add the rules  b

a

b

, in

 and

 a

b

a

, out
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to Pi. In a similar way, for the arms with gradient 1
2 and 2, we need the rules(

b b

a a
, in

)
,

(
a a

b b
, out

)
and

b

b

a

a

, in

 ,


a

a

b

b

, out

 , respectively.

We wish to point out here that the diameter of the P systems Πstar,k, k ≥ 1,
grows with the number of arms. Intuitively, this is due to the fact that the rules of
Πstar,k distinguish the arms by their gradient and, since the arms are represented
in a discrete way, a growing number of arms require larger and larger portions of
the arms to be observed in order to determine their gradient.

In the example of Πstar,4 elaborated above, we use the linear structure of the P
system in order to implement two phases of the computation, which are repeated
in an alternate manner. In the first phase, we move down the membrane structure
and extend every arm by exactly one b, and in the second phase we move up
the membrane structure and extend every arm by exactly one a and so on. An
alternative approach is to first extend the first arm by ba, then extend the second
arm by ba and so on until all arms are extended by these two symbols and then
this whole procedure starts over again. This idea is implemented in the following
P system with a non-linear membrane structure.

Let
Π ′star,4 = ({a, b, c},#, µ, A1, . . . , A5, P1, . . . , P5, 5) ,

where µ = [1 [2 ]2 [3 ]3 [4 ]4 [5 ]5 ]1. The sets of axioms are defined by

A1 =

{
a
b

b a b
b

}
and A2 = A3 = A4 = A5 = ∅ ,

and the rules are defined by

P1 := {p1,1, p1,2, . . . , p1,5}

:=


 b

a

b

, in2

 ,

 c

a

b

, in2

 ,
(
b a b, in3

)
,

 b

a

b

, in4

 ,
(
b a b , in5

) ,

P2 := {p2} :=
{(

a b a, out
)}
,

P3 := {p3} :=


 a

b

a

, out

 ,

P4 := {p4} :=
{(
a b a , out

)}
,

P5 := {p5} :=


 a

b

a

, out

 .
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In a computation of Π ′star,4, we successively move from membrane 1 to the
inner membranes and back again. When we move from membrane 1 to membrane
i, we extend arm i− 1 (which, in the previous step, has been extended by symbol
a) by the symbol b, and when we move back again to membrane 1, we extend the
next arm, i. e., arm i, by symbol a.

Lemma 3 AL(Π ′star,4) = Lstar,4.

Proof It can easily be seen that every computation starts with either p1,1 or p1,2
and then p2, p1,3, p3, p1,4, p4, p1,5 necessarily follow and after applying these rules,
membrane 5 either contains the array

U :=

b
a
b

b a b a b a b
b
a
b

or the array U ′ :=

c
a
b

b a b a b a b
b
a
b

,

depending on whether initially p1,1 or p1,2 has been used. If U ′ has been obtained
in this way, then the computation halts and U ′ ∈ Lstar,4. If, on the other hand,
membrane 5 contains U , then rule p5 must be applied which moves the array back
to membrane 1 and changes it to

U ′′ :=

a
b
a
b

b a b a b a b
b
a
b

.

Now, the same argument applies again, which means that either the array

W :=

b
a
b
a
b

b a b a b a b a b a b
b
a
b
a
b

or the array W ′ :=

c
a
b
a
b

b a b a b a b a b a b
b
a
b
a
b

,

appears in membrane 5 and again W ′ ∈ Lstar,4. Thus, Πstar,4 can only produce
arrays of Lstar,4 and, obviously, all arrays of Lstar,4 can be produced in this way,
which implies Lstar,4 = AL(Π ′star,4). ut

Obviously, the P system Π ′star,4 can also be extended to P systems Π ′star,k,
k ≥ 1, which generate the languages Lstar,k.

We wish to emphasize that in the example P systems defined above, we use a
number of k membranes (ignoring the skin membrane, which we always have) in
order to synchronize the growth of k arms of the stars. It seems intuitively clear
that such a synchronization of k independent parts of the arrays is only possible if
we have enough membranes and it seems unlikely that the languages Lstars,k can
be described by a P system with less than k membranes (in addition to the skin
membrane). We shall formally prove this intuition in the next section.
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5 A Proper Hierarchy of Language Classes Described by Contextual
Array P Systems

In this section, we prove that the expressive power of contextual array P systems
strictly increases with the number of membranes, i. e., we prove a proper hierarchy
with respect to the classes of languages described by contextual array P systems.
Before we present this infinite hierarchy, we first compare the expressive power
of contextual array grammars in the maximal mode with the expressive power of
contextual array P systems with only 2 membranes. It turns out that the latter
device is strictly more powerful, which shows that the contextual way of handling
array objects in P systems increases the generative power of the contextual way of
rewriting arrays in the t-mode. After this, we compare the class of languages gen-
erated by contextual array P systems with 2 membranes and the class of languages
generated by contextual array P systems with 3 membranes.

5.1 Contextual array P systems with few membranes

Theorem 1 L (cont, t) ⊂ AP2(cont).

Proof The inclusion can be seen as follows: Let L be an array language in L (cont, t)
generated by a CAG G in the maximal mode. We construct a contextual array P
system Π with only one membrane which is also the output membrane, containing
all the rules of G, each with attached target here, and the same sets of axioms as
G. It is clear that Π generates exactly the arrays of L.

The proper inclusion is seen by considering the picture language Ll consisting
of picture arrays describing the shape L with each pixel labeled by a except for the
pixel in the uppermost position of the vertical arm and both the arms having equal
length (which here means equal number of pixels) of at least three. A member of
Ll is shown in Fig. 3.

b

a

a

a

a a a a a

Fig. 3: A picture describing the shape L.

We prove that the language Ll cannot be generated by any CAG in the maximal
mode. To this end, we assume that there exists a CAG G, such that Lt(G) = Ll.
Next, we note that since G operates in the maximal mode, it cannot contain any
rule p which is applicable to an element w ∈ Ll. This is due to the fact that if
such a rule p exists, then w cannot be the result of a maximal derivation, since p is
applicable to w; thus, w cannot be derived with respect to G. This directly implies
that G does not contain a rule of form a a ... a a a ... a or a a ... a a a ... a .
Obviously, without such rules, not all elements of Ll can be generated by G in
the t-mode. This concludes the proof that the language Ll cannot be generated
by any CAG in the maximal mode.
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On the other hand, the following contextual array P system Πl with 2 mem-
branes can generate Ll. Let Πl = ({a, b},#, µ, A1, A2, P1, P2, 2) where µ = [1 [2 ]2 ]1
and A1 := { aa a }, A2 := ∅. The rules are defined as follows:

P1 := {p1} :=
{(

a a a, in
)}
,

P2 := {p2,1, p2,2} :=


 a

a

a

, out

 ,

 b

a

a

, here

 .

Starting from the axiom array a
a a in membrane 1, the rule p1 is applied adjoining

the context a to the selector a a and then the resulting array a
a a a is sent to

membrane 2 due to the target indication in in p1. Note that there is no initial
array in membrane 2. If the rule p2,1 is applied in membrane 2, then the context a

will be adjoined resulting in the array
a
a
a a a

which is sent back to membrane 1, due
to the target indication out in rule p2,1. Now the rule p1 in membrane 1 can be
applied and the resulting array is sent to membrane 2 again. The process can be
repeated. If rule p2,2 is applied in membrane 2, then the uppermost pixel is “filled”
with b and the picture remains in membrane 2 due to the target indication here.
Note that the number of symbols in both the horizontal and the vertical arms
of the resulting L shaped picture will be the same so that the arms are of equal
length (of at least three). Hence, only arrays from Ll can be produced and all
arrays of Ll can be produced in this way as well. ut

Next, we show that contextual array P systems with 3 membranes are more
powerful than contextual array P systems with 2 membranes.

Theorem 2 AP2(cont) ⊂ AP3(cont).

Proof The inclusion follows from the definition. The proper inclusion can be seen
by considering the picture language Lt consisting of pictures in the shape of the
letter T with the pixels in the horizontal arm labeled by a except the leftmost
pixel which is labeled by b and the pixels in the vertical arm labeled by a and
b alternately. A member of Lt is shown in Fig. 4. The number of symbols in the
picture in the upper horizontal row is 2n+ 3, n ≥ 1, while in the vertical column
it is 2n + 1, n ≥ 1 (thereby counting the symbol at the intersection of both lines
twice).

b a a a a a a

b

a

b

a

Fig. 4: A picture describing the shape T .

We prove that the language Lt cannot be generated by any contextual array P
system with only 2 membranes. To this end, we assume that there exists a contex-
tual array P system Π with a membrane structure of [1 [2 ]2 ]1. In the following,
a rule of form ( a a . . . a a a . . . a, T ), T ∈ {in, out, here}, is a right extension
rule and a rule of form (a a . . . a a a . . . a , T ′), T ′ ∈ {in, out, here}, is a left
extension rule. It can easily be seen that in a computation of a sufficiently large
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array of Lt, there is a final phase of the computation in which every applied rule
extending the horizontal arm to the left or to the right must be a left or right
extension rule, respectively. Moreover, we can assume that in this phase of the
computation, at least one left or right extension rule is applied. We shall now
modify such a computation in the following way. First, we carry out the compu-
tation up to the very last application of a left or right extension rule and, without
loss of generality, we assume that this is a left extension rule p with target indi-
cation T ∈ {in, out, here}. If T = here, then we can simply repeat this rule and
finish with the remainder of the original computation, which produces an array
that is not a member of Lt. In the following, we assume that T ∈ {in, out} and
p ∈ Pl, where l ∈ {1, 2}, i. e., the rule p changes the array from membrane l to
membrane l′, where l′ ∈ {1, 2}, l 6= l′. If in Pl there is a right extension rule
q with the same target indication T , then we can use q instead of p and finish
with the remainder of the original computation or, if q has target indication here,
then we can use q once, before we apply p and then finish with the remainder of
the original computation (note that q must be applicable, due to our assumption
that the produced array is large enough and the application of p is the very last
application of a left or right extension rule in the whole computation). In both
cases, we produce an array that is not a member of Lt. Now if we want to rule
out this possibility of a right extension rule in Pl, then we have to assume that
there is a right extension rule in Pl′ with target indication T ′ ∈ {in, out, here},
since otherwise no right extension rule would exist. We can now proceed with the
computation by applying rule p and therefore moving the array to membrane l′.
If T ′ = here, then we can apply q once and then finish with the remainder of the
original computation, which produces an array that is not a member of Lt. If, on
the other hand, T ′ ∈ {in, out}, then we can apply q and move back to membrane
l, where again p is applicable. Hence, we can enter a loop of alternately applying
rules p and q and then proceeding with the original computation. In this loop,
the horizontal arm may be equally grown to both the left and to the right, but
the southbound arm is not synchronized; thus, an array is produced that is not a
member of Lt. This shows that Lt /∈ AP2(cont).

Next, we show that there exists a contextual array P system Πt with three
membranes which generates Lt :

Let Πt = ({a, b},#, µ, A1, A2, A3, P1, P2, P3, 3) where µ = [1 [2 [3 ]3 ]2 ]1. The
sets of axioms are defined by A1 := { a a a

b } and A2 = A3 = ∅. The rules are as
follows:

P1 := {p1} :=
{(

a a a, in
)}
,

P2 := {p2,1, p2,2} :=


 a

b

a

, in

 ,

 b

a

b

, out

 ,

P3 := {p3,1, p3,2} :=
{(
a a a , out

)
,
(
b a a , here

)}
.

Starting from the axiom array a a a
b in membrane 1, the rule p1 is applied adjoining

the context a to the right of the selector a a extending the right arm by one
pixel and then the resulting array a a a a

b is sent to membrane 2 due to the target
indication in in p1. If the rule p2,1 is applied in membrane 2, then the context a

will be adjoined extending the vertical arm by one pixel, and the resulting array
a a a a
b
a

is sent to membrane 3, due to the target indication in in rule p2,1. If the rule
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p3,1 in membrane 3 is applied now, this extends the left arm by one pixel resulting

in the array
a a a a a

b
a

, which is sent again to membrane 2. The only applicable rule
now is p2,2, which extends the vertical arm by one pixel with the resulting array
a a a a a

b
a
b

being sent to membrane 1, and the process can be repeated. If rule p3,2

is applied in membrane 2, then the leftmost pixel in the horizontal arm is filled
with label b and the picture remains in output membrane 3 due to the target
indication here. Obviously, this array is a member of Lt, and every array of Lt
can be generated in such a way. This observation concludes the proof. ut

5.2 Comb languages

We now define a class of array languages which shall be used in order to establish
the infinite hierarchy of language classes given by contextual array P systems. The
language of combs with 4 teeth (where the ith tooth is defined over the alphabet
{ai}, 1 ≤ i ≤ 4), denoted by Lcomb,4, is the following set:


X
b3

a1 a2 a3 a4 b2
a1 X a2 X a3 X a4 X b1

,

X
b3
b2
b1
b4

a1 a2 a3 a4 b3
a1 a2 a3 a4 b2
a1 X a2 X a3 X a4 X b1

,

X
b3
b2
b1
b4
b3
b2
b1

a1 a2 a3 a4 b4
a1 a2 a3 a4 b3
a1 a2 a3 a4 b2
a1 X a2 X a3 X a4 X b1

, . . . .


In a similar way, for every k ≥ 1, the language Lcomb,k can be defined as containing
combs like in Lcomb,4, but with k instead of 4 teeth, i. e., Lcomb,k contains arrays
of the form

X
bk−1

...
b1

a1 a2 a3 ... ak
...

...
...

...
...
... bk

...
a1 a2 a3 ... ak b2
a1 X a2 X a3 ... ak X b1

.

We shall now define, for every k ≥ 1, a P system with k + 1 membranes that
generates the language Lcomb,k. Let

Πcomb,k = ({a1, . . . ak, b1, . . . , bk, X},#, µ, A1, . . . , Ak+1, P1, . . . , Pk+1, 1)

where µ = [1 [2 ]2 [3 ]3 . . . [k+1 ]k+1 ]1. The sets of axioms are defined by

A1 = { a1 X a2 X a3 ... ak X } and A2 = A3 = . . . = Ak+1 = ∅ ,
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and the rules are defined by

P1 := {p1, p′1, pi, p′k | 2 ≤ i ≤ k} and Pi := {qi}, 2 ≤ i ≤ k + 1, where

p1 :=

(
b1

bk
, in2

)
,

p′1 :=
(
X b1, in2

)
,

pi :=

(
bi

bi−1
, ini+1

)
, for every i, 2 ≤ i ≤ k ,

p′k :=

(
X

bk−1
, ink+1

)
,

qi :=

(
ai−1

ai−1
, out

)
, for every i, 2 ≤ i ≤ k + 1 .

Lemma 4 For every k ≥ 1, L(Πcomb,k) = Lcomb,k.

Proof It can be easily seen that every computation starts with p′1, q2, p2, q3, p3,
. . ., qk and after applying these rules, membrane 1 contains the array

bk−1

...
a1 a2 ... ak−1 b2
a1 X a2 ... ak−1 X ak X b1

.

Now, the only applicable rules are pk or p′k which both move the array to membrane
k + 1. Then rule qk+1 is applied, which moves the array back to membrane 1 and
the array is now either of form

W :=

bk
bk−1

...
a1 a2 ... ak−1 ak b2
a1 X a2 ... ak−1 X ak X b1

or W ′ :=

X
bk−1

...
a1 a2 ... ak−1 ak b2
a1 X a2 ... ak−1 X ak X b1

,

depending on whether rule pk or p′k has been used. We note that W ′ ∈ Πcomb,k

and if W has been produced, then exactly the same arguments can be applied
again. Thus, Πcomb,k can only produce arrays of Lcomb,k and, obviously, all arrays
of Lcomb,k can be produced in this way, which implies Lcomb,k = L(Πcomb,k). ut

Remark 2 The contextual rules in the P systems Πcomb,k, k ≥ 1, have some in-
teresting properties:

– No rule is #-sensing, i.e., any rule contains neither a selector with a blank
symbol # nor a context with a blank symbol #.

– With the previously mentioned restriction, all rules are of smallest possible
size, i.e., both the selector and the context contain exactly one symbol.

– Moreover, all rules are connected in the strongest possible sense, i.e., the se-
lector and the context positions are either vertical or horizontal neighbors.

From Lemma 4, we can directly conclude the following:

Lemma 5 For any k ≥ 1, Lcomb,k ∈ APk+1(cont).
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5.3 An infinite membrane hierarchy result

Next, we show that, for every k ≥ 1, every contextual array P system that is able
to describe Lcomb,k needs at least dk3 e membranes:

Theorem 3 For any k ≥ 1, Lcomb,k /∈ APb k
3
c(cont).

From this main result of this section, we can immediately conclude:

Corollary 1 The hierarchy of array languages

AP1(cont) ⊆ AP2(cont) ⊆ AP3(cont) ⊆ · · ·

is infinite and, for every k ≥ 1, APk(cont) ( AP3k(cont).

Unfortunately, we could not show a separation result like

APk(cont) ( APk+1(cont)

for any number k of membranes.

In order to prove Theorem 3, we need a kind of normal form of our rules:

Lemma 6 Let Π be some P system with contextual array rules that generates
Lcomb,k. Then, each rule of Π can be classified into two groups:

– Either, a rule is X-sensing, meaning that it contains the symbol X in its selector;
– or, it is X-producing, meaning that it contains the symbol X in its context;

– or, a rule is of the form

ai
...
ai
ai

...
ai

for some i ≤ k, or some similar vertical one-

dimensional shape for the rightmost tooth of the comb.

Proof Assume that a rule is neither X-sensing nor X-producing. As its shape is
1-connected and as #-sensing is excluded, it has to be applied to one of the teeth,
which leads to the form described in the third item. ut

Especially for any derivation D that generates a large array from Lcomb,k, there
is a point TD in the derivation after which no X can be sensed anymore, as Π is
finite. We are going to apply the pigeon-hole principle in the following. In order
to do so, the following lemma is helpful. In its formulation, we use the following
notion: Let Π be a P system and let p be a rule of Π. Then, the type of rule p is
specified by the pair of membranes (m1,m2), where m1 is the membrane p belongs
to and m2 is the membrane where the processing will continue (as indicated by
the target command inj , out or here).

Lemma 7 Any P system Π with m membranes has at most 3m− 2 different rule
types. If Π has no rules labeled here, then it has rules of at most 2m− 2 different
types.
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Proof It is well-known that any undirected tree with m nodes has m − 1 edges.
Clearly, the membrane structure of Π corresponds to such a tree. Each edge of
this tree may be used in two directions (by the out or inj labels); this gives (at
most) 2m − 2 different types, and each rule labeled out or inj has one of these
types. Rules labeled here correspond to loops at some nodes. Hence, altogether Π
cannot have more than 3m− 2 different rule types. ut

Lemma 8 No P system Π with m membranes can produce Lcomb,3m.

Proof Assume the contrary, so there exists some P system Π of diameter d < ∞
and m membranes that can produce Lcomb,3m. We can assume that Π is in the
normal form described in Lemma 6. Let x be the greatest diameter of any X-
sensing rule in Π, and y be the greatest diameter of any axiom in Π. Let h >
x + y and consider the array Ah ∈ Lcomb,3m whose first tooth contains exactly
h occurrences of a1. As AL(Π) = Lcomb,3m by our assumption, there is some
halting computation that outputs Ah. Let us discuss the derivation of Ah in this
computation in the following. By the choice of h, for the ith tooth, there must
be a rule pi of vertical one-dimensional shape that extends the ith tooth in that
derivation. By Lemma 7, Π contains at most 3m−2 rule types. By the pigeon-hole
principle, among the rules p1, . . . , p3m−1, there must be two of the same type, say,
pI and pJ . Reconsider now the mentioned computation. At a certain step, one of
the rules pI or pJ was applied last. Without loss of generality, assume that pI
was applied later than pJ was ever applied. However, as also pJ has been applied
(before that time), it is also applicable at that point of time, so we could replace
one application of pI by one of pJ to get a new terminating computation that will
output an array that is not in Lcomb,3m, as the Ith tooth is now shorter than h,
while the Jth tooth will be longer than h. ut

Lemma 8 concludes the proof of Theorem 3 and hence of Corollary 1.

Remark 3 We could have improved slightly on the claimed hierarchy gap, proving
that no P system Π with m membranes can produce Lcomb,2m, by making the
following Claim:

In the discussion of the non-X sensing rules working on teeth 1 through k
in the proof of Lemma 8, none of these rules has the target indication here.

Namely, assume that some rule pi of vertical one-dimensional shape that extends
the ith tooth in the derivation that we consider has target indication here. Then,
after this rule has been applied in the derivation, it is still applicable, so it can
be applied an arbitrary number of times. This would enable us to produce arrays
that are not in the comb language. ut

Lemma 7 would then yield the mentioned slightly stronger result, showing
APk(cont) ( AP2k(cont).

Remark 4 In his book [16], Gheorghe Păun raised the question whether there ex-
ists a non-universal model of a membrane computing system which induces an
infinite hierarchy on the number of membranes. The first, even dense, infinite hi-
erarchy on linear membrane structures was established by Rudolf Freund in [7],
with applying rules over a one-letter alphabet, but also using membrane disso-
lution. For static membrane structures, the first infinite hierarchy was presented
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by Oscar Ibarra in [10]. Our hierarchy would offer an alternative solution to this
problem. Like the one that we presented in this paper, Ibarra’s hierarchy is not
a dense one. Another similarity is that both hierarchies are built on “counter
ideas”. While Ibarra employs known results on counter (or multi-head finite-state
machine) languages hierarchies, our comb teeth could be viewed as counters with
some linear layout. While Ibarra’s hierarchy also holds for unary alphabets, the
one presented in this paper needs arbitrarily large alphabets. However, we believe
that we can modify the comb language construction like in the star example to
overcome this limitation.

We would like to mention that our hierarchy result does not crucially depend
on certain aspects of the definition of P systems. For instance, it also holds if the
final output is sent out to the environment, or if no specific output membrane is
given at all, i.e., all “terminal arrays” would then be collected into the generated
array language. Likewise, the result itself does not depend on another intricacy in
the definition of array grammars, namely the aspect of #-sensing rules, as we will
discuss now.

5.4 #-sensing contextual array P systems

We conclude this section by taking a closer look at #-sensing contextual array
grammars and #-sensing contextual array P systems, i. e., the selectors of the
contextual rules can contain the blank symbol #. We first observe that, for every
k ≥ 1, the language Lcomb,k can be easily generated by a #-sensing contextual
array P system with only two membranes: in the first membrane a rule of form(

a1 a2 . . . ak

a1 # a2 # . . . # ak
, in

)
is used in order to extend every tooth in one step and then in the second membrane,
we use a rule 

bk
...
b2
b1

bk

, out

 or


X
...
b2
b1

bk

, here


in order to extend the (k + 1)th tooth and move back to the first membrane or
to extend the (k + 1)th tooth and stop the computation, respectively. However,
if we slightly change the languages Lcomb,k, k ≥ 1, then we can obtain a class of
languages that allows us to prove a hierarchy result for #-sensing contextual array
P systems.

For every k ≥ 1, let L̂comb,k be the language that contains combs as in Lcomb,k,
but between the ith and (i+ 1)th tooth of the comb there is an arbitrary number
of occurrences of the symbol Xi. For example,

X
b3
b2
b1
b4

a1 a2 a3 a4 b3
a1 a2 a3 a4 b2
a1 X1 X1 X1 a2 X2 a3 X3 X3 X3 X3 X3 a4 X4 X4 b1
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is a member of L̂comb,4. Next, we show that every language L̂comb,k can be gener-

ated by a contextual array P system Π̂comb,k with k+ 2 membranes. To this end,
we modify Πcomb,k by adding a new outermost membrane with rules

(
ai Xi, here

)
,
(
Xi ai+1, here

)
,
(
Xi Xi, here

)
, for every i, 1 ≤ i ≤ k − 1,(

ak Xk, here
)
,
(
Xk Xk, here

)
,
(
ak Xk, in

)
and

(
Xk Xk, in

)
.

These rules turn the axiom, which is now a1, into a one-dimensional array

a1 X1 X1 . . . X1 a2 X2 X2 . . . X2 a3 . . . ak Xk Xk . . . Xk

and move this array into the next membrane, which is the outermost membrane
of the contextual array P system Πcomb,k. From now on, the P system Π̂comb,k

works in a similar way as Πcomb,k; thus, a member of L̂comb,k is generated.

We can now adapt the proof of Theorem 3 to #-sensing contextual array P
systems. To this end, we note that apart from possible sensing of some blank
symbols # in non-X-sensing rules, the normal form of Lemma 6 is still valid. In
Lemma 8, we only have to take care of selecting an array whose teeth are at a
distance large enough of each other to prevent any sensing of neighboring teeth in
the derivation.

6 Conclusion

We have introduced P systems with array objects and contextual array productions
of the kind considered in [8], but with no pixel in any selector in the rules having #
as a label, and we have shown that the P system model has more generative power
than the contextual array grammars working in the maximal mode themselves have
in generating two-dimensional arrays. Moreover, the expressive power of contextual
array P systems strictly increases with the number of membranes, thereby giving
a proper hierarchy with respect to the classes of languages described by contextual
array P systems. A corresponding result also holds when we allow the #−sensing
ability in the selector. But it remains open whether such hierarchy results hold
from k to k + 1, for any number k of membranes.
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15. Păun, G.: Marcus contextual grammar. Studies in Linguistics and Philosophy. Dordrecht:

Kluwer Academic Publishers (1997)
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