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Abstract. A factorisation of a string is equality-free if each two factors
are different; its size is the number of factors and its width is the max-
imum length of any factor. To decide, for a string w and a number m,
whether w has an equality-free factorisation with a size of at least (or a
width of at most) m are NP-complete problems. We further investigate
the complexity of these problems and also study the converse problems
of computing a factorisation that is to a large extent not equality-free,
i. e., a factorisation of size at least (or width at most) m such that the
total number of different factors does not exceed a given bound k.
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1 Introduction

Many classical hard string problems can be defined in terms of factorisations
of strings that satisfy certain properties. For example, the well-known problem
of computing the shortest common superstring of given strings w1, . . . , wk (see,
e. g., [1]) asks whether there exists a short string x that, for every i, 1 ≤ i ≤ k,
has a factorisation ui · wi · vi. Since a string w is a subsequence of a string u
if u has a factorisation v1 · v2 · · · vk and w has a factorisation vi1 · vi2 · · · vin
with 1 ≤ i1 < . . . < in ≤ k, the famous Longest Common Subsequence
and Shortest Common Supersequence problems can as well be described
in terms of factorisations. Another example of a string problem that has recently
attracted much attention is the problem to decide for two words x and y and a
given k whether they have factorisations u1 · u2 · · ·uk and v1 · v2 · · · vk, respec-
tively, such that (u1, . . . , uk) is a permutation of (v1, . . . , vk), i. e., the Minimum
Common String Partition problem. See [1] for a survey on the multivariate
analysis of NP-hard string problems.

In this paper we are concerned with so-called equality-free factorisations, re-
cently introduced in [2, 3]. A factorisation u1 · u2 · · ·uk is equality-free if every
factor is distinct, i. e., |{u1, u2, . . . , uk}| = k. In [2, 3], Condon et al. investigate
the problem of deciding whether a given string w has an equality-free factorisa-
tion of width at most m, where the width is the maximum length of any factor.1

A motivation for this problem comes from gene synthesis. Since it is only possi-
ble to produce short pieces of DNA (so-called oligo fragments) artificially, longer

1 This problem is also mentioned in [1]; furthermore, in [6], the hardness of computing
an equality-free factorisation with only palindromes as factors is investigated.
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DNA sequences are usually obtained by a self-assembly of many oligos into the
desired DNA sequence; thus, the task is to find the right oligos for successful
self-assembly. Computing equality-free factorisations with bounded width is an
abstraction of this problem: the width bound represents the necessity for short
oligos and the equality-freeness models the condition that each two oligos must
not be too similar in order to not hybridise with each other (see [2,3] for more de-
tails). This problem is NP-complete, even if the width bound is 2 or the alphabet
is binary (see [3]). We revisit this problem and show that it is fixed-parameter
tractable if both the width bound and the alphabet size are parameters.

If instead of a small width, we are looking for an equality-free factorisation
with a large size, i. e., a large number of factors, then we obtain a different
NP-complete problem (see [4]). This variant is motivated by injective pattern
matching with variables (which is identical to the special case of solving word
equations, where the left side of the equation does not contain variables and
different variables must be replaced by different words), see [4] for more details.
We show that computing equality-free factorisations with large size is fixed-
parameter tractable if parameterised by the size bound. However, the question
whether the problem remains hard for fixed alphabets is still open.

We also consider the converse of computing equality-free factorsations, i. e.,
computing factorisations that are to a large extent not equality-free (or repet-
itive). Our measure of repetitiveness is the number of different factors in the
factorisation. If this number is small (in comparison to the size or width of the
factorisation), then many factors are repeated. This yields an interesting combi-
natorial question in its own right: how many different words are needed in order
to cover a given word? Furthermore, it is motivated by data compression, since
a factorisation with many repeated factors can be used in order to compress a
word, e. g., by using a dictionary of the different factors. We can show that de-
ciding on whether a word w has a factorisation of width at most m and with at
most k different factors is NP-complete, even if m = 2. On the other hand, if k
or the alphabet size is a constant, then the problem can be solved in polynomial
time. In contrast to this, if m is a lower bound on the size of the factorisation,
then the problem can be solved in polynomial time if either m, k or the alphabet
size is a constant, but it is open, whether the problem is NP-complete in general.

As a tool for proving some of our main results, we also investigate the problem
of deciding whether a given word w has an equality-free factorisation with only
factors from a given finite set F of words. It turns out that this problem is NP-
complete even for binary alphabets. However, it is in FPT if |F | is a parameter
and in P if we drop the equality-freeness condition.

Due to space constraints, not all results are formally proven.

2 Basic Definitions

Let N = {1, 2, 3, . . .}. By |A|, we denote the cardinality of a set A. Let Σ be a
finite alphabet of symbols. A word or string (over Σ) is a sequence of symbols
from Σ. For any word w over Σ, |w| denotes the length of w and ε denotes the
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empty word, i. e., |ε| = 0. The symbol Σ+ denotes the set of all non-empty words
over Σ and Σ∗ = Σ+ ∪{ε}. For the concatenation of two words w1, w2 we write
w1 ·w2 or simply w1w2. For every symbol a ∈ Σ, by |w|a we denote the number
of occurrences of symbol a in w. We say that a word v ∈ Σ∗ is a factor of a word
w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1vu2. If u1 = ε or u2 = ε, then
v is a prefix (or a suffix, respectively) of w. For every i, 1 ≤ i ≤ |w|, by w[1..n]
we denote the prefix of w with length n. As a convention, in this work every set
of words is always a finite set.

By the term trie, we refer to the well-known ordered tree data structure for
representing sets of words.

Factorisations For any word w ∈ Σ+, a factorisation of w is a tuple p =
(u1, u2, . . . , uk) ∈ (Σ+)k, k ∈ N, with w = u1u2 . . . uk. Every word ui, 1 ≤ i ≤
k, is called a factor (of p) or simply p-factor. For the sake of readability, we
sometimes represent a factorisation (u1, u2, . . . , uk) in the form u1 � u2 � . . . � uk.

Let p = (u1, u2, . . . , uk) be an arbitrary factorisation. We define the following
parameters: sf(p) = {u1, u2, . . . , uk} (the set of factors), s(p) = k (the size),
c(p) = | sf(p)| (the cardinality) and w(p) = max{|ui| | 1 ≤ i ≤ k} (the width). A
factorisation p is equality-free if s(p) = c(p).

Problems We now define the different problems to be investigated in this work.

Equality-Free Factor Cover (EFFC)
Instance: A word w and a set F of words represented as a trie.
Question: Does there exist an equality-free factorisation p of w with sf(p) ⊆ F?

Maximum Equality-Free Factorisation Size (MaxEFF-s)
Instance: A word w and a number m, 1 ≤ m ≤ |w|.
Question: Does there exist an equality-free factorisation p of w with s(p) ≥ m?

Maximum Repetitive Factorisation Size (MaxRF-s)
Instance: A word w, numbers m, 1 ≤ m ≤ |w|, and k, 1 ≤ k ≤ |w|.
Question: Does there exist a factorisation p of w with s(p) ≥ m and c(p) ≤ k?

The problems MaxEFF-s and MaxRF-s where m is interpreted as an up-
per bound on the width instead of a lower bound on the size are denoted by
MinEFF-w and MinRF-w. In the remainder of the paper, the symbol m is
reserved as the bound on the size or width (depending on the problem under
consideration) of the factorisation and k as the bound on the cardinality of the
factorisation, respectively. For any problem K from above and any fixed alphabet
Σ, KΣ denotes the problem K, where the input word is over Σ.

We shall now illustrate these definitions with an example.

Example 1. Let p = aab � ba � cba � aab � ba � aab be a factorisation. We note
that sf(p) = {aab, ba, cba}, s(p) = 6, c(p) = 3 and w(p) = 3. The factorisation p
is not equality-free. Furthermore, (abbcbaabbc, 6) ∈ MaxEFF-s (witnessed by
a �bb �c �ba �ab �bc), whereas (abbcbaabbc, 7) /∈MaxEFF-s. On the other hand,
((aabbcc)2,m) ∈ MinEFF-w if and only if m ≥ 2, whereas ((aabbcc)3,m) ∈
MinEFF-w if and only if m ≥ 3.

Parameterised Complexity We consider decision problems as languages over
some alphabet Γ . A parameterisation (of Γ ) is a polynomial time computable
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mapping κ : Γ ∗ → N and a parameterised problem is a pair (Q, κ), where Q is a
problem (over Γ ) and κ is a parameterisation of Γ . We usually define κ implicitly
by describing which part of the input is the parameter. A parameterised problem
(Q, κ) is fixed-parameter tractable if there is an fpt-algorithm for it, i. e., an
algorithm that solves Q on input x in time O(f(κ(x)) × p(|x|)) for recursive f
and polynomial p. The class of fixed-parameter tractable problems is denoted by
FPT. Note that if a parameterised problem becomes NP-hard if the parameter is
set to a constant, then it is not in FPT unless P = NP. For detailed explanations
on parameterised complexity, the reader is referred to [5].

3 Main Results

We begin this section with some preliminary observations that are necessary for
proving some of the main results.

If in an equality-free factorisation p, we join one of the longest factors with
one of its neighbours, then the resulting factorisation is still equality-free and
has size s(p)− 1.

Observation 1. A word w has an equality-free factorisation p with s(p) ≥ m,
m ∈ N, if and only if it has an equality-free factorisation p′ with s(p′) = m.

We can check whether a factorisation p of a word w is equality-free in time
O(|w|) by inserting all factors in a trie and checking for each factor if it is already
contained in the trie. If a set F of words is given as a trie, then we can check in
a similar way whether or not sf(p) ⊆ F in time O(|w|).
Observation 2. Let w ∈ Σ+ and let p be a factorisation of w. It can be decided
in time O(|w|) whether or not p is equality-free.

Observation 3. Let w ∈ Σ+ and let F be a set of words over Σ represented as
a trie. It can be decided in time O(|w|) whether or not sf(p) ⊆ F .

The following result is straightforward, but it nevertheless contributes to our
understanding of the complexity of the considered problems.

Proposition 1. The problems EFFC, MaxEFF-s, MinEFF-w, MaxRF-s and
MinRF-w are in FPT with respect to parameter |w|.

3.1 The Problem EFFC

As mentioned in the introduction, the problem EFFC is not our main concern.
However, its investigation, as we shall see, yields some valuable insights with
respect to equality-free factorisations and we also obtain an algorithm that shall
be used later in order to prove tractability results with respect to the problems
MaxRF-s and MinRF-w.

We first show that EFFC is NP-complete, even for fixed binary alphabets.

Theorem 1. Let Σ be an alphabet with |Σ| = 2. Then EFFCΣ is NP-complete.
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Proof. Since we can guess a factorisation p and check in polynomial time whether
it is equality-free and sf ⊆ F , EFFCΣ is in NP. Let (w,m) be an instance of
MinEFF-wΣ and let F be the set of all factors of w of length at most m. We
note that |F | ≤

∑m
i=1 |w| − (i− 1) ≤ m× |w| and F can be constructed in time

O(|F |×m). The word w has an equality-free factorisation p with w(p) ≤ m if and
only it has an equality-free factorisation p′ with sf(p′) ⊆ F . Since MinEFF-wΣ
is NP-complete (see [3]), EFFCΣ is NP-complete as well.

In addition to the alphabet size, the cardinality of the given set F of factors
is another natural parameter and we can show that the hardness is not preserved
if we bound |F | by a constant (in contrast to bounding |Σ| (Theorem 1)).

Theorem 2. The Problem EFFC can be solved in time O(|w||F |+1).

Theorem 2 is obtained by an analysis of a brute-force algorithm, coupled
with the observation that if an equality-free factorisation p satisfies sf(p) ⊆ F ,
then its size must be bounded by |F |. As we shall see next, a more sophisticated
approach, which relies on encoding the different factors of F as single symbols
and factorisations as words over these symbols, yields an fpt-algorithm for EFFC
with respect to the parameter |F | (note that this does not make the algorithm
of Theorem 2 obsolete, since for large |F | it might still be faster than the fpt-
algorithm).

Theorem 3. The Problem EFFC can be solved in time O(|w|×(2|F |−1)×|F |!).

Proof. Let w ∈ Σ∗ and F = {u1, u2, . . . , u`} be an instance of EFFC. Fur-
thermore, let Γ = {1, 2, . . . , `}, let h : Γ ∗ → Σ∗ be a morphism defined by
h(i) = ui, i ∈ Γ , and let S = {v ∈ Γ+ | |v|i ≤ 1, i ∈ Γ}. There exists a word
v = j1j2 . . . jm ∈ S with h(v) = w if and only if p = (uj1 , uj2 , . . . , ujm) is an
equality-free factorisation of w with sf(p) ⊆ F . Therefore, we can solve EFFC
by checking for each word v ∈ S whether or not h(v) = w, which can be done in
time O(|w|×|S|). We conclude the prove by observing that S =

⋃
Γ ′⊆Γ,Γ ′ 6=∅ SΓ ′ ,

where SΓ ′ = {v ∈ Γ ′+ | |v|i = 1, i ∈ Γ ′}. Since |SΓ ′ | = |Γ ′|! and the sets SΓ ′

are pairwise disjoint, we have |S| =
∑
Γ ′⊆Γ,Γ ′ 6=∅ |Γ ′|! ≤

∑2`−1
i=1 `! = (2`− 1)× `!.

Since ` = |F |, we obtain a total running time of O(|w| × (2|F | − 1)× |F |!).

Next, we investigate the impact of the equality-freeness condition itself, i. e.,
we consider the problem FC, which is identical to EFFC with the only difference
that the factorisation p of w with sf(p) ⊆ F does not need to be equality-
free. This problem is similar to the problem Exact Block Cover (recently
investigated by Jiang et al. in [8]), which differs from FC only in that instead of
a set we are given a sequence of factors and every factor of the sequence has to
be used exactly once (in particular, this coincides with the variant of Minimum
Common String Partition where the partition of one of the two strings is
already fixed). While Exact Block Cover is NP-complete (see [8]), FC can be
solved in polynomial time by dynamic programming. This demonstrates that it
is really the equality-freeness condition that makes EFFC hard and, in addition,



6 Markus L. Schmid

we obtain a useful tool to devise algorithms for solving variants of the problems
MaxRF-s and MinRF-w later on in Section 3.3.

Theorem 4. The problem FC can be solved in time O(|F | × |w|2).

Proof. We define a dynamic programming algorithm. Let w be a word and F =
{u1, u2, . . . , u`}. For every n,m, 1 ≤ m ≤ n ≤ |w|, let T [n,m] = 1 if there exists
a factorisation p of size m of w[1..n] with sf(p) ⊆ F and T [n,m] = 0 otherwise.
Obviously, (w,F ) is a positive instance of FC if and only if T [|w|,m] = 1 for
some m, 1 ≤ m ≤ |w|. We can now solve FC on instance (w,F ) by computing
all the T [n,m], 1 ≤ m ≤ n ≤ |w|, in the following way.

In time O(|w|×|F |), we first construct a table S with |w| rows and ` columns
with S[n, i] = 0, 1 ≤ n ≤ |w|, 1 ≤ i ≤ `. Then, by using the Knuth-Morris-Pratt
algorithm [9], for every i, 1 ≤ i ≤ `, we set S[n, i] = 1 if ui is a suffix of w[1..n].
Since the Knuth-Morris-Pratt algorithm has running time O(|w|+ |ui|), building

up this table can be done in time
∑`
i=1(|w|+ |ui|) ≤

∑`
i=1 2|w| = O(|F | × |w|).

Then, for every n,m, 1 ≤ m ≤ n ≤ |w|, we initialise T [n,m] = 0, which requires
time O(|w|2), and, for every i, 1 ≤ i ≤ `, we set T [|ui|, 1] = 1 if S[|ui|, i] = 1,
which requires time O(|F |). We note that, for every n,m with 2 ≤ m ≤ n ≤ |w|,
T [n,m] = 1 if and only if there exists a word ui ∈ F that is a suffix of w[1..n] (i. e.,
S[n, i] = 1) with T [n−|ui|,m−1] = 1. Thus, for every n,m, 2 ≤ m ≤ n ≤ |w|, we
can compute T [n,m] in time O(|F |), provided that all T [n′,m−1], n′ < n, have
already been computed, which is satisfied if we iterate over m, 2 ≤ m ≤ |w|, in
an outer loop and over n, m ≤ n ≤ |w|, in an inner loop. Hence, all the elements
T [n,m], 1 ≤ m ≤ n ≤ |w|, are computed in time O(|F | × |w|2).

3.2 The Problems MaxEFF-s and MinEFF-w

In this section, we investigate the problems MinEFF-w and MaxEFF-s. Their
NP-completeness is established in [2] and [4], respectively, but in [3] it is ad-
ditionally shown that MinEFF-w remains NP-complete even if the bound on
the width is 2 or the alphabet is fixed and binary. In particular, this means
that, unless P = NP, MinEFF-w is not in FPT with respect to parameter m or
|Σ|. However, if we let both m and |Σ| be parameters at the same time, then
MinEFF-w is fixed-parameter tractable:

Theorem 5. MinEFF-wΣ can be solved in time O(mm2×|Σ|m+2 × |Σ|m).

Proof. Let (w,m) be an instance of MinEFF-wΣ . For every `, 1 ≤ ` ≤ m,
there are |Σ|` words of length ` and therefore

∑m
`=1 |Σ|` ≤ m × |Σ|m words of

length at most m. Consequently, if a factorisation p satisfies w(p) ≤ m, then
s(p) ≤ m × |Σ|m. Furthermore, if for an equality-free factorisation p of w we
have s(p) ≤ m × |Σ|m and w(p) ≤ m, then |w| ≤ m2 × |Σ|m. Hence, if |w| >
m2 × |Σ|m (which can be checked in time O(mm2×|Σ|m+2 × |Σ|m)), then there
is no equality-free factorisation p of w with w(p) ≤ m. If, on the other hand,
|w| ≤ m2 × |Σ|m, then we can enumerate all factorisations of w that have a
width of at most m and check for each such factorisation whether or not it is
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equality-free in time O(|w|) = O(m2 × |Σ|m) (see Observation 2). Since there

are at most m|w| ≤ mm2×|Σ|m such factorisations, the statement of the theorem
follows.

For the problem MaxEFF-s, i. e., deciding on the existence of an equality-
free factorisation with a size of at least m (instead of a width of at most m), we
encounter a slightly different situation. First of all, it is still an open problem
whether MaxEFF-s remains NP-complete if the alphabet is fixed:

Open Problem 1. Let Σ be an alphabet. Is MaxEFF-sΣ NP-complete?

From an intuitive point of view, for the problem MinEFF-w, the bound on
the width can conveniently be exploited in order to design gadgets for encoding
an NP-hard problem (see [3] and also the proof of Theorem 12). A lower bound
on the size seems to provide fewer possibilities for controlling the structure of the
factorisation, which makes it difficult to express another NP-complete problem
by MaxEFF-s (especially if we have only a constant number of symbols at our
disposal). On the other hand, a constant alphabet does not seem to help in order
to find an equality-free factorisation with a size of at least m in polynomial time.

However, if we consider m as a constant, then the problem is not NP-complete
anymore; in fact, it is even fixed-parameter tractable with respect to m:

Theorem 6. The problem MaxEFF-s can be solved in time O((m
2+m
2 − 1)m).

Proof. Let (w,m) be an instance of MaxEFF-s. If |w| ≥ Σm
i=1i = m2+m

2 , which

can be checked in time O((m
2+m
2 − 1)m), then the factorisation (u1, u2, . . . , um)

of w with |ui| = i, 1 ≤ i ≤ m−1, and |um| = |w|−|u1u2 . . . um−1| is equality-free,

since each two factors have a different length. If, on the other hand, |w| ≤ m2+m
2 −

1, then we can enumerate all factorisations of size m of w in time O(|w|m−1)
and, by Observation 2, check in time O(|w|) for each such factorisation whether
or not it is equality-free. Since w has an equality-free factorisation of size at
least m if and only if it has an equality-free factorisation of size exactly m
(see Observation 1), this solves the problem MaxEFF-s in time O(|w|m) =

O((m
2+m
2 − 1)m).

3.3 The Problems MaxRF-s and MinRF-w

In this section, we investigate the problem of finding a factorisation of a word w
with as few different factors as possible. Since (w) is always a solution, we also
impose an upper bound on the width of the factorisation or a lower bound on
its size. In a sense, a factorisation p of this kind is to a large extent repetitive,

since if k is much smaller than s(p) or |w|w(p) , then many factors must be repeated.

We shall see that if k or |Σ| are constants, then both MaxRF-s and MinRF-w
can be solved in polynomial time. If, on the other hand, m is a constant, then
MaxRF-s can be solved in polynomial time as well, whereas MinRF-w is NP-
complete even for m = 2. Unfortunately, we are not able to answer whether
MaxRF-s is NP-complete in general.



8 Markus L. Schmid

We now first investigate the problem MaxRF-s.

Theorem 7. The problem MaxRF-s can be solved in time O(k2 × |w|2k+3).

Proof. Let (w,m, k) be an instance of MaxRF-s with m ≤ |w| and k ≤ |w|
(otherwise, it would be a negative instance). Let Fw = {u | u is a factor of w}.
For every F ⊆ Fw with |F | ≤ k, we run the algorithm defined in the proof of
Theorem 4 on input (w,F ). If T [|w|, `] = 1, for an `, m ≤ ` ≤ |w|, then there is
a factorisation p of w with s(p) ≥ m and sf(p) ⊆ F ; since |F | ≤ k, this implies
c(p) ≤ k. To carry out this procedure, we have to enumerate all subsets F ⊆ Fw
with |F | ≤ k. Since |Fw| ≤ |w|2, for every `, 1 ≤ ` ≤ k, there are at most |Fw|` ≤
|w|2` subsets F ⊆ Fw with |F | = `. Thus, there are

∑k
i=1 |w|2i ≤ k × |w|2k

subsets to investigate. For each subset F , we run the algorithm of the proof of
Theorem 4 in time O(|F | × |w|2), and check for every `, m ≤ ` ≤ |w|, whether
or not T [|w|, `] = 1, which requires time O(|w|). Hence, the total running time
of this procedure is O(k × |w|2k × k × |w|3) = O(k2 × |w|2k+3).

From Theorem 7 we can conclude with moderate effort that MaxRF-s can
also be solved in time that is exponential only in m or |Σ|. To this end, we
observe that if, for an instance (w,m, k) of MaxRF-s, we have k ≥ |Σ|, then
splitting w in only factors of length 1 yields a factorisation p with c(p) ≤ |Σ| ≤ k
and s(p) = |w| ≥ m, and if k ≥ m, then any factorisation p of w of size m satisfies
c(p) ≤ m ≤ k and s(p) ≥ m. If, on the other hand, k is bounded by |Σ| or m,
then the procedure used in the proof of Theorem 7 has a running time that is
exponential only in |Σ| or m, respectively, which yields the following results:

Theorem 8. Let Σ be an alphabet. Then the problem MaxRF-sΣ can be solved
in time O(|Σ|2 × |w|2|Σ|+1).

Theorem 9. The problem MaxRF-s can be solved in time O(m2 × |w|2m+1).

The probably most interesting question, which, unfortunately, is still open is
whether the general version of MaxRF-s can also be solved in polynomial time.

Open Problem 2. Is MaxRF-s NP-complete?

We now turn to the problem MinRF-w. In an analogous way as done in
the proof of Theorem 7, we can show that MinRF-w can be solved in time
exponential only in k, too. The only difference is that instead of running the
algorithm of Theorem 4 for every subset of the set of all factors of w, it is
sufficient to only consider all subsets of the set of all factors of w that have a
length of at most m.

Theorem 10. MinRF-w can be solved in time O(k2 ×mk × |w|k+3).

In a similar way as Theorem 8 follows from Theorem 7, i. e., by bounding k
in terms of |Σ|, we can conclude from Theorem 10 the next result.

Theorem 11. Let Σ be an alphabet. Then the problem MinRF-wΣ can be solved
in time O(|Σ|2 ×m(|Σ|−1) × |w||Σ|+2).
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While for problem MaxRF-s it was also possible to bound k in terms of m,
for MinRF-w, we can only observe that (w,m, k) must be a positive instance

if k ≥ d |w|m e, but in case k < d |w|m e, the algorithm of the proof of Theorem 10
has a running time exponential in |w| and it does not seem possible to solely
bound k in terms of m. We now justify this intuition by showing that MinRF-w
is NP-complete, even if m = 2. First, we recall the hitting set problem (see [7]):

Hitting Set (HS)
Instance: U = {x1, . . . , x`}, S1, . . . , Sn ⊆ U and q ∈ N.
Question: Does there exist T ⊆ U with |T | ≤ q and T ∩ Si 6= ∅, 1 ≤ i ≤ n?

We now give a reduction from HS to MinRF-w withm = 2. Let (U, S1, . . . , Sn, q)
be an instance of HS. We assume that, for every i, j, 1 ≤ i < j ≤ n, |Si| = |Sj | =
r (note that HS reduces to the variant where all sets Si have the same cardinality
r by adding r− |Si| new elements to every Si). For the sake of concreteness, we
assume Si = {yi,1, yi,2, . . . , yi,r}, 1 ≤ i ≤ n. We define an alphabet Σ = U∪{$i,j |
1 ≤ i ≤ n, 1 ≤ j ≤ r − 1} ∪ {¢} and a word w = ¢¢ v1 ¢ v2 ¢ . . . ¢ vn ¢, where,
for every i, 1 ≤ i ≤ n, vi = yi,1$i,1yi,2$i,2 . . . $i,r−1yi,r. The following lemma
states that this transformation from an HS instance to a word over Σ is in fact
a reduction from HS to MinRF-w.

Lemma 1. There exists a set T ⊆ U with |T | ≤ q and T ∩ Si 6= ∅, 1 ≤ i ≤ n, if
and only if w has a factorisation p with w(p) ≤ 2 and c(p) ≤ n(r − 1) + q + 1.

Proof. We start with the only if direction and assume that there exists a set
T ⊆ U with |T | ≤ q and T ∩Si 6= ∅, 1 ≤ i ≤ n. We now construct a factorisation
p of w with the desired properties. We let every single occurrence of ¢ be a factor
of p; thus, it only remains to split every vi, 1 ≤ i ≤ n, into factors of size at
most 2, which is done as follows. For every i, 1 ≤ i ≤ n, let ji, 1 ≤ ji ≤ r, be
arbitrarily chosen such that yi,ji ∈ T (since T ∩Si 6= ∅, 1 ≤ i ≤ n, such ji exist).
Then, for every i, 1 ≤ i ≤ n, we factorise vi into

yi,1$i,1 � yi,2$i,2 � . . . � yi,ji−1$i,ji−1 � yi,ji � $i,jiyi,ji+1 � . . . � $i,r−1yi,r .

Obviously, this results in a factorisation p of w with w(p) ≤ 2. Furthermore, sf(p)
contains the factor ¢, at most |T | factors x with x ∈ T and, for every i, 1 ≤ i ≤ n,
j, 1 ≤ j ≤ r − 1, a distinct factor of length 2 that contains the symbol $i,j (the
distinctness of these factors follows from the fact that each symbol $i,j has only
one occurrence in w). This implies that c(p) ≤ 1+|T |+n(r−1) ≤ 1+q+n(r−1),
which concludes the only if direction of the proof.

In order to prove the if direction, we assume that there exists a factorisation
p of w with w(p) ≤ 2 and c(p) ≤ 1 + q+n(r− 1). We now modify p step by step
such that every modification maintains w(p) ≤ 2 and c(p) ≤ 1 + q + n(r − 1).
Since w starts with ¢¢ and w(p) ≤ 2, we can conclude that ¢ or ¢¢ is a factor
of p. If ¢¢ is a factor of p, then we can split it into ¢ � ¢ without increasing c(p),
since the factor ¢¢ is then not a factor of p anymore and we get at most ¢ as a
new factor. Every factor of p that contains the symbol ¢ is either the factor ¢ or
of the form x¢ or ¢x for some x ∈ U . If, for an x ∈ U , we split all occurrences of
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factor x¢ in p into x � ¢, then we may produce the new factor x (recall that ¢ is
already a factor), but we also necessarily lose x¢ as a factor; thus, c(p) does not
increase. If we apply this modification with respect to all x ∈ U and all factors
x¢ and ¢x, then we obtain a factorisation in which every single occurrence of the
symbol ¢ in w is also a factor of p, w(p) ≤ 2 and c(p) ≤ 1+q+n(r−1). For every
i, 1 ≤ i ≤ n, |vi| is odd, which implies that the factorisation of vi (according to
p) must contain a factor of length 1 and, by the structure of vi, this factor must
be of the form x ∈ U . This particularly implies that for the set T of all elements
of U that occur as a factor in p, we must have T ∩ Si 6= ∅, 1 ≤ i ≤ n. Now sf(p)
contains ¢, all n(r−1) factors containing a symbol $i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ r−1,
and the factors in T . Thus, c(p) = 1 + n(r − 1) + |T | ≤ 1 + n(r − 1) + q, which
implies |T | ≤ q.

We note that the MinRF-w instance (w, 2, n(r−1)+q+1) can be constructed
from the HS instance (U, S1, . . . , Sn, q) in polynomial time and that MinRF-w is
in NP (we can guess and verify a factorisation). Hence, from the NP-completeness
of HS (see [7]) and Lemma 1, we can conclude the following:

Theorem 12. The problem MinRF-w is NP-complete even if m ≤ 2.
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