Jumping Finite Automata:
Characterizations and Complexity

Henning Fernau, Meenakshi Paramasivan*, and Markus L. Schmid

Fachbereich 4 — Abteilung Informatik, Universitat Trier, D-54286 Trier, Germany,
{Fernau,Paramasivan,MSchmid}@uni-trier.de

Abstract. We characterize the class of languages described by jump-
ing finite automata (i.e., finite automata, for which the input head after
reading (and consuming) a symbol, can jump to an arbitrary position
of the remaining input) in terms of special shuffle expressions. We can
characterize some interesting subclasses of this language class. The com-
plexity of parsing these languages is also investigated.

1 Introduction

Throughout the history of automata theory, the classical finite automaton has
been extended in many different ways: two-way automata, multi-head automata,
automata with additional resources (counters, stacks, etc.) and so on. However,
for all these variants, it is always the case that the input is read in a continuous
fashion. On the other hand, there exist models that are closer to the classical
model in terms of computational resources, but that differ in how the input is
processed (e.g., restarting automata [17] and biautomata [13]). One such model
that has drawn comparatively little attention are the jumping finite automata
(JFA) introduced by Meduna and Zemek [15,16], which are like classical finite
automata with the only difference that after reading (i. e., consuming) a symbol
and changing in a new state, the input head can jump to an arbitrary position
of the remaining input.

We provide a characterization of the JFA-languages in terms of expressions
using shuffle, union and iterated shuffle, which enables us to put them into the
context of classical formal language results from around 1980. This also resolves
an open problem in [15]. By showing that any such expression is equivalent to
one with a star-height (with respect to iterated shuffle) of at most 1, we obtain a
normal form for this language class. If we interpret general finite automata, i. e.,
finite automata the transitions of which can be labeled by words instead of single
symbols, as jumping automata, then we obtain a much more powerful model.
This is demonstrated by showing that the universal word problem for JFA can
be solved in polynomial time (for fixed alphabets), whereas it is NP-complete
for general JFA, even for finite languages over a fixed binary alphabet.

Due to space restrictions, results marked with (x) are not proven here.

* Corresponding author.

2 H. Fernau, M. Paramasivan, M. L. Schmid

Jumping Finite Automata. Following Meduna and Zemek, we denote a gen-
eral finite machine as M = (Q, X, R, s, F'), where @ is a finite set of states, X
is the input alphabet, ¥ N Q = (), R is a finite set of rules of the form py — ¢
where p,q € Q and y € X*, s € Q) is the start state and F' C Q is a set of final
states. If all rules py — ¢ € R satisfy |y| < 1, then M is a finite machine.

We interpret M in two ways:

— As a (general) finite automaton, a configuration of M is any string in QX™*.
The binary move relation on QX*, written as =, is defined as follows:

pw=qz:<= Ipy—>qceR:w=yz.

— As a (general) jumping finite automaton, a configuration of M is any string
in X*QX*. The binary jumping relation on X*QX*, written as m, satisfies:

vpw V'@ = Fpy—sqgeERITzeX tw=yz AN vz=1"2".

If M is a (general) finite machine, we can hence obtain the following languages:
Lpa(M)={weX*:3 fe F:sw="f} and
Lipa(M)={we X*:FJuveX* I feF:w=uvAusv~* f}.
This defines us the language classes RESG (accepted by (generalized) finite au-
tomata), JFA (accepted by jumping finite automata, or JFAs for short) and
GJFA (accepted by general jumping finite automata, or GJFAs for short). CFL
denotes the class of context-free languages.

2 Operations on Languages and Their Properties

The reader is assumed to be familiar with the standard operations on formal
languages, like catenation, union and iterated catenation, aka Kleene star.

Definition 1. Letu,v € X*, the shuffle operation, denoted by LU, is a binary op-
eration on words, described by u v = {Z1Y1T2Y2 - .. TpYn : U = T1To ... Ty, U =
YIY2 - Yn, Tiyyi € X1 < i < myn > 1}. It is extended on languages in the
natural way: for Ly, Ly C X%, Ly W Ly :={z:z€axWy,x € L1,y € La}.

Definition 2. For L C X*, the iterated shuffle of L is defined by:

LY .= U LY where L0 = {e} and LYt .= =ty

n=0

Let us now recall the following computation rules from [8].
Proposition 1. Let My, My, M3 be arbitrary languages.

1. My W My = Myl My (commutative law)
2. (My w Ms) W Ms = My W (M W M3) (associative law)
3. My w (MyU M3) = My Wi My U My Wi M3 (distributive law)

Jumping Finite Automata 3

4o (M1 U My)™" = (My)™ 7w (M)
5. (Mlm’*)u’* = (Ml)u’*
6. (Myw Mp™)™ = (M w (My U Ma)™ ™) U {e}

The second, third and fifth rule are also true when you consider (iterated) cate-

nation instead of (iterated) shuffle. This is no coincidence, as we will see. The

sixth rule will play a crucial réle in the proof of our main normal form result.
We can deduce from the first three computation rules the following:

Proposition 2. (*) (2%, U,w, 0, {c}) is a commutative semiring.
Definition 3. The set of all permutations of w, perm(w), is defined as follows:

{e}, w| =0
{a} Wperm(u), w=a-u,a € X, uecy*

perm(w) = {

For L C X*, perm(L) = {J,,c, perm(w).

We summarize two important properties of perm in the following two lemmas.

Lemma 1. perm : 2% — 2" is a hull operator, i.e., it is extensive, (mono-
tone) increasing and idempotent.

By the well-known correspondence between hull operators and (systems of)
closed sets, we will also speak of perm-closed languages in the following, i.e.,
languages L satisfying perm(L) = L. Such languages are also called commutative.

Lemma 2. The set {perm(w) : w € X*} is a partition of X*. There is a nat-
ural bijection between this partition and the set of functions N*, given by the
Parikh mapping 75 : £* — N¥ w — (a — |wl|,), where |wl|, is the number of
occurrences of a in w. Namely, {perm(w) : w € X¥*} = n(rx(w)).

Due to Lemma 2, we conclude:
Proposition 3. For Ly, Ly C X*, perm(L1) = perm(Ls) iff mx(L1) = wx(L2).

By the definition of the work of a jumping finite automaton M, it is clear
that w € Lypa (M) implies that perm(w) C Lypa (M), i.e., perm(Lypa(M)) C
Ljpa(M). Since perm is extensive as a hull operator, we can conclude:

Corollary 1. If L € JFA, then L is perm-closed.

This also follows by results in [15]. In particular, we mention the following im-
portant characterization theorem from [16], that we enrich by combining it with
the well-known theorem of Parikh [18], using Proposition 3.

Theorem 1. JFA = perm(REG) = perm(CFL).

4 H. Fernau, M. Paramasivan, M. L. Schmid

This theorem also generalizes the main result of [14]. According to the anal-
ysis indicated in [5], Parikh’s original proof would produce, starting from a
context-free grammar G with n variables, a regular expression E of length

@) (22n) such that perm(L(G)) = perm(L(E)), whose corresponding NFA is

even bigger, while the construction of [5] results in an NFA A with only 4"
states, satisfying perm(L(G)) = perm(L(A)).

Corollary 2. Let L be a finite language. Then, L € JFA iff L is perm-closed.

This also shows that all finite JF.A languages are so-called commutative reg-
ular languages as studied by Ehrenfeucht, Haussler and Rozenberg in [4]. We
will come back to this issue later.

The relation between (iterated) catenation and (iterated) shuffle can now be
neatly expressed as follows.

Theorem 2. (*) perm : 2% — 2% is a semiring morphism from the semiring
(2%7,U,-,0,{e}) to the semiring (2%, U, w, D, {€}) that also respects the iterated
catenation resp. shuffle operation.

Clearly, perm cannot be an isomorphism, as the catenation semiring is not
commutative, while the shuffle semiring is, see Proposition 2.

3 Alphabetic Shuffle Expressions

Shuffle expressions and variants thereof have been an active field of study over
decades; we only point the reader to [9], [10] and [11]. Here, we describe one
special variant tightly linked to jumping finite automata. We hence give an
inductive definition of what we call alphabetic shuffle expressions, or a-SHUF
expressions for short, in the following.

Definition 4. The symbols 0, and each a € X are a-SHUF expressions (base
case). If S1,S2 are a-SHUF expressions, then (S1 + S2), (S1 W Sa) and S;™*
are a-SHUF expressions.

The semantics of a-SHUF expressions is defined in the expected way. For
instance, L((a 4+ b)**) = {a,b}*"*. The corresponding class of languages was
termed L3 in [7]. If Sq,S52 are two expressions, then S; = S; means that
they are equivalent, i.e., they describe the same language, or, more formally,
L(S1) = L(S2). Sometimes, to avoid confusion with arithmetics, we also write U
in expressions instead of +.

Notice that we could introduce (classical) regular expressions in the very
same way. Clearly, these characterize the regular languages.

Definition 5. The symbols (), e and each a € X are regular expressions. If Sy, So
are regqular expressions, then (S1+ Sz), (S1-S2) and S1™ are regular expressions.

Jumping Finite Automata 5

Lemma 3. Let R’ be a reqular expression. Let the a-SHUF expression R be
obtained from R’ by consequently replacing all - by W, and all * by “* in R'.
Then, perm(L(R')) = L(R).

Proof. Let R be a regular expression. By definition, this means that L(R') = K,
where K is some expression over the languages), {¢} and {a}, a € X, using only
union, catenation and Kleene-star. By Theorem 2, perm(K) can be transformed
into an equivalent expression K’ using only union, shuffle and iterated shuffle.
Furthermore, in K’, the operation perm only applies to languages of the form 0,
{e} and {a}, a € ¥, which means that by simply removing all perm operators,
we obtain an equivalent expression K" of languages (), {e} and {a}, a € X, using
only union, shuffle and iterated shuffle. This expression directly translates into
the a-SHUF expression R with L(R) = perm(L(R')). O

We are now ready to prove our characterization theorem for JFA.

Theorem 3. A language L C X* is in JFA if and only if there is some a-SHUF
expression R such that L = L(R).

Proof. If L € JFA, then there exists a regular language L’ such that L =
perm(L’) by Theorem 1. L’ can be described by some regular expression R'. By
Lemma 3, we find an a-SHUF expression R such that L = perm(L(R’)) = L(R).

Conversely, if L is described by some a-SHUF expression R, i.e., L = L(R),
then construct the regular expression R’ by consequently replacing all L by -
and all “»* by * in R. Clearly, we face the situation described in Lemma 3, so
that we conclude that perm(L(R')) = L(R) = L. As L(R') is a regular language,
perm(L(R’)) = L € JFA by Theorem 1. 0

Since a-SHUF' languages are closed under iterated shuffle, we obtain the
following corollary as a consequence of Theorem 3, adding to the list of closure
properties given in [15].

Corollary 3. JFA is closed under iterated shuffle.

Let us finally mention a second characterization (recall the first characterization
from Corollary 2) of the finite perm-closed sets.

Proposition 4. Let L be some language. Then, L is finite and perm-closed if
and only if there is an a-SHUF expression R, with L = L(R), that does not
contain the iterated shuffle operator.

Proof. Let L be a finite language with L = perm(L). Clearly, there is a regular
expression Ry, with L(Ry) = L, that uses only the catenation and union op-
erations. As L is perm-closed, the a-SHUF expression R obtained from Ry by
replacing all catenation by shuffle operators satisfies L(R) = perm(L(Ry)) = L
by Lemma 3 and does not contain the iterated shuffle operator. Conversely, let
R be an a-SHUF expression that does not contain the iterated shuffle operator.
By combining Theorem 3 with Corollary 1, we know that L(R) is perm-closed.
It is rather straightforward that L(R) is also finite. 0

6 H. Fernau, M. Paramasivan, M. L. Schmid

Let us now see an example for the class JFA.

Ezample 1. The finite machine M = ({s,n.t, f},{a,b},R,s,{f}) with R =
{sa = r,sb = f,ra = t,rb — rita — f,tb = s,fa — r, fb — s} ac-

cepts (in terms of traditional regular expressions) L = Lpa(M) with L =
L (((ab*ab)*((ab*aa) + b)(ab*aa)*((ab*ab) 4+ b))*(ab*ab)*((ab*aa) 4+ b)(ab*aa)*).
The same M accepts (in terms of a- a

SHUPF expressions) L = Lypa (M) with start = b

L = L(((awb™* Wawwb)™* W ((aLw
B Wa W a) 4+ b) W (aw b Wa L
a)"* W ((aw b™* Wwa L b) + b))** W
(aw b Wwawb)** W ((awd*+* Waw
a)+b) W (aw b* Waa)**).

4 Representations and Normal Forms

Our desired representation theorem can be stated as follows.

Theorem 4. Let L € JFA. Then there exists a number n > 1 and finite sets
M;, N; for 1 <1i<mn, so that the following representation is valid.

L= U perm(M;) i (perm(N;))™* (1)
i=1

We will prove this representation theorem on the level of a-SHUF expres-
sions, so that we actually get a normal form theorem for these. A central tool in
the proofs of this normal form theorem is the following notion that corresponds
to the well-known star-height of regular expressions.

Definition 6. We can inductively associate the (shuffle iteration) height h to
any a-SHUF expression S as follows.

— If S is a base case, then h(S) = 0.
— If S =(S1+4 S2) or S = (51 WSs), then h(S) = max{h(S1),h(S2)}.
— If S =57"", then h(S) = h(S1) + 1.

The shuffle iteration height of a JFA-language L is then the smallest shuffle
iteration height of any a-SHUF' expression S describing L.

Let us mention the following interesting consequence obtained by combining
Theorem 4 with Theorem 3, Lemma 3 and Theorem 1.

Corollary 4. L € JFA if and only if there is a regular language R of star height
at most one such that L = perm(R).

Immediately from the Definition 6, we obtain from Proposition 4:

Corollary 5. A language is finite and perm-closed if and only if it can be de-
scribed by some a-SHUF expression of shuffie iteration height zero.

Jumping Finite Automata 7

Combining Corollary 5 with Theorem 1 and the well-known fact that finite-
ness of regular expressions can be decided, we immediately obtain the following,
as Theorem 4 guarantees that the height of JFA languages is zero or one:

Corollary 6. It is decidable, given some JFA and some integer k, whether or
not this JFA describes a language of shuffle iteration height at most k.

Notice that we have formulated, in this corollary, the shuffle analogue of the
famous star height problem, which has been a major open problem for regular
languages [6]. Recall that Eggan’s Theorem [3] relates the star height of a regular
language to its so-called cycle rank, which formalizes loop-nesting in NFA’s.
Again, the characterization theorems that we derived allow us to conclude that,
in short, for any L € JFA there exists some finite machine M of cycle rank at
most one such that Lypa (M) = L.

Corollary 5 means that, in order to show Theorem 4, it is sufficient (and in a
sense stronger) to prove the following normal form theorem for a-SHUF expres-
sions. The proof resembles the one given by Jantzen [8] for a different variant
of shuffle expressions, but we keep it here, as it shows several technicalities with
these notions.

Theorem 5. For any a-SHUF expression R, an equivalent a-SHUF expression
S with h(S) =1 can be constructed that is the union of n a-SHUF expressions
S1,...,Sn such that S; = F; W G, where h(F;) = h(G;) =0, 1 < i < n.
Moreover, we can assume that F; = U;Lg u; and G; = UT:(? v;, where all u;
and v; are a-SHUF expressions with LU as their only operators.

Proof. We show the claim by induction on the height of R. If h(R) = 0, then
S = RV * is an equivalent expression in the desired normal form. Let h > 0.
Assume now that the result is true for all a-SHUF expressions of height less
than h and consider some a-SHUF expression R with h(R) = h. By repeatedly
applying the distributive law, we can obtain an equivalent a-SHUF expression
R’ that is of the following form:

™ k()

R/:UI_I_lSj,ka

=1 k=1

where each expression S;; contains only the operators shuffle and iterated shuf-
fle. In a first step, by applying the commutative law of the shuffle, we can order
the S x such that, slightly abusing notation, Sj1,...,5;(;) are base cases, and
S;b()+1s - - - » Sj k(s are of the form S;; = (Tj;)"*. To simplify the further dis-
cussions, we can assume that none of the base cases Sj1,...,5; ;) is (0, as this

would mean that the language L(l_l_IZ(:Ji S; k) is empty, and we can omit this

part immediately from the union. In the next step, we form FJ’ = |_|_|Z(i)1 Sk
Notice that, by Corollary 5, each F]’ represents a finite perm-closed set. More-
over, we define a-SHUF expressions G;- of iteration height less than h as follows.

8 H. Fernau, M. Paramasivan, M. L. Schmid

If b(j) = k(j), then G’; := (). Otherwise, G’} := Uk(j) T; ;. By using Rule 4

i=b(j)+1
from Proposition 1, one can see that
m
7 / AR
R = w(e)
j=1

is equivalent to R’. As all G; have iteration height less than h, we can apply the
induction hypothesis to them and replace G; by equivalent expressions

n(j)

LU,
LJEJMva
i=1

where each Fj; and each G;; are a-SHUF expressions of height zero. Rule 4
now yields the following equivalent expression:

m n(4) e LU
R":=|J Fjwll (F,way)™
il :

j=1

Now, we can apply Rule 6 to avoid nesting of the iterated shuffle. Hence, the
following expression is again equivalent:

m n(4)

Riv = U FJ/ L (Fj,i L (Fj’i U Gj’i)"u’* U {E})
. i=1
j=1
Finally, setting Fj; := Fj W [l;e; Fj; and G5 = U (Fyi U Gy) for
I CI(j)={1,...,n(j)}, with Fj 9 = F} and G ¢ = (), and observing that also
these a-SHUF expressions are of height zero, we define

By the commutative and distributive laws and by Rule 4, S is equivalent to
R™ and satisfies all the properties of the theorem, possibly apart from the last
sentence, which can be enforced by exhaustively applying the distributive law.

O

Unfortunately, the construction of Theorem 5 could blow up the size of the
resulting expression exponentially. This does not harm the statement of the
theorem, and also Theorem 4 follows immediately. For algorithmic purposes,
this is indeed a drawback, because this also means that the running time of an
algorithm (derived from the proof of Theorem 5) would be exponential in the
length of the input expression.

Therefore, we establish the following weaker normal form result that can be,
however, obtained in time that can be described within the framework of param-
eterized complexity [2]. In this framework, certain parts of the input are singled

Jumping Finite Automata 9

out as so-called parameters. In our case, it will be the number of iterated shuffle
operator occurrences, as well as the shuffle iteration height of the expression. We
will then present an algorithm whose only exponential-time dependencies is on
these two parts of the input. In other words, if both are fixed (or if we consider
only expressions with a certain upper bound on these parameters as inputs), we
obtain a polynomial-time transformation algorithm.

This is an interesting fact in itself, as it also raises the descriptional complex-
ity question if the blow-up formally described below is indeed necessary. We are
not aware of any work that can be considered as “parameterized descriptional
complexity”, which might be therefore an interesting (new) subject on its own,
motivated by the construction below.

Let us first describe the idea and some of the details of the construction
that we have in mind here. As we are aiming at obtaining some equivalent «-
SHUF expression of shuffle iteration height at most one, we can assume that
the expression that we start with has a height of at least two. When we want to
measure the size of an a-SHUF expression E, we simply count the number of all
occurrences of operators in the expression, and we denote this by s(E). Clearly,
if we consider E as a word over X (plus operator symbols and parentheses), then
the length of E is bounded by a linear function in s(FE). First of all, observe that
each iterated shuffle operator occurrence in some a-SHUF expression E can be
viewed as the outermost operator of a subexpression F' of F that is of a certain
shuffle iteration height h(F'). For the sake of convenience, we can hence associate
a shuffle iteration height also to occurrences of shuffle operators. Let ISO(E)
collect all iterated shuffle operator occurrences of expression E and ISOy(E)
those of shuffle iteration height h. Hence,

h(E)
ISO(E) = | J 1SOu(E).

h=1
If £ is an a-SHUF expresssion over the alphabet X, then let Xy,..., X (g
be fresh alphabets containing new letters, with |X;| = [ISO;(E)| and hence a
natural bijection v¢; : ISO;(F) — X;. Now, consider the a-SHUF expresssion
E’ obtained from E by replacing, for h = 1,...,h(E) — 2, the subexpression
whose outermost operator is some iterated shuffle occurrence j € ISO.,(FE) by
the letter ¢y (4), for all occurrences in I.SOy, (E). As by our assumption h(E) > 2,
h(E") = 2. So, ISOyg)(E) = 1SO2(E") and I1SOp(g)—1(E) = ISO1(E'). In the
following, we are considering all 2l15OL(E")| many subsets of 1.SO;(E’). We will
convert accordingly derived expressions into equivalent ones of star height one.
Proceeding inductively, we can finally show:

Theorem 6. (*) For any a-SHUF expression R, an equivalent a-SHUF ez-
pression S with h(S) < 1 can be constructed in time O*(2ISOURIMER)) . the
resulting expression could be as big as this.

Notice that the O*-notation suppresses polynomial factors, which is a very
suitable notation in the area of Parameterized Complexity. This shows that the
transformation of R into normal form is in FPT, with parameter |[ISO(R)].

10 H. Fernau, M. Paramasivan, M. L. Schmid

5 Comparing JFA and REG

By the results of Meduna and Zemek, we know that JFA and REG are two
incomparable families of languages. Above, we already derived several charac-
terizations of JFANFIN C REG. Let us first explicitly write up a characterization
of JFA N REG that can be easily deduced from our previous results.

Proposition 5. L € JFANRES iff L € RESG and L is perm-closed.

We mention this, as the class JFANREG can be also characterized as follows
according to Ehrenfeucht, Haussler and Rozenberg [4]. Namely, they describe
this class of (what they call) commutative regular languages as finite unions of
periodic languages. We are not giving a definition of this notion here, but rather
state an immediate consequence of their characterization in our terminology.

Theorem 7. Let L C X*. Then, L € JFANRES if and only if there exists a
number n > 1, words w; and finite sets N; for 1 < i < n, where each N; is given
as UaEZi a™(@ for some X; C X and some n; : X; — N, so that the following
representation is valid.

L= U perm(w;) LW (perm(NV;))""*

Let us finally mention that yet another characterization of JFA N REG was
derived in [14, Theorem 3].

6 Complexity of Parsing

For a fixed JFA M, we can decide, for a given word w, whether w € L(M) C
2* in the following way. We scan over w and construct its Parikh mapping
7w (w). Then we simulate a computation of M on w by nondeterministically
choosing in every state the transition labelled by some symbol and decrementing
the corresponding component of 75 (w). If we reach an accepting state with all
components of 7wy (w) being 0, then we conclude w € L(M). In this procedure,
we only have to store the Parikh mapping, which only requires logarithmic space;
thus, this shows JFA C NL C P.!

These considerations show that the fized word problem can be solved in
polynomial time. In the following, we look at the wuniversal word problem for
(generalized) jumping finite automata, which is to decide for a given (general)
finite machine M with input alphabet X' and a word w € X*, whether or not
w € Lypa(M). The study of this problem was explicitly suggested in [15], where
only the mere decidability status was resolved.

We first show that the universal word problem for jumping finite automata
can be solved in polynomial time, provided that the alphabet is fixed.

! We wish to point out that this also follows from results in [1], where containment in
NL is shown for a superclass of JFA.

Jumping Finite Automata 11

Theorem 8. For any fized alphabet, the universal word problem for jumping
finite automata is polynomial-time solvable.

Proof. Let M = (Q, X, R, s, F') be a finite machine over X = {aj,as,...,a;} and
let w € X*. We define a directed graph Gy = (Var, Enr), where Vi contains all
elements (p, (¢1,42,...,0)) withp € Q and, forevery i, 1 < i < k, 0 < £; < |w]g,,
and Ep C Viy x Vi contains all pairs ((p, (¢1, b2, ..., 4k)), (0, (¢4, 05, ..., ¢})))
such that there is a rule pa; — p’ € R, ¢; = {; — 1 and, for every j, 1 < j < k,
with i # j, £; = {;. We note that |G| < (Jw|*|Q|)? and that Gy can be
constructed in time O(|Gas|). The graph Gas corresponds to the computation of
M on input w: a vertex is a configuration consisting of the current state and
the Parikh mapping of the remaining input and there is an edge between two
configurations if it is possible to reach one from the other by the application
of a rule. Hence, w € Ljpa(M) if and only if there exists a path in Gy from
(s,mx(w)) to some vertex (g, (0,0,...,0)) with ¢ € F. This property can be
decided in time O(|Gs]). 0O

The decision procedure of Theorem 8 is only polynomial if the alphabet size is
a constant, which for most real-world applications is the case. From a theoretical
point of view, it would nevertheless be interesting to know whether a polynomial
time procedure for unbounded alphabets is possible.

Next, we show that if the JFA-language is given as an a-SHUF' expression in
the normal form of Theorem 5, then the universal word problem can be solved
in polynomial time also for unbounded alphabets.

Theorem 9. The universal word problem is polynomial-time solvable for a-
SHUF expressions in normal form.

Proof. Let R = |J;"_; R; W (R;)"* be the a-SHUF expression in the normal
form of Theorem 5. Moreover, we define M; = L(E) and N; = L(R]), where R;

and I/%\; are the regular expressions obtained from R; and R by replacing every
shuffle operation by a catenation operation. We can convert each of the n parts
of the union into linear equations as follows. Let w € X* be the input word.
Then, w € L(R; W (R})™*) if and only if there is a non-negative integer solution
of one of the linear equations

me(w) =rg(u) + Z Ty (v),

vEN;

where u € M,. Since the expressions R;, R are unions of shuffles of single
symbols, <, [uland Y7y |v| are linear in |R;| and |R}|, respectively. Thus,
each of the equations is of polynomial size in terms of the size of R. Each of these
linear equations can be analyzed by Gaussian elimination in polynomial time.
Altogether, this proves the claim. 0

If the input finite machine is allowed to be a general finite machine, then
the complexity of the universal word problem increases considerably, i.e., it
becomes NP-complete even for general finite machines accepting finite language
over binary alphabets.

12 H. Fernau, M. Paramasivan, M. L. Schmid

Theorem 10. The universal word problem is NP-complete for generalized jump-
ing finite automata (even for finite languages over binary alphabets).

We can simulate a given generalized jumping finite automaton on a word by
guessing where to jump and which rules to apply. Since the number of guesses
is cleary bounded by the length of the input word, this shows that the universal
word problem is in NP.

It remains to prove the NP-hardness of this problem, which can be done by
a reduction from the following problem.

ExacT BrLock Cover (EBC)

Instance: Words uj,us,...,u; and v over some alphabet Y.

Question: Does there exist a permutation 7 : {1,2,...,k} — {1,2,...,k} such
that v = Ur(1)Un(2) - - Un(r)?

By EBC,, we denote the restricted version of EBC, where X' is a fixed binary
alphabet. It has recently been shown in [12] that EBCy is NP-complete.

Let uy,ug,...,ur, v € X* be an instance of EBCy, where X' = {a,b}. For
the sake of convenience, we define u; = s;18;2...8:¢,, 555 € X, 1 <@ < K,
1< <, and v =tity...ty, t; € X, 1 < j < m. Furthermore, for every j,
1 < j < 2m, we define the j* separator *j = ab/t™a. Forevery i, 1 <i <k, u;
is transformed into A; = {*; s;,1 %4182 .. *j4e,—1 Sie, - 1 < j < m} and v is
transformed into ¥ = % t1 %9 ta ... %y, t,. We note that, for every j, 1 < j < m,
there is exactly one unique occurrence of the j™' separator in ¥ and all these
occurrences of separators are non-overlapping. Finally, we define a general finite
machine M = (Q,EvRa QO7F) by Q = {q07q17q23 .. '7Qk}a R = Uf:l{(h—lw —
qi:w € A;} and F = {qi}. This reduction is obviously polynomial.

We give a proof sketch for the correctness of this reduction. To this end, let
(u1,us2,...,uL,v) be a positive instance of EBCy. Then v = w1y ... Ur) for
some permutation 7 : {1,2,...,k} — {1,2,...,k}. If we insert the j*" separator
after the j*" symbol of Ur(1) - - - Un(k), then we obtain ¥ = wr()Wx(2) - - Wr()
with wr() € Az, 1 < i < k; thus, U € Lypa (M), which yields the following.

Lemma 4. (*) If (u1,ug,...,ux,v) € EBCay, then ¥ € Ljpa(M).

If, on the other hand, v € Ljpa (M), then v = Ur(1)Un(2) - - - Uk can only
be concluded if M never erases a factor that does not correspond to an original
factor of ¥ (or, equivalently, if M never erases a factor that contains consecutive
symbols that do not correspond to consecutive symbols of). This property is
enforced by the separator words; thus, we can conlude the following.

Lemma 5. (*) If v € Ljpa(M), then (uy,us, ..., ug,v) € EBC,.

Theorems 8 and 10 point out that the difference between finite machines and
general finite machines is crucial if we interpret them as jumping finite automata.
In contrast to this, the universal word problem for (classical) finite automata on
the one hand and (classical) general finite automata on the other is very similar
in terms of complexity, i.e., in both cases it can be solved in polynomial time.

Jumping Finite Automata 13

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18

S. Crespi-Reghizzi and P. San Pietro. Commutative languages and their compo-
sition by consensual methods. In Z. Esik and Z. Filop, editors, Proceedings 14th
International Conference on Automata and Formal Languages, AFL, volume 151
of EPTCS, pages 216-230, 2014.

R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

L. C. Eggan. Transition graphs and the star-height of regular events. The Michigan
Mathematical Journal, 10(4):385-397, 12 1963.

A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-free
languages. Theoretical Computer Science, 27:311-332, 1983.

J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A simple
and direct automaton construction. Information Processing Letters, 111(12):614—
619, 2011.

K. Hashiguchi. Algorithms for determining relative star height and star height.
Information and Computation, 78(2):124-169, 1988.

M. Hépner and M. Opp. About three equations classes of languages built up by
shuffle operations. In A. W. Mazurkiewicz, editor, Mathematical Foundations of
Computer Science 1976, 5th Symposium, MFCS, volume 45 of LNCS, pages 337—
344. Springer, 1976.

M. Jantzen. Eigenschaften von Petrinetzsprachen. Technical Report IFI-HH-B-64,
Fachbereich Informatik, Universitdt Hamburg, Germany, 1979.

M. Jantzen. The power of synchronizing operations on strings. Theoretical Com-
puter Science, 14:127-154, 1981.

M. Jantzen. Extending regular expressions with iterated shuffle. Theoretical Com-
puter Science, 38:223-247, 1985.

J. Jedrzejowicz and A. Szepietowski. Shuffle languages are in P. Theoretical Com-
puter Science, 250(1-2):31-53, 2001.

H. Jiang, B. Su, M. Xiao, Y. Xu, F. Zhong, and B. Zhu. On the exact block cover
problem. In Q. Gu, P. Hell, and B. Yang, editors, Algorithmic Aspects in Infor-
mation and Management - 10th International Conference, AAIM, volume 8546 of
LNCS, pages 13—22. Springer, 2014.

O. Klima and L. Poldk. On biautomata. RAIRO Informatique théorique et Appli-
cations/Theoretical Informatics and Applications, 46:573-592, 2012.

M. Latteux and G. Rozenberg. Commutative one-counter languages are regular.
Journal of Computer and System Sciences, 1:54-57, 1984.

A. Meduna and P. Zemek. Jumping finite automata. International Journal of
Foundations of Computer Science, 23(7):1555-1578, 2012.

A. Meduna and P. Zemek. Chapter 17: Jumping finite automata. In Regulated
Grammars and Automata, pages 567-585. Springer, New York, 2014.

F. Otto. Restarting automata. In Z. Esik, C. Martin-Vide, and V. Mitrana, editors,
Recent Advances in Formal Languages and Applications, volume 25 of Studies in
Computational Intelligence, pages 269-303. Springer, 2006.

R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570-581, 1966.

