TWO-DIMENSIONAL PATTERN
LANGUAGES

Henning Fernau Markus L. Schmid®
K. G. Subramanian®

(“Fachbereich 4 — Abteilung Informatikwissenschaften,
Universitat Trier, D-54296 Trier, Germany
{Fernau, MSchmid}@uni-trier.de

(B)School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
kgsmani1948Q@yahoo.com

Abstract

We introduce several classes of array languages obtained by generalising Angluin’s pattern lan-
guages to the two-dimensional case. These classes of two-dimensional pattern languages are
compared with respect to their expressive power and their closure properties are investigated.

1. Introduction

Several methods of generation of two-dimensional languages (also called array languages or
picture languages) have been proposed in the literature, extending the techniques and results
of formal string language theory. A picture is considered as a rectangular array of terminal
symbols in the two-dimensional plane. Models based on grammars or automata as well as
those based on theoretical properties of the string languages are well-known and have been
extensively investigated. We refer the interested readers to books and surveys like the ones
by Rosenfeld [11], Wang [14], Rosenfeld and Siromoney [12], Giammarresi and Restivo [6], or
Morita [10]. For example, regular string languages (also known as recognizable string languages)
can be characterized in terms of local languages and projections. Based on a similar idea, the
class REC of recognizable picture languages (see Giammarresi and Restivo [5]) was proposed
as a two dimensional counterpart of regular string languages. In this work, we attempt to
generalise a class of string languages to the two-dimensional case, which also provides several
desirable features and has therefore attracted considerable interest over the last three decades in
the formal language theory community as well as in the learning theory community: Angluin’s
pattern languages (see [1]).

In this context, a pattern is a string over an alphabet {x,zs,x3,...} of variables, e.g., o :=
1 X1 To X2 x1. For some finite alphabet Y of terminal symbols, the pattern language described
by « (with respect to X) is the set of all words over ¥ that can be derived from « by uniformly
substituting the variables in o by (non-empty) terminal words. For example, if ¥ := {a, b, c},

2 Henning Fernau, Markus L. Schmid, K. G. Subramanian

then u := bcbbcbccaccabeb and v := abababaabaab are words of the pattern language given
by «, since replacing x; by bcb and x5 by cca turns « into u and replacing z; by ab and x5 by
aba turns « into v. On the other hand, the word cabacabababa is not a member of the pattern
language of a.

One of the most notable features of pattern languages is that they have natural and compact
human readable descriptors (or generators), namely the patterns. In particular, this advantage
becomes evident when patterns are compared to other language descriptors as, e. g., grammars
or automata, which are usually quite involved even though the language they describe is rather
simple. Nevertheless, patterns can compete with common automata models and grammars in
terms of expressive power and their practical relevance is demonstrated by the widespread use
of so-called extended regular expressions with backreferences, which implicitly use the concept
of patterns and are capable of defining all pattern languages]

The main goal of this paper is to generalise the concept of patterns as language descriptors to
the two-dimensional case, while preserving the desirable features of (one-dimensional) pattern
languages, i.e., the simplicity and compactness of their descriptors. The work done so far on
two-dimensional languages demonstrates that there are difficulties that seem to be symptomatic
for the task of generalising a class of string languages to the two-dimensional case. Firstly,
such a generalisation is usually accompanied with a substantial increase in complexity of the
descriptors (e.g., when extending context-free or contextual grammars to the two-dimensional
case (see Fernau et al. [2], Freund et al. [3])) and, secondly, there are often many competing
and seemingly different ways to generalise a specific class of string languages, which all can be
considered natural (e. g., it is still on debate what the appropriate two-dimensional counterpart
of the class of regular languages might be (see Giammarresi et al. [7], Matz [9])). Our two-
dimensional patterns, to be introduced in this work, are as simple and compact as their one-
dimensional counterparts. Although there are several different possibilities of how these two-
dimensional patterns can describe two-dimensional languages, one of these sticks out as the
intuitively most natural one. Hence, the model of Angluin’s pattern languages seems to be
comparatively two-dimensional friendly.

Besides the conceptional contribution of this paper, we present a comparison between the
expressive power of different classes of two-dimensional pattern languages and an investigation
of their closure properties. We conclude the paper by outlining further research questions and
possible extensions to the model of two-dimensional pattern languages. For reasons of space
restrictions, most of the proofs have been moved to an appendix.

2. Preliminaries

In this section, we briefly recall the standard definitions and notations regarding one- and
two-dimensional words and languages.

'In fact, these extended regular expressions with backreferences are nowadays a standard element of most
text editors and programming languages (cf. Friedl [4]).

TWO-DIMENSIONAL PATTERN LANGUAGES 3

Let N :={1,2,3,...} and let Ny := NU {0}. For a finite alphabet ¥, a string or word (over
Y)) is a finite sequence of symbols from ¥, and e stands for the empty string. The notation ¥F
denotes the set of all nonempty strings over X, and X* := Xt U {e}. For the concatenation of
two strings wq, we we write wy - wy or simply wiws. We say that a string v € ¥* is a factor of a
string w € X* if there are uy, us € ¥X* such that w = uy - v - us. If u; or usy is the empty string,
then v is a prefix (or a suffiz, respectively) of w. The notation |w| stands for the length of a
string w.

A two-dimensional word (or array) over ¥ is a tuple

W= ((a1,17 a1,2, ... 7a1,n)7 (a2,1, a22, ... 7a2,n)7 S (am,b am,2, - - - 7am,n)))

where m,n € N and, for every 7, 1 <7 < m, and j, 1 < j < n, a;; € X. We define
the number of columns (or width) and number of rows (or height) of W by |W/|. := n and
|W|, := m, respectively. The empty array is denoted by A, i.e., |A|. = ||, = 0. For the sake
of convenience, we also denote W by [a; ;]mn» or by a matrix in a more pictorial form. If we
want to refer to the j™ symbol in row i of the array W, then we use Wi, j] = a;;. By X17,
we denote the set of all nonempty arrays over 3, and ¥** := X+ U {\}. Every subset L C ¥**
is an array language.

Let W := [a; j|mn and W' := [a] ;] v be two non-empty arrays over . The column concate-
nation of W and W', denoted by W © W’, is undefined if m # m’ and is the array

a1 @12 .. aim bia b o by
a1 a2 ... azn b2 b2z ... by
am,1 QGm,2 -.- Am,n bm/71 bm/’2 bmlyn/

otherwise. The row concatenation of W and W', denoted by W & W' is undefined if n # n’
and is the array

ai,1 ai2 .. al,n
az;1 a2 ... Ga2n
am,1 Am,2 ... QAmn
b171 b172 bl,n’
b271 bzyg b2,n’
Byt 1 byt o o byt

otherwise. In order to denote that, e.g., U & V' is undefined, we also write U © V' = undef.
Example 2.1 Let

Wy = [§E§]7W2 = [gﬂ,Wg =[2b¢] and Wy :=[23].
Then W, © Wy and Wy © W3 = undef, but

W, © W, = [b

oo

bB] and Wy © Wy = {

oOpEPoE
o'ocooo

ocooep
—

4 Henning Fernau, Markus L. Schmid, K. G. Subramanian

Next, we define some operations for array languages. The row and column concatenation for
array languages L1 and Ly is defined by L1 © Ly :={U &V | U € L1,V € Ly, U &V # undef}
and Ly O Ly :={UOV | U € L,V € Ly, UDV # undef}, respectively. For an array language L
and k € N, L®* denotes the k-fold row concatenation of L, i.e., L9 := [,6L.6...6L;, L; = L,
1 <i < k. The k-fold column concatenation, denoted by L®* is defined analogously. The row
and column concatenation closure of an array language L is defined by L®* := J;2, L®* and
Lo .= 2, L®% respectively. Obviously, the row and column concatenation closure of an
array language correspond to the Kleene closure of a string language.

Now, we turn our attention to some geometric operations for arrays. The transposition of an
array U, denoted by U", is obtained by reflecting U along the main diagonal. The &-reflection
and O-reflection of U, denoted by U®* and U®* respectively, are obtained by reflecting U
along the horizontal and vertical axis, respectively. The right turn and left turn of U, denoted
by U™ and U", respectively, is obtained by turning U through 90 degrees to the right and to
the left, respectively. For example, if U := [2% 5], then

o]

We address left and right turn also as quarter-turns below. Moreover, the twofold right turn
(displayed right-most in the example above) is also known as a half-turn. All these operations
for arrays are extended to array languages in the obvious way.

abcd

- |

Qaooe
500 Hh @

oo —pzmom = gz 0m - |

Qoo
® Fh(Q 5

[RESESH

500 Hh @
[V e oloN

Next, we briefly summarise the concept of (one-dimensional) pattern languages as introduced
in [1] by Angluin. Technically, the version of pattern languages used here are called nonerasing
terminal-free pattern languages (for an overview of different versions of one-dimensional pattern
languages, the reader is referred to [§ by Mateescu and Salomaa).

A (one-dimensional) pattern is a string over an alphabet X := {x,z9,x3,...} of variables,
e.g., o = T3 TaTyx1. In Section [I] we have seen an intuitive definition of the language
described by a pattern «. This intuition can be formalised in an elegant way by using the
concept of (word) morphisms, i.e., mappings h : ©f — %3 which satisfy h(uv) = h(u) h(v),
for all u,v € X]. In this regard, for some finite alphabet X, the (one-dimensional) pattern
language of o (with respect to) is the set L («) := {h(a) | h : XT — X7 is a morphism}.
An alternative, yet equivalent, way to define pattern languages is by means of factorisations.
To this end, let o :== y192...Yn, ¥; € X, 1 < i < n. Then LP(«) is the set of all words
w € X1 that have a characteristic factorisation for «, i.e., a factorisation w = uj us -« - - Uy,
such that, for every ¢, 1 < i < j < n, y; = y; implies u; = u;. It can be easily seen, that
these two definitions are equivalent. However, for the two-dimensional case, we shall see that a
generalisation of these two approaches will lead to different versions of two-dimensional pattern
languages. The class of all one-dimensional pattern languages over the alphabet ¥ is denoted
by L. We recall the example pattern o = xq x1 22 22 21 and the words u := bcbbebecaccabeb
and v := abababaabaab of Section |1.| Since h(a) = u and g(a) = v, where h and g are the
morphisms induced by h(z;) := bcb, h(zz) := cca and g(x1) := ab, g(x2) := aba, we can
conclude that u,v € L (a), where ¥ := {a, b, c}.

TWO-DIMENSIONAL PATTERN LANGUAGES 5
3. Two-Dimensional Pattern Languages

As already mentioned, this work deals with the task of generalising pattern languages from the
one-dimensional to the two-dimensional case. In order to motivate our approach to solve this
task, we first spent some effort on illustrating the general difficulties and obstacles that arise.

Abstractly speaking, a pattern language for a given pattern « is the collection of all elements
that satisfy a. Thus, a sound definition of how elements satisfy patterns directly entails a
sound definition of a class of pattern languages. In the one-dimensional case, the situation that
a word satisfies a pattern is intuitively clear and it can be defined in several equivalent ways,
i.e., a word w satisfies the pattern « if and only if

e w can be derived from « by uniformly substituting the variables in «,
e w is a morphic image of «,

e w has a characteristic factorisation for «.

We shall now demonstrate that for a two-dimensional pattern, i.e., a two-dimensional word
over the set of variables X, e.g., a := [7} 22], these concepts do not work anymore or they
describe fundamentally different situations. For instance, the basic operation of substituting a
single symbol in a word by another word cannot that easily be extended to the two-dimensional

case. For example, the replacements z1 — [aa],xo — [¢] and z3 — [»] may turn « into one of
the following objects,
C aac Cc C
I NERH AN

which are not two-dimensional words, since they all contain holes or are not of rectangular shape
and, most importantly, are not uniquely defined. On the other hand, it is straightforward to
generalise the concept of a morphism to the two-dimensional case:

Definition 3.1 A mapping h : 77 — X57 is a two-dimensional morphism if it satisfies
h(VOW)=h(V)Oh(W) and h(Ve W) =h(V)e W) for al V,W € ST+,

Hence, we may say that a two-dimensional word W satisfies a two-dimensional pattern « if
and only if there exists a two-dimensional morphism which maps a to W. Unfortunately, this
definition seems to be too strong as demonstrated by the following example. From an intuitive

point of view, the two-dimensional word W := [: Sbaa lﬁ} should satisfy the two-dimensional
cccccc
xr1 T1

pattern a := [} 73], but there is no two-dimensional morphism mapping « to W. This is due
to the fact that, as pointed out by the following proposition (which has also been mentioned by
Siromoney et al. in [13]), a two-dimensional morphism is a mapping with a surprisingly strong
condition.

Proposition 3.2 Let ¥ := {ay,as,...,a,} and Xy be alphabets. If a mapping h: ¥+ — 35+
18 a two-dimensional morphism, then

[h([ar])]e = [R([e2])|e = ... = [A([a])]e and [R([a])], = [R([e2])]; = ... = |A ([])];-

6 Henning Fernau, Markus L. Schmid, K. G. Subramanian

Similarly as in the string case, homomorphisms h : {7 — 37 are uniquely defined by giving
the images h(31). If in particular h(X;) C X9, we term the resulting morphism a letter-to-letter
morphism, while in the even more restricted case when the restriction hy, of h to ¥; yields a
surjective mapping hy, : 31 — Yo, h is referred to as a projection.

We can conclude that the existence of a two-dimensional morphism seems to be a reasonable
sufficient criterion for the situation that a two-dimensional word satisfies a two-dimensional
pattern, but not a necessary one.

In fact, it turns out that characteristic factorisations provide the most promising approach to
formalise how a two-dimensional word satisfies a two-dimensional pattern. Recall the example
pattern o = [7!] from above. Since a = ([#1] © [#1]) © ([#2] © [22]), a characteristic
factorisation of a two-dimensional word U for « is a factorisation of the form U = (V; © Vi) ©
(Vo ® V2). On the other hand, since v = ([#1] © [#2]) @ ([#1] © [#2]), we could as well regard
a factorisation U = (V; © V4) @ (V1 © V3) as characteristic for a. For the sake of convenience,
we say that the former factorisation is of column-row type and the latter one is of row-column
type. Obviously, the two-dimensional word W from above has a characteristic factorisation of
column-row type and a characteristic factorisation of row-column type (with respect to a):

|
|

As a matter of fact, for every two-dimensional word U there exists a characteristic factorisation

W=(hoWe o) = (2ot e (o) =

b
b
c
b
b
c

oo'c ooo

opp opw
opp opp

a
a
C
a
a
C

opE opE

W=(VieV)o(iev)=(313]elccho(iatlelcc]) =]

for a = [} 73] of column-row type if and only if there exists a characteristic factorisation for
« of row-column type. However, this is a particularity of o and, e.g., for o = [3} 72 23] and
W' .= [g22ab<c] there exists a characteristic factorisation of column-row type W' = (V4 @

Voo Vs) (Va0 Va0 Vi) = ([2aa] O [p] ©[c])© ([v] ©[c] ®[22a2a]), but no characteristic
factorisation of row-column type. Furthermore, the column-row factorisation of W' is somewhat
at odds with our intuitive understanding of what it means that a two-dimensional word satisfies
a two-dimensional pattern. This is due to the fact that factorising W’ into ([aaa]®[b]D[<c]) S
([b] © [¢] © [222]) means that we associate the two-dimensional factors [aaa], [b] and [¢]
with the variables x1, xo and w3, respectively, but in the pattern o’ the vertical neighbourship
relation between the occurrence of x, in the first row and the occurrence of x5 in the second
row is not preserved in W’ with respect to the corresponding two-dimensional factors [»] and
[c]. More precisely, while a column-row factorisation preserves the horizontal neighbourship
relation of the variables, it may violate their vertical neighbourship relation, where for row-
column factorisations it is the other way around. Consequently, if we want both the vertical
as well as the horizontal neighbourship relation to be preserved, we should require that the
two-dimensional word U can be disassembled into two-dimensional factors that induce both
a column-row as well as a row-column factorisation. More precisely, we say that U satisfies
o = [z1 22 33] if and only if there exist two-dimensional words Vi, V5 and V3, such that U =
VioV,oVs)e (Vo VzoV) =Viel,) o (VaeV;) o (Ve V;), which we call a proper

characteristic factorisation of U.

We are now ready to formalise the ideas developed so far and we can finally give a sound defini-
tion of two-dimensional pattern languages. Although we consider the class of two-dimensional

TWO-DIMENSIONAL PATTERN LANGUAGES 7

pattern languages that results from the proper characteristic factorisations as the natural two-
dimensional counterpart of the class of one-dimensional pattern languages, we shall also define
the other classes of two-dimensional pattern languages which were sketched above.

For the definition of two-dimensional patterns, we use the same set of variables X that has
already been used in the definition of one-dimensional pattern languages. An array pattern is a
non-empty two-dimensional word over X and a terminal array is a non-empty two-dimensional
word over a terminal alphabet X. If it is clear from the context that we are concerned with
array patterns and terminal arrays, then we simply say pattern and array, respectively. Any
mapping h : X — X7 is called a substitution. For any substitution h, by hg o, we denote the
mapping X T — X7 defined in the following way. For any « := [y; jlmn € X171, we define

hoe(@) == (M(y11) © h(y12) O ... © h(y1,,))©
(h(y21) © h(Y22) O ... © h(y20)) © ... O
((Ym.1) © h(Ym2) © - © M(Ymn)) -

Similarly, hg g : X7 — X7 is defined. Intuitively speaking, both mappings hqg e and hg e,
when applied to an array pattern «, first substitute every variable occurrence of o by a terminal
array according to the substitution A and then these m x n individual terminal arrays are
assembled to one terminal array by either first column-concatenating all the n terminal arrays
in every individual row and then row-concatenating the resulting m terminal arrays, or by
first row-concatenating all the m terminal arrays in every individual column and then column-
concatenating the resulting n terminal arrays.

Let « € XtF, W € ¥*F and let h : X — X*F. The array W is a (1) column-row image
of a (with respect to h), (2) a row-column image of a (with respect to h) or (3) a proper
image of o (with respect to h) if and only if (1) hge(a) = W, (2) hggpla) = W or (3)
hpe(a) = hegla) = W, respectively. The mapping h is called a column-row substitution
for a and W, a row-column substitution for o and W or a proper substitution for o and W,
respectively. We say that W is a column-row, a row-column or a proper image of « if there
exists a column-row, a row-column or a proper substitution, respectively, for o and W.

A nice and intuitive way to interpret the different kinds of images of array patterns is to
imagine a grid to be placed over the terminal array. The vertical lines of the grid represent a
column concatenation and the horizontal lines of the grid represent a row concatenation of the
corresponding factorisation. This means that every rectangular area of the grid corresponds
to an occurrence of a variable x in the array pattern or, more precisely, to the array h(zx)
substituted for . The fact that an array satisfies a pattern is then represented by the situation
that each two rectangular areas of the grid that correspond to occurrences of the same variable
must have identical content. In Figure[I] an example for each a morphic image, a proper image,
a column-row image and a row-column image of a 5 x 4 pattern is represented in this illustrative
way.

Alternatively, we can interpret the property that a terminal array W is a certain type of image
of an array pattern as a tiling of W. More precisely, W satisfies a given array pattern a with
n different variables if and only if n tiles can be allocated to the n variables of a such that

8 Henning Fernau, Markus L. Schmid, K. G. Subramanian

morphic image proper image column-row image row-column image
Figure 1: Illustrating possible image partitions
combining the tiles as indicated by the structure of « yields W. The grids depicted in Figure
then illustrate the structure of such a tiling.
The definitions of the corresponding classes of pattern languages are now straightforward:

Definition 3.3 Let o« € X be an array pattern. We define the following variants of two-
dimensional pattern languages:

o Ly () :={W € X | W is a morphic image of a},

={W € ¥* | W is a proper image of o},
={W e ¥* | W is a column-row image of a},

o Ly ()

[] LZ,r<a)
Ly, (a) :={W € ¥** | W is a row-column image of a},

LZ,rc(a) = szr(a) U szc(a).

For a pattern o, we also denote the above languages by Z pattern language of o, where Z €

{h,p,r,c,rc}. For every x € {r,c,rc,p,h}, we define Ly, = {Ls.(a) | « € XTt} and
L, :={Ls. | X is some alphabet}.

Since, for a fixed array pattern a, every morphic image is a proper image and every proper image
is a row-column image as well as a column-row image, the following subset relations between
the different types of pattern languages hold (in the following diagram, an arrow denotes a
subset relation):

Lgvr(a)
LE,p(O‘) i, Ly.o(a) > LE,TC(O‘>

th(@)

Remark 3.4 As indicated in the introductory part of this section, we consider the class of
p pattern languages as the most natural class of two-dimensional pattern languages. Another
observation that supports this claim is that the p pattern languages are compatible, in a certain
sense, to the one-dimensional pattern languages. More precisely, for a one-dimensional (i.e.,
1 x n) array pattern « the set Ly ,(a) N{W € X** | |W|, = 1} coincides with the one-
dimensional pattern language of a. This does not hold for the h pattern languages (since in the
one-dimensional case the words variables are mapped to can differ in length), but holds for the
r, ¢ and rc pattern languages. However, as pointed out above, the r, ¢ and rc pattern language
of a given pattern o may contain arrays that, from an intuitive point of view, do not satisfy .

TWO-DIMENSIONAL PATTERN LANGUAGES 9
4. General Observations

In this section, we state some general lemmas about two-dimensional morphisms and array
pattern languages, which shall be important for proving the further results presented in this
paper. First, we refine Proposition 3.2} by giving a convenient characterisation for the morphism
property for mappings on arrays. To this end, we define a substitution A to be (m,n)-uniform
if, for every x € X, |h(z)|, = m and |h(z)|. = n and a substitution is uniform if it is (m,n)-
uniform, for some m,n € N.

Lemma 4.1 A mapping h : ¥ — '™ is a two-dimensional morphism if and only if h =
Jo.0 = Jo.e, Where g : ¥ — 1™ is a uniform substitution.

The next lemma states that the composition of two two-dimensional morphisms is again a
two-dimensional morphism.

Lemma 4.2 Let hy : '™ — X* and hy : 2 — A™ be two-dimensional morphisms. Then,
the composition hy o := hy o hy : I — A* is also a two-dimensional morphism.

It is intuitively clear that the structure of a pattern fully determines the corresponding pattern
language and the actual names of the variables are irrelevant, e. g., the patterns [z} 72 74 | and

[25 22 27] should be considered identical. In the following we formalise this intuition. Two array
patterns o := [Y; jlmn and S := [z il are equivalent up to a renaming, denoted by o ~ f3, if

and only if m = m’, n = n’ and, for every 4,7,7',7, 1 < i,i' <m, 1 <55 <n, y; = yyj if
and only if Zi,j = Zi’,j"

Lemma 4.3 Let 2,2 € {h,p,r,c,rc}, let ¥ be an alphabet with |X| > 2 and let o, f € X7,
If Ly, (o) = Ly »(B), then o ~ 5.

For every z,2 € {h,p,r,c,rc}, z # 2/, a ~ [does not necessarily imply Ly, ,(a) = Ly ./ (8),
as pointed out by, e.g., Lna([1) # Ley([= 7)) or Lsy([52]) # L. (5 2]). On the
other hand, since, for every z, € {h,p,r,c,rc}, a ~ [obviously implies Ly, ,(«) = Lx (), two
z pattern languages are equivalent if and only if they are described by two patterns that are
equivalent up to a renaming.

In the remainder of this work, we do not distinguish anymore between patterns that are equiv-
alent up to a renaming, i. e., from now on we say that o and J are equivalent, denoted by a = (8
for simplicity, if they are actually the same arrays or if they are equivalent up to a renaming.

5. Comparison of Array Pattern Language Classes

In this section, we provide a pairwise comparison of our different classes of array pattern lan-
guages and, furthermore, we compare them with the class of recognisable array languages,

10 Henning Fernau, Markus L. Schmid, K. G. Subramanian

denoted by REC, which is one of the most prominent classes of array languages. For a de-
tailed description of REC, the reader is referred to the survey [6] by Giammarresi and Restivo.
Next, we show that, for every alphabet ¥ with |3| > 2, the language classes REC, Ly,
Lsp, Ly, Ls. and Ly ,. are pairwise incomparable. More precisely, for every L£i,Ly €
{REC,ﬁgmEz),p,ﬁz;’r,ﬁg,c,/:z,m} with El 75 ,Cg, we show that Ll \ LQ 7é @, LQ \ El 7£ @
and £, N Ly # (). The non-emptiness of the pairwise intersections of these language classes can
be easily seen:

Proposition 5.1 For every z € {h,p,r,c,rc}, L.x([#1]) = T and ¥t € REC.

It remains to find, for every £y, Ly € {REC, Lx 1, Ls . Lsr, Lxc, Lxrc), & separating language
Ly € L1\ Ly and a separating language Ly € Lo\ £1. We first present all these separating
languages in a table and then we formally prove their separating property. In rows 2 to 6 of
the following table, if a pattern « is the entry that corresponds to the row labeled by class Ly, ,
and the column labeled by class Ly ./, where z,2" € {h,p,r,c,rc}, z # 2/, then this means that
L e Ly, \ Ly Row 1, on the other hand, contains recognisable array languages that are not
array pattern languages.

REC Ez;,h ﬁgp ﬁz,r LE,C EZ,rc
REC | — | {[=]} | {[=]} | {[=]} | {[=]} | {[=]}
Lsp | [51] s AR ARNE Y AR A
Lyp [[m] [[&an]] - [[&@]| (&)] [5e]
Ls, [@] [[@a] | [sa] | - | [&ma]]| [5a]
Lo | [@] [[ma] | [sa] | (&) | - | [53]
Lsre | [m] | [mza] | [Za] | [san] | [mat]]| —
Lemma 5.2 Ly ,([z1]) ¢ REC.
It can be easily verified that, for every z € {p,r,¢,rc}, Ly .(a) = Ly p(a), where o := [71].

Hence, for every z € {h,p,r,c,rc}, Ly .(a) ¢ REC, which implies the first column of the table.
Furthermore, for every z € {h,p,r,c,rc}, {[2]} ¢ Ls.(a), but {[2]} € REC, which implies the
first row of the table.

We point out that, by Lemma , for every z,2" € {h,p,r,c,rc}, z # 2/, if there exists a

pattern 3 with Ly .(8) # Lx.(B), then Ly () € Ls. \ Ly and Ly () € Ls. \ Ls...
Consequently, in order to prove the remaining entries of the table, it is sufficient to identify, for

every z,z" € {h,p,r,c,rc}, z # Z/, a pattern § with Ly .(8) # Lx_/(8), which is done by the
following two lemmas.

Lemma 5.3 For every z € {p,c,r,cr}, Ly n([7s 22]) # Lx.([25 22])-
Lemma 5.4 For every z,2" € {p,c,r,cr}, 2 # 2, Ly ,([23 22]) # Ly ([23 22])-

Proof. Let v := [} 22] and let W) := Ea,WQ .= [222]. We observe that gg () = Wi,
9p.6(7) = Wa, where g, g" are defined by

g(x1) =[], g(z2) = [2], §'(z1) := [2], ¢'(22) 1= [22].

TWO-DIMENSIONAL PATTERN LANGUAGES 11

Thus, Wi € Ly .(y), Wa € Ly.(y) and Wi, Wy € Ly,.(y). On the other hand, Wy, W, ¢
Ly ,(7y), since every proper image of v must have an even number of columns and an even
number of rows. Consequently, for every z € {r,c,rc}, Ly ,(v) # Lx (7). Similarly, Wy ¢ Ly,
and Wy ¢ Ly ., since every column-row image of 4 must have an even number of rows and
every row-column image of v must have an even number of columns. This implies that, for
every z,z' € {c,r,cr}, z # 2/, Ly, () # Ly, (), which concludes the proof. O

6. Closure Properties of Array Pattern Languages

The research of closure properties of classes of formal languages is a classical topic in this
area. However, the number of natural properties is richer in the case of arrays compared to
the more conventional string case. Thus, in this section, we classify the operations that shall
be investigated in this regard according to whether or not they correspond to string language
operations.

6.1. String Language Operations

We first point out that, due to Lemma below, whenever a non-closure result is known
for terminal-free non-erasing string pattern languages, this would straightforwardly transfer to
the array case. We will therefore focus on finding proofs for the string case for non-closure
properties, and conversely, we will try to give proofs for the array case for closure properties.
Interestingly enough, (non-)closure properties have not been studied for the (classical) terminal-
free non-erasing string pattern languages, all published proofs that we are aware of for this
topic use terminals or erasing. So, our study also contributes to the theory of string pattern
languages. Conversely, if we do not manage to find proofs or examples as required for the
mentioned approach, this implicitly always raises an open classical string language question.

For any mode z € {h,p,r, c,rc} and any pattern , let L3>, (7) denote those arrays from Ly . ()
that have just one row, i.e., L, (7) := {W € Lg.(r) | |[W|, = 1}. Clearly, such arrays can
be interpreted as strings and vice versa. In this sense, L3, () and the string language L3 ()
generated by the pattern 7 coincide, as long as z # h. For z = h, we encounter the special case
that all inserted words have to be of the same length. Let us formulate this more formally:

Lemma 6.1 Let m be an array pattern of height one. Then, m is, at the same time, a string
pattern. Moreover, for any z € {p,r,c,rc}, L (7) = LsP(m), while L), () C L (7).

We shall now prove non-closure properties for L¥ (), which directly carry over to the classes
Ly (), z € {h,p,r,c,rc} (for some operations, however, the class Ly, ,(7) constitutes a special
case, which is treated separately). To this end, we will mostly focus on two patterns: a = zyz
and § = xzy. The next lemma states an immediate observation for these patterns.

12 Henning Fernau, Markus L. Schmid, K. G. Subramanian

Lemma 6.2 Over the terminal alphabet ¥ = {a,b}, let Ls(a) (Ls(B)) denote the shortest
words that can be described by o and 3, respectively, disallowing erasing. Then,

Ls(o) = {aaa, aba, bab, bbb},
Ls(B) = {aaa, aab, bba, bbb} .

Proposition 6.3 For any non-unary alphabet 3, L is not closed under union.

Now if there was a pattern 7 such that Ly .(vy) = Lyx.(a) U Ls.(8), z € {p,r,c,rc}, then,
by Lemma [6.1] this would imply L¥(v) = L¥(a) U L¥ (), contradicting Proposition [6.3] We
point out that in the proof of Proposition we do not use any replacements by words of
different lengths to obtain our contradiction. Hence, this argument is also valid in the case
when z = h.

Corollary 6.4 None of the array pattern language classes under consideration (over some
non-unary alphabet) is closed under union.

We proceed with the intersection operation.

Proposition 6.5 For any non-unary alphabet 3, LI is not closed under intersection.

Proof. The argument resembles the previous proof. Assume that v describes L () N L2 ().
Notice that Ls(vy) = {aaa,bbb}, which clearly implies that v = zxx. However, aabaa €

(L2() N LY (B)\ L (7). 0

Notice that the replacement words we used for deriving a contradiction are of different lengths,
meaning that aabaa € Ly(«) because of the replacement = — aa and y — b, but aabaa € Lyx(f)
because of x — a and y — baa. Hence, we cannot conclude non-closure for the A-mode in the
following corollary:

Corollary 6.6 None of the array pattern language classes under consideration (over some
non-unary alphabet and apart from the h-case) is closed under intersection.

Indeed, the h-mode plays a special role, as can be seen by the following result.

Proposition 6.7 Let ¥ be some alphabet. Then, Lsx), is closed under intersection.

Arguments as in Propositions and can be given for any non-trivial binary set operation,
for instance, symmetric difference or set difference. This also gives the according result for
complementation, but there is also an easier argument in that case. Notice that, as non-erasing
pattern languages or array patterns cannot reasonably cope with the empty word or the empty
array, we disregard this in the complement operation.

Proposition 6.8 For any alphabet ¥, LI is not closed under complementation.

Corollary 6.9 None of the array pattern language classes under consideration (over any al-
phabet) is closed under complementation.

TWO-DIMENSIONAL PATTERN LANGUAGES 13

Notice that in the other cases (but complementation), we cannot cope with unary alphabets.
This might need some different arguments.

We shall now turn to operations that are described by different kinds of morphisms. For the
array case, codings (or projections) is a common such operation.

Theorem 6.10 Any of our array pattern language classes (over arbitrary alphabets) is closed
under projections.

The result does not generalize to (string) morphisms where each image is of the same length.

Proposition 6.11 For any non-unary alphabet 3, LE is not closed under morphisms that map
every letter to a word of length two.

Corollary 6.12 None of the array pattern language classes under consideration (over some
non-unary alphabet) is closed under two-dimensional morphisms.

This is also true for the more general operation of substitution, with the same examples.

Let us also remark that Proposition did not rely on the fact that we restricted our attention
to one specific non-unary alphabet . However, if we have a specific alphabet, then we can
even state:

Proposition 6.13 Any of our array pattern language classes (over some fized alphabet X.) is
closed under some projection w : ¥ — X if and only if © is a bijection.

This immediately implies the following

Corollary 6.14 None of our array pattern language classes (over some fized alphabet Y.) is
closed under all letter-to-letter morphisms.

Alternatively, we could also look at inverse morphisms. Here, we already get negative results
for inverse codings.

Proposition 6.15 For any alphabet & with at least four letters, L is not closed under inverse
letter-to-letter morphisms.

Corollary 6.16 None of the array pattern language classes under consideration (over some
sufficiently large alphabet) is closed under inverse (two-dimensional) morphisms.

6.2. Operations Similar to String Language Operations

Let us first turn to the concatenation operation. As a warm-up, we first consider the string
case.

14 Henning Fernau, Markus L. Schmid, K. G. Subramanian

Lemma 6.17 For any alphabet X, LI is closed under concatenation.

The first thing one should note is that the concatenation of two arrays could be undefined
(i.e., if their dimensions do not match), even though the concatenation of the two according
languages need not be empty. However, we can prove:

Theorem 6.18 Fix some alphabet 3.

o Ly, is closed under row concatenation ;
o Ly . is closed under column concatenation Q;

o Ly, and Ly, are closed both under row and under column concatenation.

It is not a coincidence that for Ly, and Ly ., we had to focus on the “correct” concatenation
operation in the preceding theorem. More precisely, we can show:

Theorem 6.19 Fiz some non-unary alphabet 3.

o Lx, is not closed under column concatenation ©;
o Ly . is not closed under row concatenation ©;

o Ls .. 1s neither closed under row nor under column concatenation.

Notice that the proofs of negative closure properties necessitate a non-unary alphabet to work.
Lemma 6.20 Let X be a non-unary alphabet. Consider o« = xx. Then, (L¥(a))t ¢ L.

Proposition 6.21 Let ¥ be a non-unary alphabet. Then, none of the array language fami-
lies Ly, with x € {r,c,rc,p,h} is closed under column concatenation closure nor under row
concatenation closure.

6.3. Operations Special to Arrays

Recall that the transposition operation is first defined for arrays (or patterns) and can then be
lifted to languages and even to language classes. Nearly by definition, we find:

Lemma 6.22 Let ¥ be some alphabet. Let a be a pattern. Then, Ly, (a)" = Ly.(a”) and
Lgyc(@)T = LEVT(OéT).

Corollary 6.23 Let X be some alphabet. Then, LEJT = Lyx. and EgCT =Ly,

Since « := [} 2] is identical to its transposition and, as shown in the proof of Lemma ,

describes an r pattern language (a ¢ pattern language), which is not a ¢ pattern language (not
an r pattern language, respectively), we can conclude the following:

Proposition 6.24 Let X be an alphabet. Neither Ly, . nor Ly, are closed under transposition.

TWO-DIMENSIONAL PATTERN LANGUAGES 15

Proposition 6.25 For any alphabet ¥ and x € {h,p,rc}, Ls . is closed under transposition.

With respect to purely geometric operations as turns and reflections, we find the following:
Proposition 6.26 Let 3 be some alphabet.

® Ly, Ly and Ls j, are closed under quarter-turn.
o For every x € {r,c,rc,p,h}, Lx . is closed under half-turn and reflections.

o Ly, and Ls . are closed neither under left nor under right turn.

The positive closure properties can be easily observed by applying the geometric operation
directly on the array pattern. In order to show non-closure of Ly, , and Ly, . with respect to left
and right turn, it is again sufficient to observe that the pattern « from above is identical to its
left or right turn and then apply a similar argument as in the proof of Lemma [5.4]

Due to symmetry, it does not matter if we consider horizontal or vertical reflections. Notice
that both half-turns and reflections coincide in the string case in any meaningful, non-trivial
interpretation; in that case, the operation is also known as mirror image.

7. Future Research Directions

A thorough investigation of the typical decision problems for two-dimensional pattern languages
like the membership, inclusion and equivalence problem is left for future research. It can be
easily seen that the NP-completeness of the membership problem for string pattern languages
carries over to Ly ., © € {p,r,¢,rc}. On the other hand, for a given array pattern o and a
terminal array W, the question whether or not W € Ly p(a) can be decided in polynomial
time by checking whether W is a morphic image of a with respect to a ('&':, %'ﬁ)—uniform
substitution. As shown by Lemma [4.3] the equivalence problem for all the classes Ly, with
x € {h,p,r,c,rc} and |X| > 2 can be easily solved by simply comparing the patterns. However,
for every z, 2" € {h,p,r,c,rc}, z # 2/, the problem to decide for given patterns o and whether
or not Ly ,(a) = Ly »(f) might be worth investigating. The inclusion problem for terminal-
free nonerasing string pattern languages is still open. Hence, with respect to the inclusion
problem, a positive decidability result for two-dimensional pattern languages implies a positive
decidability result for terminal-free nonerasing string pattern languages.

For string pattern languages it is common to use terminal symbols in the patterns as well as
to consider the erasing case, i.e., variables can be replaced by the empty word. The p pattern
languages can be adapted to the erasing case by allowing variables to be substituted by the
empty array. Furthermore, the situation of having a terminal symbol at position (i,7) of an
array pattern simply forces all the variables in the i*® row to be substituted by arrays of height
1 and all the variables in the j' column to be substituted by arrays of width 1. As in the string
case, it is likely that in the two-dimensional case the difference between erasing and nonerasing
substitutions and patterns with and without terminal symbols lead to different language classes
with different decidability properties, too.

16 Henning Fernau, Markus L. Schmid, K. G. Subramanian

Finally, we wish to point out that it is straightforward to generalise our different classes of
two-dimensional pattern languages to the three-dimensional or even n-dimensional case.

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer and System
Sciences, 21:46-62, 1980.

[2] H. Fernau, R. Freund, and M. Holzer. The generative power of d-dimensional #-context-
free array grammars. In M. Margenstern, editor, Proceedings of MCU’98, Volume 2, pages
43-56. University of Metz, 1998.

[3] R. Freund, G. Paun, and G. Rozenberg. Chapter 8: Contextual array grammars. In
C. Martin-Vide, V. Mitrana, and G. Paun, editors, Series in Machine Perception and
Artificial Intelligence: Volume 66 - Formal Models, Languages and Applications, pages
112-136. World Scientific, 2007.

[4] J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, Sebastopol, CA, third edition,
2006.

[5] D. Giammarresi and A. Restivo. Recognizable picture languages. International Journal of
Pattern Recognition and Artificial Intelligence, 6:31-46, 1992.

[6] D. Giammarresi and A. Restivo. Two-dimensional languages. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, volume 3, chapter 4, pages 215-267. Springer,
1997.

[7] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-order logic over
rectangular pictures and recognizability by tiling systems. Information and Computation
(formerly Information and Control), 125:32—45, 1996.

[8] A. Mateescu and A. Salomaa. Patterns. In G. Rozenberg and A. Salomaa, editors, Hand-
book of Formal Languages, volume 1, pages 230-242. Springer, 1997.

[9] O. Matz. Recognizable vs. regular picture languages. In Proc. 2nd International Conference
on Algebraic Informatics, CAI 2007, volume 4728 of Lecture Notes in Computer Science,
pages 75-86, 2007.

[10] K. Morita. Two-dimensional languages. In C. Martin-Vide, V. Mitrana, and G. Paun,
editors, Studies in Fuzziness and Soft Computing - Formal Languages and Applications,
pages 427-437. Springer, 2004.

[11] A. Rosenfeld. Picture Languages: Formal Models for Picture Recognition. Academic Press,
Inc., Orlando, 1979.

[12] A. Rosenfeld and R. Siromoney. Picture languages — a survey. Languages of Design,
1:229-245, 1993.

[13] G. Siromoney, R. Siromoney, and K. Krithivasan. Picture languages with array rewriting
rules. Information and Control, 22:447-470, 1973.

[14] P. S. P. Wang. Array Grammars, Patterns and Recognizers. World Scientific Publishing
Co., Inc., NJ, USA, 1989.

	1. Introduction
	2. Preliminaries
	3. Two-Dimensional Pattern Languages
	4. General Observations
	5. Comparison of Array Pattern Language Classes
	6. Closure Properties of Array Pattern Languages
	6.1. String Language Operations
	6.2. Operations Similar to String Language Operations
	6.3. Operations Special to Arrays

	7. Future Research Directions

