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Abstract
A pattern (i. e., a string of variables and terminals) maps to a word, if this is obtained by uniformly
replacing the variables by terminal words; deciding this is NP-complete. We present efficient
algorithms1 that solve this problem for restricted classes of patterns. Furthermore, we show that
it is NP-complete to decide, for a given number k and a word w, whether w can be factorised
into k distinct factors; this shows that the injective version (i. e., different variables are replaced
by different words) of the above matching problem is NP-complete even for very restricted cases.
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1 Introduction

In the context of this work, a pattern is a string that consists of terminal symbols (e. g.,
a, b, c) and variables (e. g., x1, x2, x3). The terminal symbols are treated as constants, while
the variables are to be uniformly replaced by strings over the set of terminals (i. e., different
occurrences of the same variable are replaced by the same string); thus, a pattern is mapped
to a terminal word. For example, x1abx1x2cx2x1 can be mapped to acabaccaaccaaac and
babbacab by the replacements (x1 → ac, x2 → caa) and (x1 → b, x2 → a), respectively.

Due to their simple definition, the concept of patterns (and how they map to words)
emerges in various areas of theoretical computer science, such as language theory (pattern
languages [2]), learning theory (inductive inference [2, 25, 27, 10], PAC-learning [20]), combi-
natorics on words (word equations [18, 24], unavoidable patterns [23]), pattern matching
(generalised function matching [1, 26]), database theory (extended conjunctive regular path
queries [4]), and we can also find them in practice in the form of extended regular expressions
with backreferences [5, 14], used in programming languages like Perl, Java, Python, etc.

In all these different applications, the main purpose of patterns is to express combinatorial
pattern matching questions. For instance, searching for a word w in a text t can be expressed
as testing whether the pattern xwy can be mapped to t; testing whether a word w contains

1 The computational model we use is the standard unit-cost RAM with logarithmic word size. Also, all
logarithms appearing in our time complexity evaluations are in base 2.
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a k-repetition is equivalent to testing whether the pattern xykz can be mapped to w, etc.
Not only problems of testing whether a given word contains a regularity or a motif of a
certain form can be expressed by patterns, but also problems asking whether a word can
be factorised in a specifically restricted manner can be modelled in this way. For instance,
asking whether x2y3 can be mapped to w is equivalent to asking whether the word w can be
factorised in two equal factors followed by three equal factors.

Unfortunately, deciding whether a given pattern can be mapped to a given word, the
matching problem, isNP-complete [2], which naturally severely limits the practical application
of patterns. In fact, there are only few applications of patterns for which this problem does
not play a central role and some computational tasks on patterns that have no apparent
connection to the matching problem turn out to implicitly solve it anyway (e. g., this is the
case for the task of computing so-called descriptive patterns for finite sets of words [2, 11]).
A comprehensive multivariate analysis of the complexity of the matching problem [12, 13]
demonstrates that the NP-completeness also holds for strongly restricted variants of the
problem. On the other hand, some subclasses of patterns are known for which the matching
problem is in P (this is obviously the case if the number of different variables in the patterns
is bounded by a constant, but there are also more sophisticated structural parameters of
patterns that can be exploited in order to solve the matching problem efficiently [28, 29]).
Unfortunately, the existing polynomial time algorithms for these classes are fairly basic and
they serve the mere purpose of proving containment in P; thus, they cannot be considered
efficient in a practical sense. Therefore, we present here better algorithms for the known
polynomial variants of the matching problem. While we consider our algorithms to be
advanced and non-trivial, their running times have still an exponential dependency on certain
parameters of patterns and, therefore, are acceptable only for strongly restricted classes of
patterns. However, as can be concluded from the parameterised hardness results of [13], these
exponential dependencies seem necessary under common complexity theoretical assumptions.

In some applications of patterns it might be necessary to require the mapping of variables
to be injective (i. e., different variables are substituted by different objects), e. g., this is the
case in the detection of duplications in programme code (see [3]). From a more general point of
view, this injective version of the matching problem asks whether a word can be factorised in
a certain way, such that some specific factors are not allowed to coincide. The special version
of this problem where each two factors must be different has been investigated in [7] and is
motivated by the problem of self-assembly of short DNA fragments into larger sequences,
which is crucial for gene synthesis (see references in [7]). We show the NP-completeness of
the following natural combinatorial factorisation problem: given a number k and a word
w, can w be factorised into at least k distinct factors? Besides the general insight into the
hardness of computing a factorisation with distinct factors, this result also implies that even
for the trivial patterns x1x2 · · ·xk the matching problem becomes NP-complete if we require
injectivity; thus, in terms of complexity, a clear borderline between the injective and the
non-injective versions of the matching problem is established.

This paper is organised as follows. The next section contains basic definitions and then
we give an overview of all our results in Section 3. In Section 4, we develop our algorithms
for the matching problem and, in Section 5, we present the hardness result mentioned above.

2 Basic Definitions

For detailed definitions regarding combinatorics on words we refer to [22]. We denote our
alphabet by Σ, the empty word by ε, and the length of a word w by |w|. For w ∈ Σ∗ and
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each 1 ≤ i ≤ j ≤ |w|, let w[i..j] = w[i] · · ·w[j], where w[k] represents the letter on position
k, for 1 ≤ k ≤ |w|. The catenation of k words w1, . . . , wk is written Πi=1,kwi. If w = wi for
all 1 ≤ i ≤ k, this represents the kth power of w, denoted by wk; here, w is a root of wk. We
say that w is primitive if it cannot be expressed as a power ` > 1 of any root.

For any w ∈ Σ+, a factorisation of w is a tuple p = (u1, u2, . . . , uk) ∈ (Σ+)k, k ∈ N, with
w = u1u2 · · ·uk. Every word ui, 1 ≤ i ≤ k, is called a factor (of p) or simply p-factor.
Let p = (u1, u2, . . . , uk) be an arbitrary factorisation. We define its set of factors as
sf(p) = {u1, u2, . . . , uk} and its size as s(p) = k. A factorisation p is unique if every factor
is distinct, i. e., s(p) = | sf(p)|. For every 1 ≤ i ≤ s(p), p(i) = ui denotes the ith factor
of p. As an example, we consider the factorisation p = (a, ba, cba, a, ba, a) of the word
w = abacbaabaa. We note that sf(p) = {a, ba, cba} and s(p) = 6. For the sake of readability,
we sometimes represent a factorisation (a, ba, cba, a, ba, a) in the form a | ba | cba | a | ba | a.

Let X = {x1, x2, x3, . . .} and call every x ∈ X a variable. For a finite alphabet of
terminals Σ ∩X = ∅, we define PatΣ = (X ∪Σ)+ and Pat =

⋃
Σ PatΣ. Every α ∈ Pat is a

pattern and every w ∈ Σ∗ is a (terminal) word. Given a sequence v, word or pattern, for the
smallest sets B ⊆ Σ and Y ⊆ X with v ∈ (B ∪ Y )∗, we denote alph(v) = B and var(v) = Y .
For any x ∈ (var(α) ∪ alph(α)), |α|x denotes the number of occurrences of x in α.

A substitution (for α) is a mapping h : var(α)→ Σ+. For every x ∈ var(α), we say that x
is substituted by h(x) and h(α) denotes the word obtained by substituting every occurrence
of a variable x in α by h(x) and leaving the terminals unchanged. If, for all x, y ∈ var(α),
x 6= y implies h(x) 6= h(y), then h is injective. As an example, we consider the pattern
β = x1ax2bx2x1x2 and the words u = bacbabbbbacbb, v = abaabbababab. It can be verified
that h(β) = u, where h(x1) = bacb, h(x2) = b and g(β) = v, where g(x1) = g(x2) = ab.
Furthermore, h is injective, g is not and β cannot be mapped to v by an injective substitution.

The matching problem, denoted by Match, is to decide for a given pattern α and word w,
whether there exists a substitution h with h(α) = w. By inj-Match, we denote the variant
of the matching problem where the substitution needs to be injective.2 For any P ⊆ Pat,
the matching problem for P is the matching problem, where the input patterns are from P .

A pattern α is regular if, for every x ∈ var(α), |α|x = 1, and the class of regular patterns
is denoted by Patreg. For any k ∈ N, a k-variable pattern is a pattern α that satisfies
|var(α)| ≤ k and a pattern β with |{x ∈ var(β) | |β|x ≥ 2}| ≤ k is a k-repeated-variable
pattern. For every k ∈ N, Patvar≤k and Patr

var≤k denote the set of k-variable patterns and
k-repeated-variable patterns, respectively. Let α be a pattern. For every y ∈ var(α), the
scope of y in α is defined by scα(y) = {i, i + 1, . . . , j}, where i is the leftmost and j the
rightmost occurrence of y in α. The scopes of some variables y1, y2, . . . , yk ∈ var(α) coincide
in α if

⋂
1≤i≤k scα(yi) 6= ∅. By scd(α), we denote the scope coincidence degree (scd for short)

of α, which is the maximum number of variables in α such that their scopes coincide. For
example, the scopes of all variables coincide in α1 = x1x2x1x2x3x1x2x3, but the scopes of
x1 and x3 do not coincide in α2 = x1x2x1x2x3x2x3x3; thus, scd(α1) = 3 and scd(α2) = 2.
For every k ∈ N, let Patscd≤k denote the set of patterns α with scd(α) ≤ k. By definition,
Patscd≤1 coincides with the class of non-cross patterns (see [29]), which we denote by Patnc.

The one-variable blocks in a pattern are contiguous blocks of occurrences of the same vari-
able. For instance, the number of one-variable blocks in α = x1x2x2ax2x2x2x3ax3x2x2x3x3
is 7. A pattern α with m one-variable blocks can be written as α = w0Πi=1,m(zki

i wi) with
zi ∈ var(α) for i ∈ {1, . . . ,m} and zi 6= zi+1, whenever wi = ε for i ∈ {1, . . . ,m− 1}.

2 There exist variants of the matching problem where substitutions can also erase variables by mapping
them to ε. In this work, we are not concerned with this variant of the problem.
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3 Summary of Our Results

The classical and parametrised complexity of the matching problem for patterns has been
recently investigated and is well understood (see [6, 12, 13, 26]). The most prominent
subclasses of patterns for which it can be solved in polynomial time are the classes of patterns
with a bounded number of (repeated) variables, of regular patterns, of non-cross patterns and
of patterns with a bounded scope coincidence degree (see [2, 29, 28]). However, as mentioned
in the introduction, the respective algorithms are rather poor considering their running times.
For example, for patterns with a bounded number k of variables, the matching problem can
be solved in O(nk−1m

(k−1)! ), where m and n are the lengths of the pattern and the word (see [17]).
For patterns with a scd of at most k, an O(mn2(k+3)(k+ 2)2) time algorithm is given in [28],
where m and n are the lengths of the pattern and the word, respectively, and the proof
that the matching problem for non-cross patterns is in P (see [29]) leads to an O(n4)-time
algorithm. Hence, we consider the following problem worth investigating.

I Problem 1. Let K be a class of patterns for which the matching problem can be solved in
polynomial time. Find an efficient algorithm that solves the matching problem for K.

The main class of patters we consider is that of patterns with bounded scope coincidence
degree. Our first result in this setting concerns patterns where the scope coincidence degree
is bounded by 1, or, in other words, non-cross patterns. In that case we show that we can
decide whether a pattern α having m one-variable blocks matches a word w of length n

in O(nm logn) time; this is an important improvement over the previously available O(n4)
algorithm. Our algorithm is based on a general dynamic programming approach, and it
tries to find, for certain prefixes of the pattern, the prefixes of the word that match them.
While the general approach is rather simple, the details of the efficient implementation of this
approach require a detailed combinatorial analysis of the possible matches. For instance, as a
byproduct of our approach to the matching problem for Patnc, we obtain a stringology result
that extends in a non-trivial manner a major result from [8], showing how the primitively
rooted squares contained in a word of length n can be listed optimally in O(n logn). Our
result shows that given a word w of length n and a word v shorter than n, then w contains
O(n logn) factors of the form uvu with uv primitive, and all these factors can be found in
O(n logn) time. Again, this result is optimal, as it can be seen just by looking at the original
case of primitively rooted squares, or factors of the form uvu with uv primitive and v = ε.

When considering general patterns with bounded scope coincidence degree, we show,
using a similar dynamic programming approach, that the matching problem for Patscd≤k is
solvable in O

(
n2km

((k−1)!)2

)
time, where n is the length of the input word and m is, again, the

number of one-variable blocks occurring in the pattern. One should note that in this case we
were not able to use all the combinatorial insights shown for non-cross patterns (thus, the
logn factor is replaced by an n factor in the evaluation of the time complexity), but, still,
our algorithm is significantly faster than the previously known solution.

Another class of patterns we consider is Patr
var≤k of patterns with at most k repeated

variables. For the basic case k = 1 we obtain that the matching problem is solved in O(n2)
time. Our algorithm is based on a non-trivial processing of the suffix array of the input
word. Further, we use this result to show that the matching problem for the general class of
patterns Patr

var≤k is solvable in O
(

n2k

((k−1)!)2

)
time, where n is the length of the input word.

Note that our algorithm is better than the one that could have been obtained by using the
fact that patterns with at most k repeated variables have the scd bounded by k + 1, and
then direct applying our previous algorithm solving the matching problem for Patscd≤k+1.
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The classes of non-cross patterns and of patterns with a bounded scd or with a bounded
number of repeated variables are of special interest, since for them we can compute so-called
descriptive patterns (see [2, 29]) in polynomial time. A pattern α is descriptive (with respect
to, say, non-cross patterns) for a finite set S of words if it can generate all words in S

and there exists no other non-cross pattern that describes the elements of S in a better
way. Computing a descriptive pattern, which is NP-complete in general, means to infer a
pattern common to a finite set of words, with applications for inductive inference of pattern
languages (see [25]). For example, our algorithm for computing non-cross patterns can be
used in order to obtain an algorithm that computes a descriptive non-cross pattern in time
O
(∑

w∈S(m2|w| log |w|)
)
, where m is the length of a shortest word of S (see [11] for details).

Our algorithms, except the ones for the basic cases of non-cross patterns and patterns with
only one repeated variable, still have an exponential dependency on the number of repeated
variables or the scd. Therefore, only for very low constant bounds on these parameters can
these algorithms be considered efficient. Naturally, finding a polynomial time algorithm for
which the degree of the polynomial does not depend on the number of repeated variables
would be desirable. However, such an algorithm would also be a fixed parameter algorithm
for the matching problem parameterised by the number of repeated variables and in [13] it
has been shown that this parameterised problem is W [1]-hard. This means that the existence
of such an algorithm is very unlikely. Furthermore, since the number of repeated variables
gives also an upper bound for the scd, the mentioned W [1]-hardness result carries over to
the case where the scd is a parameter and therefore it is just as unlikely to find an algorithm
that is not exponential in the scd. This observation justifies the exponential dependency of
our algorithms on the number of repeated variables and the scd.

As mentioned in the introduction, in certain settings it makes sense to require the mapping
of variables to words to be injective. The current state of knowledge regarding the complexity
of the matching problem suggests that this difference has no substantial impact; although,
in [12] it is shown that Match is still NP-complete if the alphabet size and the length of the
words the variables are mapped to are bounded, whereas it is in P if we additionally require
injectivity. In contrast to this, we prove the following result, which gives strong evidence
that inj-Match is generally much harder than the non-injective version.

I Theorem 1. The following problem is NP-complete: given a word w and a number k, is
it possible to factorise w into at least k distinct factors?

Consequently, the injective matching problem is NP-complete even for the trivial patterns
x1x2 · · ·xk, which means that, under the assumption P 6= NP, for all the above mentioned
classes of patterns no polynomial time algorithms for the injective matching problem exist.
In addition to this negative result for the matching problem, we also gain an important
insight regarding the more general problem of factorising a string into distinct factors, which,
as mentioned in the introduction, is motivated by computational biology. In [7], it is shown
that it is NP-complete to factorise a string into distinct factors with a bound on the length
of the factors and, in this regard, our result shows that the NP-completeness is preserved if
the length bound is dropped and instead we have a lower bound on the number of factors.

4 Algorithmic Results

In this section we propose a series of algorithms for the matching problem for several classes of
patterns. We begin by looking at classes where the number of repeated variables is bounded:
we consider the basic classes where no variable or, more interestingly, only one variable is
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repeated, and then investigate the class of patterns in which k ≥ 2 variables are repeated.
Then, we look at the more involved case of patterns with bounded scope coincidence degree.
The basic case is, in this setting, Patnc, where the scope coincidence degree is upper bounded
by 1; after presenting an algorithm solving the matching problem for nc-patterns, we analyse
the general case when the upper bound of the scope coincidence degree is k ≥ 2.

We assume for every input word w of length n that alph(w) ⊆ {1, . . . , n} (i.e., the symbols
are integers). This is a common assumption in algorithmics on words (see the discussion
in [19]). Clearly, our reasoning holds canonically for constant alphabets, as well.

For a length n word w we can build in O(n) time the suffix tree and suffix array structures,
as well as data structures allowing us to retrieve in O(1) time the length of the longest common
prefix of any suffixes w[i..n] and w[j..n] of w, denoted LCPw(i, j) (the subscript w is omitted
when there is no danger of confusion). These are LCP data structures (see, e.g., [19, 16]).
Symmetrically we can build structures allowing us to retrieve in O(1) time the length of the
longest common suffix of any two prefixes w[1..i] and w[1..j] of w, denoted LCS(i, j).

The first case we approach is that of regular patterns. It was already known from [29]
that the matching problem for such patterns can be solved in linear time, when the alphabet
of the input word w is constant. However, it is not hard to see that the same time bound can
be achieved in our setting (when the input words are over integer alphabets): the matching
problem for Patreg is solvable in O(|w|+ |α|) time, where w is the input word and α the
input pattern. More interesting is the case of patterns that contain one repeated variable.

I Lemma 2. The matching problem for Patr
var≤1 is solvable in O(|w|(|w|+ |α|)) time, where

w is the input word and α is the input pattern.

The main idea behind the algorithm used to obtain this result is to find an assignment
for the repeating variable from the input pattern α, say x, such that all constant factors are
well placed within the word, and then fill up (using a linear pattern matching algorithm to
correctly align the terminal factors of the pattern inside the word) the remaining spaces with
the help of the rest of the variables from the pattern, since they occur only once.

Finding the factors of the word which are images of the parts of the pattern that do not
contain the repeated variable can be done in a quadratic time preprocessing.

To find a suitable assignment for x we first choose the length of its image ` ≤ n and, in
linear time, partition the suffix array of the word in several clusters (i.e., blocks of consecutive
positions that are not extendable to the left or right) such that the suffixes contained in one
cluster share a common prefix of length `, that will correspond to the image of x. Note that
if there exists a mapping of the pattern to the word, with the image of x of length `, then
it maps all factors starting with x to prefixes of elements in the same cluster. Essentially,
to check if such a mapping exists we use a greedy processing of each cluster. Fixing the
cluster, we also fix the image of x, denoted wx in the following, and the suffixes in that
cluster provide all the occurrences of wx in w. Now, we can assume without loss of generality
that α starts and ends with variables different from x. If this would not be the case, we just
isolate the lengthwise maximal prefix αp and suffix αs of α that contain only occurrences of
x and terminals; the images of these two factors of α are now known, as we know the image
of x. So we check if the image of αp is a prefix and the image of αs is a suffix of w. If yes,
we just have to check whether the rest of the pattern (α without αp and αs) maps to the
rest of the word (w without the images of αp and αs); this puts us in the aforementioned
case. Further, we sort the elements in the cluster in the order of their occurrence in the word.
Then the ith occurrence of x in α is mapped to the leftmost occurrence of wx surrounded by
the same terminal words as the variable x in α, such that the factor of α occurring between
the ith and i − 1th occurrence of x matches the factor of w found between the respective
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images of these variables. As the variables x are considered from left to right and mapped,
respectively, to occurrences of wx that appear ordered in the cluster, we can implement the
above strategy in O(k) time, where k represents the size of the cluster; the test whether we
can correctly match the factors of α that do not contain x to factors of w is done using the
information gathered during the preprocessing. We process in this way all clusters having at
least as many elements as the number of repeated variables in the pattern. The total number
of elements in these clusters is at most n− ` so this procedure takes O(n) time.

The time spent for each possible value for ` is O(n). Hence, in total our algorithm needs
O(n2) time to decide whether there exists an assignment that maps the pattern to the word.

To solve the matching problem for patterns with at most k repeated variables, we choose
the images (starting and ending positions in w) of k− 1 of the k repeated variables, and then
get a pattern with only one repeated variable. Further, we apply Lemma 2 on this pattern.

I Theorem 3. The matching problem for Patr
var≤k is solvable in O

(
|w|2k

((k−1)!)2

)
time, where

w is the input word.

We now consider the more involved case of patterns with a bounded scope coincidence
degree. The following combinatorial results are well known (see, e. g., [8]).

I Lemma 4 ([8]). Let u1, u2, and u3 be primitive words, such that |u1| < |u2| < |u3| and u2
i

are prefixes (suffixes) of a word w, for all 1 ≤ i ≤ 3. Then 2|u1| < |u3|. As a consequence,
we have |{u|u primitive, u2 prefix (respectively, suffix) of w}| ≤ 2 log |w|.

Assume that w ∈ Σ∗ is of length n. For each i ≤ n we define the set
Pi = {u | u is a primitive word such that u2 is a suffix of w[1..i]}.

Lemma 4 shows that |Pi| ≤ 2 logn for all 1 ≤ i ≤ n. Generally, we can represent the elements
of Pi in various efficient manners (e. g., for each u ∈ Pi it is enough to store its length).

I Lemma 5 ([8]). Let w ∈ Σ∗ be a word of length n. We can compute in O(n logn) time all
the sets Pi associated to w, with i ∈ {1, 2, . . . , n}.

Note that in [8] there are examples of words of length n for which
∑
i≤n |Pi| ∈ Θ(n logn).

Next, we extend the results of Lemmas 4 and 5. Instead of primitively rooted squares,
we consider words of the form uvu for some fixed word v, with uv primitive (or, equivalently,
with vu primitive). It is not hard to show the following lemma.

I Lemma 6. For a fixed v, let u1vu1, u2vu2, u3vu3 be prefixes (suffixes) of a word w such that
|u1| < |u2| < |u3| and uiv are primitive for all 1 ≤ i ≤ 3. Then 3|u1|

2 < |u3|. As a consequence,
we have |{uvu|uv primitive, uvu prefix (respectively, suffix) of w}| ∈ O(log |w|).

Consider two words w, v ∈ Σ∗, with |w| = n. Following the case of the primitively rooted
squares, for each i ≤ n we define the set

Rvi = {u | uvu is a suffix of w[1..i] with uv primitive}.
Again, Rvi can be stored efficiently by the lengths of the words it contains. Clearly,∑

i≤n |Rvi | ∈ O(n logn). Moreover, as uvu with uv primitive is just a primitively rooted
square when v = ε, it follows that for certain values of v, we have that

∑
i≤n |Rvi | ∈ Θ(n logn).

The following result extends in a non-trivial manner the result of Lemma 5.

I Lemma 7. Given two words w, v ∈ Σ∗, with |w| = n, we can compute in O(n logn) time
all the sets Rvi associated to w, for i ∈ {1, 2, . . . , n}.

We begin the high level description of the proof of this lemma with several preliminary
facts. Given the word w, its dictionary of basic factors [9] is a data structure that associates
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w[i..j] = v

←−−−−−−−−− 2k+1 −−−−−−−−−→ ←−−−−−−−−− 2k+1 −−−−−−−−−→

x
x

x

w[j + 1..j + 2k] = x
. . .

Figure 1 Occurrences of x in w[i− 2k+1..i− 1]: positions where u may start (Lemma 7)

labels to the factors of the form w[i..i + 2k − 1] (called basic factors), for k ≥ 0 and
1 ≤ i ≤ n− 2k + 1, such that every two identical factors of the whole word get the same label
and we can retrieve the label of such a factor in O(1) time. The dictionary of basic factors of
a word of length n is constructed in O(n logn) time. Looking deeper into the combinatorial
structure of w we note that a basic factor w[i..i+ 2k − 1] occurs either at most twice in a
factor w[j..j + 2k+1 − 1] or the positions where w[i..i+ 2k − 1] occurs in w[j..j + 2k+1 − 1]
form an arithmetic progression of ratio per(w[i..i+ 2k− 1]) (see [21]). Hence, the occurrences
of w[i..i + 2k − 1] in w[j..j + 2k+1 − 1] can be presented in a compact manner: either at
most two positions, or the starting position of the progression and its ratio. Using this
property and the dictionary of basic factors one can produce in O(n logn) a data structure
that allows us to test the primitivity of each factor of w in O(1) time. Moreover, for a certain
v, we can also produce in O(n logn) time a data structure answering the following type of
queries in O(1) time: “Given i and k return the compact representation of the occurrences
of w[i..i+ 2k − 1] in w[i− |v| − 2k+1.. i− |v| − 1]”.

Returning to the proof of the lemma, after the above preprocessing we find all the
occurrences of v in w. Consider now one of these occurrences w[i..j] = v. We are searching
all the prefixes u of w[j+1..n] that are also suffixes of w[1..i−1] with uv primitive. Checking
naively each prefix of w[j + 1..n] for these properties takes too long. Thus, we analyse
simultaneously all the prefixes of w[j + 1..n] that have the length between 2k and 2k+1, for
0 ≤ k ≤ logn. All these factors share as common prefix the basic factors x = w[j + 1..j + 2k].
Using the data structures we constructed, we retrieve in O(1) time a compact representation
of the occurrences of x in w[i − 2k+1..i − 1]. We know that every possible candidate for
the factor u we search for starts with one of these occurrences. Using a series of involved
combinatorics on words insights, one can identify all the possible factors u that start on such
a position and fulfil also the requirement that vu is primitive, in time proportional to their
number. As in w there are at most O(n logn) factors uvu fulfilling our requirements with
each uniquely identified by the corresponding occurrence of v, and, moreover, the time we
spend in analysing each occurrence of v is proportional to logn plus the number of valid
factors uvu centred around that occurrence of v, the result of Lemma 7 follows.

We are now ready to solve the matching problem for non-cross patterns.

I Theorem 8. The matching problem for Patnc is solvable in O(|w|m log |w|) time, where
w is the input word and m is the number of one-variable blocks occurring in the pattern.

Let α ∈ Patnc be our pattern and n = |w|. If var(α) = {x1, x2, . . . , x`}, it is immediate that
α = w0Πk=1,`(αkwk), where for all k ≤ ` we have var(αk) = {xk}, αk starts and ends with
xk, and wk is a factor containing only terminals. We use a dynamic programming approach
to test whether α matches w. More precisely, for each i ≤ ` we identify all the prefixes w[1..j]
of w such that w0Πk=1,i−1(αkwk)αi matches w[1..j]. We briefly describe this approach.

First, assume that we know already all the positions j such that w0Πk=1,i−2(αkwk)αi−1
matches w[1..j]. Clearly, in O(n) time we can find all the positions j where w0Πk=1,i−1(αkwk)
matches w[1..j]: we just check whether w[1..j] ends with wi−1 and, if so, whether the
factor w0Πk=1,i−2(αkwk)αi−1 matches w[1..j − |wi−1|]. Then, we show how we can find in
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O(npi logn) time the positions j such that w0Πk=1,i−1(αkwk)αi matches w[1..j], where pi is
the number of one-variable blocks of αi. To do this, we have to analyse the structure of αi.

The simplest case is when αi = xi. Then, w0Πk=1,i−1(αkwk)αi matches w[1..j] if and
only if there exists j′ < j such that w0Πk=1,i−1(αkwk) matches w[1..j′]; finding all such
positions j takes O(n) time, so our claim holds in this case.

Consider next the case when αi = xki with k ≥ 2. In a first phase, for each position j and
each primitively rooted square suffix t2 of w[1..j] we check whether tk is a suffix of w[1..j] and
if w0Πk=1,i−1(αkwk) matches w[1..j − k|t|]; if both these checks are true, we conclude that
w0Πk=1,i−1(αkwk)αi matches w[1..j] when xi is mapped to t, and we store this information.
In this way, we found all the positions j such that w0Πk=1,i−1(αkwk)αi matches w[1..j] when
xi is mapped to a primitive word; we just have to analyse the case when xi is mapped to
a non-primitive word. Now, for each position j (considered in increasing order) and each
primitively rooted square suffix t2 of w[1..j], we check whether tk is a suffix of w[1..j] and,
differently from the previous case, if w0Πk=1,i−1(αkwk)αi matches w[1..j − k|t|] such that xi
is mapped to a power of t; the dynamic programming approach ensures us that when j is
considered we know whether w0Πk=1,i−1(αkwk)αi matches w[1..j′] such that xi is mapped
to a power of t′ for all j′ < j and every t′2 primitively rooted square suffix of w[1..j′]. If both
checks above return true, then we conclude that w0Πk=1,i−1(αkwk)αi matches w[1..j] and
xi is mapped to a power of t; if w0Πk=1,i−1(αkwk)αi matches w[1..j − k|t|] with the image
xi being th, now we conclude that w0Πk=1,i−1(αkwk)αi matches w[1..j] with xi mapped to
th+1. Clearly, this two-steps procedure returns all j’s such that w0Πk=1,i−1(αkwk)αi matches
w[1..j]. The total time needed is O(n logn), so our claim holds in this case, as well.

Finally, we consider the more complicated case of αi containing at least one terminal.
We let αi = x`0

i Πk=1,pi(wk,ix
`k,i

i ) be the decomposition of αi in one-variable blocks. First,
we assume that `pi,i = 1, so αi ends with xiwpi,ixi; it may be the case that xi is mapped to
a word u such that wpi,iu is primitive. Then, for each position j, we consider all the suffixes
uwpi,iu of w[1..j] such that wpi,iu is primitive (these factors are in Rwpi,i

j and all of them can
be identified in O(n logn) according to Lemma 7). For each such suffix, we determine the
factor u, the image of xi. Next, in O(pi) time we check whether the image γi of αi under the
substitution of xi with u is a suffix of w[1..j]. If so, we then check whether w0Πk=1,i−1(αkwk)
matches w[1..j − |γi|], and, if our check is again true, conclude that w0Πk=1,i−1(αkwk)αi
matches w[1..j] when xi is mapped to the u determined above. Further, we look at the case
when xi is mapped to a word u such that wpi,iu is a repetition. For a position j, we consider
each primitively rooted square suffix t2 of w[1..j]. We can determine in constant time the
exponent r0 and the prefix t0 of t such that wpi,i = tr0t0; this means that u = t1t

r1 , where
t0t1 = t but r1 is not known. Just like before, we can check easily the cases when r1 ∈ {0, 1}
(so, the value u to which xi is mapped becomes fixed) in time O(pi). In the following, let us
assume that r1 ≥ 2 and, for simplicity, take t0 6= ε; thus, t1 6= t and, as t0 is known, so is t1.
If `pi−1,i ≥ 2, then the image u of xi is uniquely determined: we just note that the word
uwpi,iu is |t|-periodic, and cannot be extended with |t| letters to the left without breaking the
period, so we uniquely determine u by identifying the longest |t|-periodic suffix w′ of w[1..j]
and noting that uwpi,iu is its longer suffix of the form t1{t}∗. Then, we can check again in
O(pi) whether αi matches the suffix of w[1..j] and continue just as we did before. Therefore,
let us assume `pi−1,i = 1; if wpi−1,i /∈ {t}∗t0, then again we can determine the image of xi by
the same reasons, and we can continue similarly. This process continues in this manner, and
we either get that the image of xi is uniquely determined, or that αi = xiΠk=1,pi

(tskt0xi),
so the image of αi is |t|-periodic. Fortunately, the latter case can be solved in the same
manner as the case when α was just a repetition: we already know the positions j such
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that w0Πk=1,i−1(αkwk)αi matches w[1..j] when wpi,ixi is mapped to a power of t with lower
exponent, so we just have to extend with powers of t of exponent equal to the number of
occurrences of xi in αi, as we did before. The case when t0 = ε is treated similarly: either
the image of xi can be uniquely determined, or the image of both xi and all the factors wk,i
are powers of t and we can apply our previous dynamic programming approach. In the same
manner, our last case, when `pi,i ≥ 2 implies that either xi is mapped to a primitive word
t such that t2 is a suffix of w[1..j], or it is mapped to a power of such a word t. In both
cases, an analysis similar to the above leads to the correct computation of all the positions j
such that w0Πk=1,i−1(αkwk)αi matches w[1..j]. The total time needed for such an analysis
is O(npi logn), as for each position j and each t ∈ Pj we need to do O(pi) steps, checking
for each possible image of xi that αi is mapped correctly to a suffix w[j′ + 1..j] of w[1..j],
where w0Πk=1,i−1(αkwk) matched w[1..j′]. Again, our claim holds.

It only remains to see that α matches to w if there exists a position j such that
w0Πk=1,`−1(αkwk)α` matches w[1..j] and w[j + 1..n] = w`. The total time is, clearly,
O
(
n logn(

∑
i=1,` pi)

)
; summing up, the time complexity of our algorithm is O(nm logn).

We now move on to the general case of patterns with bounded scope coincidence degree.
The matching problem for Patscd≤k can be still solved by a dynamic programming approach.

I Theorem 9. The matching problem for Patscd≤k is solvable in O
(
|w|2km

((k−1)!)2

)
time, where

w is the input word and m is the number of one-variable blocks occurring in the pattern.

5 The Hardness of Factorising a Word into Distinct Factors

So far, we presented a series of upper bounds for the time needed to solve various matching
problems. In this section, we prove the NP-completeness of the following problem.
UnFact
Instance: A word w and an integer k ≥ 1.
Question: Does there exist a unique factorisation of w with size at least k?

As shall be explained later on, this has implications on the injective version of the
matching problem, which can be solved in O(nk−1m

(k−1)! ) (k and m are the numbers of variables
and one-variable blocks, respectively), just as the general matching problem.

For the completeness result, we use the following as the base problem for our reduction.
3D-Match
Instance: An integer ` ∈ N and a set S ⊆ {(p, q, r) | 1 ≤ p < `+ 1 ≤ q < 2`+ 1 ≤ r ≤ 3`}.
Question: Does there exist a subset S′ of S with cardinality ` such that, for each two elements
(p, q, r), (p′, q′, r′) ∈ S′, p 6= p′, q 6= q′ and r 6= r′?

An instance of 3D-Match is a set S of triples, the 3 components of which carry values
from {1, 2, . . . , `}, {`+ 1, `+ 2, . . . , 2`} and {2`+ 1, 2`+ 2, . . . , 3`}, respectively. A solution
for (S, `) is a selection of ` triples such that no two of them coincide in any component.
Hence, for every i ∈ {1, 2, 3}, if we collect all the ith components of the ` triples of a solution,
then we get exactly the set {(i− 1)`+ 1, (i− 1)`+ 2, . . . , i`}. For the NP-completeness of
3D-Match see [15].

We define a mapping g from 3D-Match to UnFact. Let (S, `) be an instance of
3D-Match, where ` ∈ N, S = {s1, s2, . . . , sk} with si = (pi, qi, ri), 1 ≤ i ≤ k. Next, we con-
struct a word w over the alphabet Σ = {a, ¢i, $i, bi,j ,%i,j , l,#l,#0 | 1 ≤ i ≤ k, 1 ≤ j ≤ 4, 1 ≤
l ≤ 3`}. Let v = v1v2 · · · vk, where, for every 1 ≤ i ≤ k, vi = ¢i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a $i.
Furthermore, we define û = 1 #1 · · ·#3`−2 (3`−1) #3`−1 (3`) #3` and u = u1u2 · · ·uk, where,
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for every 1 ≤ i ≤ k, ui = bi,1 %i,1 bi,2 %i,2 bi,3 %i,3 bi,4 %i,4. Finally, u = a #0 û u, w = uv,̂̀= 7`+ 6(k − `) + |u| and g(S, `) = (w, ̂̀). This concludes the definition of the mapping g.
In the following, let (S, `) be a fixed instance of 3D-Match and (w, ̂̀) = g(S, `).

We now explain the mapping g in an intuitive way. Every triple si = (pi, qi, ri) of S
is represented by vi = ¢i pi a bi,1 bi,2 qi a bi,3 bi,4 ri a $i, where the factors pia, qia and ria
represent the single components. Each of the remaining symbols ¢i, $i, bi,j , 1 ≤ j ≤ 4, has
exactly one occurrence in w; thus, every factor that contains one of these will necessarily be
distinct. Hence, the factors pia, qia and ria are the only ones that may coincide in vi and
some vj , i 6= j, and this is only the case if the triples si and sj contain common elements.

We now define two special factorisations of the factors vi, 1 ≤ i ≤ k. The factorisation
¢ipi | abi,1 | bi,2qi | abi,3 | bi,4ri | a$i is called safe and the factorisation ¢i | pia | bi,1bi,2 |
qia | bi,3bi,4 | ria | $i is called unsafe. The safe factorisation contains only distinct factors,
whereas the factors pia, qia and ria of the unsafe factorisation may also occur in the unsafe
factorisation of some vj ; thus, the situation that si and sj have common elements translates
into the situation that the unsafe factorisations of vi and vj have common factors.

If {st1 , st2 , . . . , st`} is a solution of (S, `), then we can factorise all vti , 1 ≤ i ≤ `, into the
unsafe factorisation, all other vj , j /∈ {t1, t2, . . . , t`}, into the safe factorisation and the prefix
u into |u| individual factors. This yields a factorisation of w with |u| + 7` + 6(k − `) = ̂̀
factors and its uniqueness follows from the fact that {st1 , st2 , . . . , st`} is a solution of (S, `)
and that the symbols from u do not occur as single factors in v.

I Lemma 10. If (S, `) has a solution, then there is a unique factorisation of w with size ̂̀.
Proving the converse of Lemma 10 is more difficult. The idea is to first show that if there

exists a unique factorisation of w of size ̂̀, then there also exists one with at least the same
size and the following properties: (1) no factor overlaps the boundaries between u and v or
between some vi and vi+1, 1 ≤ i ≤ k − 1, (2) u is split into |u| factors. Property (1) is easily
achieved by simply splitting the factors that may overlap the critical positions; this does
only increase the number of factors and the uniqueness of the factorisations is guaranteed by
the fact that the new factors must contain symbols with only one occurrence in w.

I Lemma 11. If w has a unique factorisation f with size ̂̀, then, for some ̂̀′ ≥ ̂̀, there
exists a unique factorisation f ′ of w of size ̂̀′, such that no f ′-factor overlaps positions |u|
and |u|+ 1 or positions |uv1v2 · · · vi| and |uv1v2 · · · vi|+ 1, for some i, 1 ≤ i ≤ k − 1.

Property (2) requires a more careful argument. If u is not split into |u| factors, then in u
there exists a factor xπ, where x is a single symbol and π is some non-empty factor, and xπ
is also a factor of the factorisation (with Lemma 11 we can assume that xπ lies inside of u).
If |π| ≥ 2, then we cut off x, which results in two factors x and π. Since |π| ≥ 2, the factor π
must contain a symbol with only one occurrence in w, which means that it is not repeated.
If x is repeated, then this can only happen in some vi and we can now show that the factor
x must have a neighbour in vi that starts with a symbol y ∈ {bi,1, bi,2, bi,3, bi,4, ¢i, $i}. We
now simply append x to this neighbour. If y ∈ {¢i, $i}, then the factor is distinct since ¢i and
$i have only one occurrence in w. If, on the other hand, y ∈ {bi,1, bi,2, bi,3, bi,4}, then this
new factor can only be repeated in u; but all factors in u of size at least 2 contain a symbol
that does not occur in v, thus, the newly constructed factor is distinct. If |π| = 1, then the
situation is easier, since we can simply cut xπ into x and π and if one of these new factors is
repeated, then we can append it to its other neighbour without producing a repeated factor.

I Lemma 12. If w has a unique factorisation f of size ̂̀, then, for some ̂̀′ ≥ ̂̀, w has a
unique factorisation f ′ of size ̂̀′, such that every single symbol of u is an f ′-factor.
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Finally, we show the converse of Lemma 10. If there is a unique factorisation f of w of sizề, then we can assume that it is of the form ensured by Lemmas 11 and 12. We can further
conclude that if a single symbol of some vi is a factor of f , then it is ¢i or $i, since otherwise
it would be repeated in u. In particular, this means that no vi can be split into more than 7
factors and if a vi is split in exactly 7 factors, then this must be the safe factorisation defined
above. Now if f splits T of the vi, 1 ≤ i ≤ k, into 7 factors and the remaining k − T of the
vi, 1 ≤ i ≤ k, into 6 or less factors, then f ′ splits w into at most |u|+ 7T + 6(k − T ) factors.
Since ̂̀= 7`+ 6(k − `) + |u| ≤ |u|+ 7T + 6(k − T ) must be satisfied, we can conclude ` ≤ T ,
which means that at least ` factors vi are factorised into the safe factorisation. This directly
implies that the corresponding ` triples from S constitute a solution for (S, `).

Since the reduction is clearly polynomial, the main result, i. e., Theorem 14, follows.
I Lemma 13. If there exists a unique factorisation of w of size ̂̀, then (S, `) has a solution.

I Theorem 14. UnFact is NP-complete.

We note that if a word has a unique factorisation of size k, then it also has a unique
factorisation of size k′ for all 1 ≤ k′ ≤ k. This is due to the fact that the uniqueness of a
factorisation is preserved if we join a longest factor with one of its neighbours. In particular,
this means that (w, k) is a positive UnFact instance if and only if x1x2 · · ·xk matches w in
an injective way; thus, we can conclude that inj-Match is NP-complete for many classes of
patterns for which its non-injective version can be easily solved in polynomial time.
I Corollary 15. inj-Match is NP-complete for Patreg, Patnc, Patr

var≤k, Patscd≤k, k ≥ 1.
We wish to point out that our proof of Theorem 14 requires an unbounded alphabet

and it is open whether UnFact is NP-complete for fixed alphabets.3 Consequently, it
does not imply that the injective matching problem for the classes of patterns mentioned in
Corollary 15 is still NP-complete if the alphabet is fixed. However, for the injective matching
problem with a fixed alphabet, we can show a similar, but slightly weaker, result:
I Theorem 16. inj-Match is NP-complete for Patnc and Patscd≤k, k ≥ 1, if the alphabet
is constant.

Theorem 16 can also be proved by a reduction from 3D-Match. We shall give a definition
of this reduction, but omit the proof of its correctness, and leave it to the reader.

Let (S, `) be an instance of 3D-Match, where ` ∈ N, S = {s1, s2, . . . , sk} with
si = (pi, qi, ri), 1 ≤ i ≤ k. We define a word w over the alphabet Σ = {a, b, $, ¢,#}
and a pattern α which uses the variables xi,j , 1 ≤ i ≤ `, 1 ≤ j ≤ 3, and yi, zj , 1 ≤
i ≤ ` + 1, 1 ≤ j ≤ 2` + 2. We first define the factors βi = x2

i,1x
2
i,2x

2
i,3, 1 ≤ i ≤ `,

ui = (apib)2(aqib)2(arib)2, 1 ≤ i ≤ k, and #i = (#¢1#¢2# · · ·#¢i#)m, 1 ≤ i ≤ 2k + 2,
where m = max{2k + 2, 3`} + 1. Then, in order to form α and w, these factors are
combined as follows: α = zm1 y1 z

m
2 β1 z

m
3 y2 z

m
4 β2 z

m
5 y3 z

m
6 β3 · · ·β` zm2`+1 y`+1 z

m
2`+2 and

w = #1 $1 #2 u1 #3 $3 #4 u2 #5 $5 #6 u3 · · ·uk #2k+1 $2k+1 #2k+2.
A collection {st1 , st2 , . . . , st`} of ` elements from S translates into a substitution h with

h(α) = w as follows. For every 1 ≤ i ≤ `, the factor zm2iβizm2i+1 is mapped to #2tiuti#2ti+1
and the variables yl, 1 ≤ l ≤ `+ 1, with only one occurrence, are mapped to the remaining
factors in between. Furthermore, it can be shown that if {st1 , st2 , . . . , st`} is a solution for
(S, `), then h is injective. Proving the other direction is more difficult and requires a lemma
which states that any substitution h with h(α) = w necessarily maps every βi to some uj .

3 As shown in [7], the variant where we require the factorisation to have short factors instead of a large
size is NP-complete also for fixed alphabets.
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