
Finding Shuffle Words that Represent Optimal
Scheduling of Shared Memory Access

Daniel Reidenbach and Markus L. Schmid ?

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

{D.Reidenbach,M.Schmid}@lboro.ac.uk

Abstract. In the present paper, we introduce and study the problem
of computing, for any given finite set of words, a shuffle word with a
minimum so-called scope coincidence degree. The scope coincidence de-
gree is the maximum number of different symbols that parenthesise any
position in the shuffle word. This problem is motivated by an applica-
tion of a new automaton model and can be regarded as the problem of
scheduling shared memory accesses of some parallel processes in a way
that minimises the number of memory cells required. We investigate the
complexity of this problem and show that it can be solved in polynomial
time.

Keywords: String Algorithms, Shuffle, Memory Access Scheduling

1 Introduction

A shuffle word of two words u and v is any word w that can be produced by
inserting all symbols of u somewhere into v, in such a way that their relative
order, given by u, is preserved. Thus, w comprises both u and v as a (scattered)
subword, and each of its letters corresponds to exactly one letter of either u or
v. Shuffle words of more than two words are constructed iteratively.

In the present paper, we wish to propose and study a question on shuffle words
that is mainly motivated by the following problem on scheduling of memory
accesses: Let us assume we have k processes and m values stored in memory
cells, and all these processes need to access the stored values at some points
during their execution. A process does not necessarily need all the m values at
the same time, so a process might get along with less than m memory cells by,
for example, first using a memory cell for a value x and then, as soon as x is
not needed anymore, using the same cell for another, and previously unneeded,
value y. As an example, we assume that process w1 uses the values a, b and
c in the order abacbc. This process only needs two memory cells: In the first
cell, b is permanently stored, and the second cell first stores a until it is not
required anymore and then stores value c. This is possible, since the part of
w1 where a occurs and the part where c occurs can be completely separated

? Corresponding author.

2 D. Reidenbach, M. L. Schmid

from each other. If we now assume that the k processes cannot access the shared
memory simultaneously, then the question arises how we can sequentially arrange
all memory accesses such that a minimum overall number of memory cells is
required. For example, if we assume that, in addition to process w1 = abacbc,
there is another process w2 := abc, then we can of course first execute w1 and
afterwards w2, which results in the memory access sequence abacbcabc. It is
easy to see that this requires a memory cell for each value a, b and c. On the
other hand, we can first execute aba of process w1, then process w2 = abc, and
finally the remaining part cbc of w1. This results in abaabccbc, which allows us
to use a single memory cell for both values a and c as before.

This scheduling problem can directly be formalised as a question on shuffle
words. To this end, we merely have to interpret each of the k processes as a word
over an alphabet of cardinality m, where m is the number of different values to
be stored. Hence, our problem of finding the best way to organise the memory
accesses of all processes directly translates into computing a shuffle word of the
k processes that minimises the parameter determining the number of memory
cells required. Unfortunately, even for k = 2, there is an exponential number
of possible ways to schedule the memory accesses. However, we can present an
algorithm solving this problem for arbitrary input words and a fixed alphabet
size in polynomial time.

The above described problem is similar to the task of register allocation (see,
e. g., [4,6]), which plays an important role in compiler optimisation. However, in
register allocation, the problem is to allocate a number of m values accessed by
a process to a fixed number of k registers, where k < m, with the possibility to
temporarily move values from a register into the main memory. Since accessing
the main memory is a much more expensive CPU operation, the optimisation
objective is to find an allocation such that the number of memory accesses is
minimised. The main differences to the problem investigated in this work are
that the number of registers is fixed, the periods during which the values must
be accessible in registers can be arbitrarily changed by storing them in the main
memory, and there is usually not the problem of sequentialising several processes.

Our practical motivation and the definition of the above introduced problem
result from an application of a new automaton model with two input heads [7].
In our application, these two input heads need to travel over factors of the
input word; to this end, they need to know the lengths of these factors. Thus,
each input head movement can be interpreted as a process that needs to access
lengths of factors in a certain order. Within the scope of [7], the overall number
of values that need to be stored simultaneously does not only affect the memory
usage of the automaton; it also has a significant impact on the runtime of its
computations. Thus, our problem on shuffle words is crucial in this context.
Although we consider this nontrivial problem fundamental and believe that it
might occur in other practical situations as well, it is not covered by any literature
on scheduling (see, e. g., [1,3]) we are aware of, and the same holds for the research
on the related common supersequence problems (see, e. g., [5]).

Shuffle Words for Optimal Scheduling of Shared Memory Access 3

2 Basic Definitions

In the following, let Σ be a finite alphabet. A word (over Σ) is a finite sequence
of symbols from Σ, and ε stands for the empty word. The symbol Σ+ denotes the
set of all nonempty words over Σ, and Σ∗ := Σ+∪{ε}. For the concatenation of
two strings w1, w2 we write w1 ·w2 or simply w1w2. We say that a string v ∈ Σ∗
is a factor of a string w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1 · v · u2.
If u1 = ε (or u2 = ε), then v is a prefix of w (or a suffix, respectively). The
notation |K| stands for the size of a set K or the length of a string K. The term
alph(w) denotes the set of all symbols occurring in w and, for each a ∈ alph(w),
|w|a refers to the number of occurrences of a in w. If we wish to refer to the
symbol at a certain position j, 1 ≤ j ≤ n, in a word w = a1 ·a2 · · · · ·an, ai ∈ Σ,
1 ≤ i ≤ n, we use w[j] := aj . Furthermore, for each j, j′, 1 ≤ j < j′ ≤ |w|, let
w[j, j′] := aj · aj+1 · · · · · aj′ and w[j,−] := w[j, |w|]. In case that j > |w|, we
define w[j,−] = ε.

We now formally introduce the notion of a shuffle word. The shuffle operation,
denoted by t, is a binary operation on words, defined inductively by

– u t ε = ε t u = {u}, for each u ∈ Σ∗,
– a · u t b · v = a · (u t b · v) ∪ b · (a · u t v), for all u, v ∈ Σ∗ and a, b ∈ Σ.

We extend the definition of the shuffle operation to the case of more than two
words in the obvious way. Furthermore, for arbitrary words w1, w2, . . . , wk ∈ Σ∗,
we call Γ := w1 t w2 t . . . t wk the shuffle of w1, . . . , wk and each word w ∈ Γ
is a shuffle word of w1, . . . , wk. For example, bcaabac ∈ abc t ba t ca.

Finally, we introduce a special property of words that is important for our
central problem. For an arbitrary w ∈ Σ∗ and any b ∈ alph(w) let l, r, 1 ≤
l, r ≤ |w|, be chosen such that w[l] = w[r] = b and there exists no k, k < l, with
w[k] = b and no k′, r < k′, with w[k′] = b. Then the scope of b in w (scw(b) for
short) is defined by scw(b) := (l, r). Note that in the case that for some word w
we have w[j] = b and |w|b = 1, the scope of b in w is (j, j). Now we are ready to
define the so called scope coincidence degree: Let w ∈ Σ∗ be an arbitrary word
and, for each i, 1 ≤ i ≤ |w|, let

scdi(w) := |{b ∈ Σ | b 6= w[i], scw(b) = (l, r) and l < i < r}| .

We call scdi(w) the scope coincidence degree of position i in w. Furthermore,
the scope coincidence degree of the word w is defined by

scd(w) := max{scdi(w) | 1 ≤ i ≤ |w|} .

As an example, we now consider the word w := acacbbdeabcedefdeff. It can
easily be verified that scd8(w) = scd9(w) = 4 and scdi(w) < 4 if i /∈ {8, 9}.
Hence, scd(w) = 4.

4 D. Reidenbach, M. L. Schmid

3 The Problem of Computing Shuffle Words with
Minimum Scope Coincidence Degree

In our practical motivation given in the introduction, we state that we wish
to sequentially arrange parallel sequences of memory accesses. These sequences
shall be modelled by words and the procedure of sequentially arranging them
is described by the shuffle operation. Furthermore, our goal is to construct a
shuffle word such that, for any memory access in the shuffle word, the maximum
number of values that already have been accessed and shall again be accessed
later on is minimal. For instance, in the shuffle word abaabccbc of abacbc and
abc, for each position i, 1 ≤ i ≤ 9, there exists at most one other symbol that
has an occurrence to either side of position i. On the other hand, with respect
to the shuffle word abacbcabc we observe that at position 4 symbol c occurs
while both symbols a and b have an occurrence to either side of position 4.
This number of symbols occurring to both sides of an occurrence of another
symbol is precisely the scope coincidence degree. Hence, our central problem is
the problem of finding, for any given set of words, a shuffle word with a minimum
scope coincidence degree.

Problem 1. For an arbitrary alphabet Σ, let the problem SWminSCDΣ be the
problem of finding, for given wi ∈ Σ∗, 1 ≤ i ≤ k, a shuffle word w ∈ w1t . . .twk
with minimum scope coincidence degree.

Note that in the definition of SWminSCDΣ , the alphabet Σ is constant and
not part of the input; hence, for each alphabet Σ, inputs for the problem
SWminSCDΣ have to consist of words over the alphabet Σ exclusively. This
shall be important for complexity considerations.

A naive approach to solving SWminSCDΣ on input (w1, w2, . . . , wk) would
be to enumerate all elements in w1 t w2 t . . . t wk in order to find one with
minimum scope coincidence degree. However, the size of this search space is too
large, as the cardinality of the shuffle w1 t w2 t . . . t wk is, in the worst case,
given by the multinomial coefficient [2]. More precisely,

|w1 t w2 t . . . t wk| ≤
(

n

|w1|, |w2|, . . . , |wk|

)
=

n!

|w1|!× |w2|!× . . .× |wk|!
,

where n :=
∑k
i=1 |wi|, and x! denotes the factorial of an integer x. This demon-

strates that the search space of a naive algorithm can be exponentially large.
Therefore, a polynomial time algorithm cannot simply search the whole shuffle
u1 t u2 t . . . t uk, which implies that a more sophisticated strategy is required.

Before we present a successful approach to SWminSCDΣ in the next section,
we discuss some simple observations. First, we note that solving SWminSCDΣ

on input w1, w2, . . . , wk by first computing a minimal shuffle word w of w1 and
w2 (ignoring w3, . . . , wn) and then solving SWminSCDΣ on the smaller input
w,w3 . . . , wn and so on is not possible. This can be easily comprehended by
considering the words w1 := aa and w2 := bb and observe that w := aabb is
a shuffle word of w1 and w2 that is optimal, since scd(w) = 0. Now, it is not

Shuffle Words for Optimal Scheduling of Shared Memory Access 5

possible to shuffle w with w3 := ba in such a way that the resulting shuffle word
has a scope coincidence degree of 0; however, w′ := bbbaaa ∈ w1 t w2 t w3 and
scd(w′) = 0.

Intuitively, it seems obvious that the scope coincidence degree only depends
on the leftmost and rightmost occurrences of the symbols. In other words, re-
moving a symbol from a word that does not constitute a leftmost or rightmost
occurrence should not change the scope coincidence degree of that word. For
instance, if we consider a word w := α · c · β, where c is a symbol occurring in α
and β, then all symbols in the word w that are in the scope of c are still in the
scope of c with respect to the word α · β.

Consequently, we can first remove all occurrences of symbols that are neither
leftmost nor rightmost occurrences, then solve SWminSCDΣ on these reduced
words and finally insert the removed occurrences into the shuffle word in such
a way that the scope coincidence degree does not increase. A formalisation and
proof of correctness of this approach is omitted. This reduction of the input
words results in a smaller, but still exponentially large search space. Hence, this
approach does not seem to help us solving SWminSCDΣ in polynomial time.

In the following section, we shall establish basic results about the scope
coincidence degree of words. These results shall then be applied later on in order
to analyse the scope coincidence degree of shuffle words.

4 Further Properties of the Scope Coincidence Degree

In this section, we take a closer look at the scope coincidence degree. We are
particularly interested in how words can be transformed without increasing their
scope coincidence degree. First, we consider a proposition which describes a very
basic property of the scope coincidence degree that directly follows from its
definition. It can roughly be stated by saying that the scope coincidence degree
of a certain position i does not depend on the order of the symbols occurring to
the left and to the right of i.

Proposition 1. Let u, v ∈ Σ∗ with |u| = |v|. If, for some i, 1 ≤ i ≤ |u|,
u[i] = v[i] and u[1, i − 1] is a permutation of v[1, i − 1] and u[i + 1,−] is a
permutation of v[i+ 1,−], then scdi(u) = scdi(v).

Hence, for every position in a word we can permute the part to the left or
to the right of this position without changing its scope coincidence degree. The
scope coincidence degree of the positions in the parts that are permuted is not
necessarily stable, and thus the scope coincidence degree of the whole word may
change. However, if a factor of a word w satisfies a certain property, i. e., it
contains no leftmost occurrence of a symbol with respect to w (it may, however,
contain rightmost occurrences of symbols), then we can arbitrarily permute this
factor without changing the scope coincidence degree of the whole word:

Lemma 1. Let α, β, π, π′ ∈ Σ∗, where π is a permutation of π′ and alph(π) ⊆
alph(α). Then scd(α · π · β) = scd(α · π′ · β).

6 D. Reidenbach, M. L. Schmid

The next two lemmas show that if certain conditions hold, then we can
move one or several symbols in a word to the left without increasing the scope
coincidence degree. The first result of that kind is related to the situation where
only one symbol is moved, and the second lemma describes the case where several
symbols are moved and therefore makes use of the first lemma.

We can informally summarise the first lemma in the following way. We assume
that at position i in a word w a certain symbol b occurs and, furthermore, this
is not the leftmost occurrence of b. Then we can move this symbol to the left
without increasing the scope coincidence degree of w as long as it is not moved
to the left of the leftmost occurrence of a b in w. This seems plausible, as such
an operation shortens the scope of symbol b or leaves it unchanged. However, we
might move this certain b into a region of the word where many scopes coincide;
thus, it is possible that the scope coincidence degree of the new position of
b increases compared to its old position. We can show that this increase of
the scope coincidence degree of that certain position does not affect the scope
coincidence degree of the whole word:

Lemma 2. For all α, β, γ ∈ Σ∗ and for each b ∈ Σ with b ∈ alph(α),

scd(α · b · β · γ) ≤ scd(α · β · b · γ) .

Obviously, if for some word w the condition of Lemma 2 is satisfied not only
for one symbol b but for several symbols d1, d2, . . . , dn, then we can separately
move each of these di, 1 ≤ i ≤ n, to the left and conclude that the scope
coincidence degree of the resulting word does not increase compared to w. This
observation is described by the following lemma.

Lemma 3. Let α, γ, βi ∈ Σ∗, 0 ≤ i ≤ n, n ∈ N, and let di ∈ Σ, 1 ≤ i ≤ n,
such that di ∈ alph(α), 1 ≤ i ≤ n. Then

scd(α ·d1 ·d2 · · · · ·dn ·β1 ·β2 · · · · ·βn ·γ) ≤ scd(α ·β1 ·d1 ·β2 ·d2 · · · · ·βn ·dn ·γ) .

Concerning the previous lemma, we observe that we can as well position the
symbols di, 1 ≤ i ≤ n, in any other order than d1·d2· · · · ·dn and would still obtain
a word with a scope coincidence degree that has not increased. Furthermore, with
Lemma 1, we can conclude that the scope coincidence degree is exactly the same,
no matter in which order the symbols di, 1 ≤ i ≤ n, occur between α and β1.

5 Solving the Problem SWminSCDΣ

In this section, we present an efficient way to solve SWminSCDΣ . Our approach
is established by identifying a certain set of well-formed shuffle words which
contains at least one shuffle word with minimum scope coincidence degree and,
moreover, is considerably smaller than the set of all shuffle words. To this end,
we shall first introduce a general concept for constructing shuffle words, and
then a simpler and standardised way of constructing shuffle words is defined.

Shuffle Words for Optimal Scheduling of Shared Memory Access 7

By applying the lemmas given in the previous section, we are able to show that
there exists a shuffle word with minimum scope coincidence degree that can be
constructed in this simple way.

Let w1, w2, . . . , wk ∈ Σ∗ be arbitrary words. We consider these words as
stack-like data structures where the leftmost symbol is the topmost stack ele-
ment. Now we can empty these stacks by successively applying the pop operation
and every time we pop a symbol from a stack, we append this symbol to the end
of an initially empty word w. Thus, as soon as all stacks are empty, we obtain
a word built up of symbols from the stacks, and this word is certainly a shuffle
word of w1, w2, . . . , wk.

It seems to be useful to reason about different ways of constructing a shuf-
fle word rather than about actual shuffle words, as this allows us to ignore the
fact that in general a shuffle word can be constructed in several completely
different ways. In particular the following unpleasant situation seems to compli-
cate the analysis of shuffle words. If we consider a shuffle word w of the words
w1, w2, . . . , wk, it might be desirable to know, for a symbol b on a certain posi-
tion j, which wi, 1 ≤ i ≤ k, is the origin of that symbol. Obviously, this depends
on how the shuffle word has been constructed from the words wi, 1 ≤ i ≤ k, and
for different ways of constructing w, the symbol b on position j may originate
from different words wi, 1 ≤ i ≤ k. In particular, if we want to alter shuffle
words by moving certain symbols, it is essential to know the origin words wi,
1 ≤ i ≤ k, of the symbols, as this determines how they can be moved without
destroying the shuffle properties.

We now formalise the way to construct a shuffle word by utilising the stack
analogy introduced above. An arbitrary configuration (of the content) of the
stacks corresponding to words wi, 1 ≤ i ≤ k, can be given as a tuple (v1, . . . , vk)
of suffixes, i. e. wi = ui · vi, 1 ≤ i ≤ k. Such a configuration (v1, . . . , vk) is
then changed into another configuration (v1, . . . , vi−1, v

′
i, vi+1, . . . , vk), by a pop

operation, where vi = b · v′i for some i, 1 ≤ i ≤ k, and for some b ∈ Σ. Initially,
we start with the stack content configuration (w1, . . . , wk) and as soon as all
the stacks are empty, which can be represented by (ε, . . . , ε), our shuffle word
is complete. Hence, we can represent a way to construct a shuffle word by a
sequence of these tuples of stack contents:

Definition 1. A construction sequence for words w1, w2, . . . , wk, wi ∈ Σ∗, 1 ≤
i ≤ k, is a sequence s := (s0, s1, . . . , sm), m := |w1 · · · · · wk| such that

– si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m, where, for each i, 0 ≤ i ≤ m, and for
each j, 1 ≤ j ≤ k, vi,j is a suffix of wj ,

– s0 = (w1, . . . , wk) and sm = (ε, ε, . . . , ε),
– for each i, 0 ≤ i ≤ m − 1, there exists a ji, 1 ≤ ji ≤ k, and a bi ∈ Σ such

that vi,ji = bi · vi+1,ji and vi,j′ = vi+1,j′ , j
′ 6= ji.

The shuffle word w = b0 · b1 · · · · · bm−1 is said to correspond to s. In a step
from si to si+1, 0 ≤ i ≤ m− 1, of s, we say that the symbol bi+1 is consumed.

To illustrate the definition of construction sequences, we consider an example
construction sequence s := (s0, s1, . . . , s9) corresponding to a shuffle word of the

8 D. Reidenbach, M. L. Schmid

words w1 := a · b · a · c · b · c and w2 := a · b · c:

s := ((a · b · a · c · b · c, a · b · c), (b · a · c · b · c, a · b · c), (b · a · c · b · c, b · c),

(b · a · c · b · c, c), (a · c · b · c, c), (a · c · b · c, ε), (c · b · c, ε),
(b · c, ε), (c, ε), (ε, ε)) .

The shuffle word corresponding to s is w := a · a · b · b · c · a · c · b · c, and it is
easy to see that scd(w) = 2.

In the next definition, we introduce a certain property of construction se-
quences that can be easily described in an informal way. Recall that in an arbi-
trary step from si to si+1 of a construction sequence s, exactly one symbol b is
consumed. Hence, at each position si = (v1, . . . , vk) of a construction sequence,
we have a part u of already consumed symbols, which is actually a prefix of the
shuffle word we are about to construct and some suffixes v1, . . . , vk that remain
to be consumed. A symbol b that is consumed can be an old symbol that already
occurs in the part u or it can be a new symbol that is consumed for the first
time. Now the special property to be introduced next is that this consumption
of symbols is greedy with respect to old symbols: Whenever a new symbol b is
consumed in a step from si to si+1 = (v1, . . . , vk), we require the construction
sequence to first consume as many old symbols as possible from the remaining
v1, . . . , vk before another new symbol is consumed. For the sake of uniqueness,
this greedy consumption of old symbols shall be defined in a canonical order, i. e.
we first consume all the old symbols from v1, then all the old symbols from v2 and
so on. Obviously, there are still several possible greedy construction sequences
for some input words wi, 1 ≤ i ≤ k, as whenever a new symbol is consumed, we
have a choice of k possible suffixes to consume this symbol from. We formally
define this greedy property of construction sequences.

Definition 2. Let w ∈ w1 t w2 t . . . t wk, wi ∈ Σ∗, 1 ≤ i ≤ k, and let
s := (s0, s1, . . . , s|w|) with si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ |w|, be an arbitrary
construction sequence for w. An element si, 1 ≤ i ≤ |w| − 1, of s satisfies the
greedy property if and only if w[i] /∈ alph(w[1, i − 1]) implies that for each j,
1 ≤ j ≤ k, si+|u1· ··· ·uj | = (vi,1, . . . , vi,j , vi,j+1, . . . , vi,k), where vi,j = uj · vi,j
and uj is the longest prefix of vi,j such that alph(uj) ⊆ alph(w[1, i]).

A construction sequence s := (s0, s1, . . . , s|w|) for some w ∈ Σ∗ is a greedy
construction sequence if and only if, for each i, 1 ≤ i ≤ |w| − 1, si satisfies
the greedy property. A shuffle word w that corresponds to a greedy construction
sequence is a greedy shuffle word.

As an example, we again consider the words w1 = a·b·a·c·b·c and w2 = a·b·c.
This time, we present a greedy construction sequence s := (s0, s1, . . . , s9) for w1

and w2:

s := ((a · b · a · c · b · c, a · b · c), (b · a · c · b · c, a · b · c),

(b · a · c · b · c, b · c), (b · a · c · b · c, c), (a · c · b · c, c),

(c · b · c, c), (c · b · c, ε), (b · c, ε), (c, ε), (ε, ε)) .

Shuffle Words for Optimal Scheduling of Shared Memory Access 9

Obviously, the shuffle word w := a · a · b · b · a · c · c · b · c corresponds to the
construction sequence s and scd(w) = 1. To show that s is a greedy construction
sequence, it is sufficient to observe that s1, s3 and s6 (the elements where a new
symbol is consumed) satisfy the greedy property. We only show that s3 satisfies
the greedy property as s1 and s6 can be handled analogously. First, we recall
that s3 = (b · a · c · b · c, c) and note that, in terms of Definition 2, we have
u1 := b · a, v3,1 := c · b · c, u2 := ε and v3,2 := c. By definition, s3 only satisfies
the greedy property if s3+|u1| = (v3,1, v3,2) and s3+|u1·u2| = (v3,1, v3,2). Since
|u1| = |u1 · u2| = 2, v3,1 = c · b · c, v3,2 = v3,2 = c and s5 = (c · b · c, c), this
clearly holds.

In the following, we show how we can transform an arbitrary construction
sequence s := (s0, s1, . . . , sm) into a greedy one. Informally speaking, this is done
by determining the first element si that does not satisfy the greedy property and
then we simply redefine all the elements sj , i+ 1 ≤ j ≤ m, in a way such that si
satisfies the greedy property. If we apply this method iteratively, we can obtain
a greedy construction sequence. Next, we introduce the formal definition of that
transformation and explain it in more detail later on.

Definition 3. We define an algorithm G that transforms a construction se-
quence. Let s := (s0, s1, . . . , sm) with si = (vi,1, vi,2, . . . , vi,k), 0 ≤ i ≤ m, be an
arbitrary construction sequence that corresponds to a shuffle word w. In the case
that s is a greedy construction sequence, we define G(s) := s. If s is not a greedy
construction sequence, then let p, 1 ≤ p ≤ m, be the smallest number such that
sp does not satisfy the greedy property. Furthermore, for each j, 1 ≤ j ≤ k, let uj
be the longest prefix of vp,j with alph(uj) ⊆ alph(w[1, p]) and let vp,j = uj · vp,j.
For each j, 1 ≤ j ≤ k, let σj : Σ∗ → Σ∗ be a mapping defined by σj(x) := vp,j
if |x| > |vp,j | and σj(x) := x otherwise, for each x ∈ Σ∗. Furthermore, let the
mapping σ : (Σ∗)k → (Σ∗)k be defined by σ((v1, . . . , vk)) := (σ1(v1), . . . , σk(vk)),
vj ∈ Σ∗, 1 ≤ j ≤ k. Finally, we define G(s) := (s′0, s

′
1, . . . , s

′
m′), where the ele-

ments s′i, 0 ≤ i ≤ m′, are defined by the following procedure.

1: s′i := si, 0 ≤ i ≤ p
2: for all j, 1 ≤ j ≤ k, do
3: s′p+|u1· ··· ·uj | := (vp,1, . . . , vp,j , vp,j+1, . . . , vp,k)

4: for all lj, 2 ≤ lj ≤ |uj |, do
5: sp+|u1· ··· ·uj−1|+lj−1 := (vp,1, . . . , vp,j−1, uj [lj ,−] · vp,j , vp,j+1, . . . , vp,k)
6: end for
7: end for
8: q′ ← p+ 1
9: q′′ ← p+ |u1 · · · · · uk|+ 1

10: while q′ ≤ m do
11: if σ(sq′−1) 6= σ(sq′) then
12: s′q′′ := σ(sq′)
13: q′′ ← q′′ + 1
14: end if
15: q′ ← q′ + 1
16: end while

10 D. Reidenbach, M. L. Schmid

As mentioned above, we explain the previous definition in an informal way
and shall later consider an example. Let s := (s0, s1, . . . , sm) be an arbitrary con-
struction sequence and let p and the uj , 1 ≤ j ≤ k, be defined as in Definition 3.
The sequence s′ := (s′0, s

′
1, . . . , s

′
m′) := G(s) is obtained from s in the following

way. We keep the first p elements and then redefine the next |u1 · · · · ·uk| elements
in such a way that s′p satisfies the greedy property as described by Definition 2.
This is done in lines 1 to 9 of the algorithm. Then, in order to build the rest of
s′, we modify the elements si, p + 1 ≤ i ≤ m. First, for each component vi,j ,
p+1 ≤ i ≤ m, 1 ≤ j ≤ k, if |vp,j | < |vi,j | we know that vi,j = uj ·vp,j , where uj is
a suffix of uj . In s′, this part uj has already been consumed by the new elements
s′i, p+ 1 ≤ i ≤ p+ |u1 · · · · ·uk|, and is, thus, simply cut off and discarded by the
mapping σ in Definition 3. More precisely, if a component vi,j , p + 1 ≤ i ≤ m,
1 ≤ j ≤ k, of an element si is longer than vp,j , then σj(vi,j) = vi,j . If on the
other hand |vi,j | ≤ |vp,j |, then σ(vi,j) = vi,j . This is done in lines 10 to 18 of the
algorithm.

The following proposition shows that G(s) actually satisfies the conditions
to be a proper construction sequence:

Proposition 2. For each construction sequence s of some words w1, . . . , wk,
G(s) is also a construction sequence of the words w1, . . . , wk.

Now, as an example for Definition 3, we consider the construction sequence

s := ((a · b · a · c · b · c, a · b · c), (b · a · c · b · c, a · b · c),

(b · a · c · b · c, b · c), (b · a · c · b · c, c), (a · c · b · c, c),

(a · c · b · c, ε), (c · b · c, ε), (b · c, ε), (c, ε), (ε, ε))

of the words w1 = a·b·a·c·b·c and w2 = a·b·c, as given below Definition 1. The
shuffle word that corresponds to this construction sequence is w := a·a·b·b·c·a·
c ·b ·c. We now illustrate how the construction sequence s′ := (s′0, s

′
1, . . . , s

′
m) :=

G(s) is constructed by the algorithm G. First, we note that s3 = (b ·a ·c ·b ·c, c)
is the first element that does not satisfy the greedy property, since in the step
from s4 to s5, the symbol c is consumed before the leftmost (and old) symbol a
from v4,1 is consumed. Thus, s′i = si, 1 ≤ i ≤ 3. As w[1, 3] = a ·a ·b, we conclude
that u1 := b · a and u2 := ε. So the next to elements s′4 and s′5 consume the
factor u1 from b · a · c · b · c, hence, s′4 = (a · c · b · c, c) and s′5 = (c · b · c, c).
Now let σ be defined as in Definition 3, thus,

σ(s3) = (c · b · c, c), σ(s4) = (c · b · c, c), σ(s5) = (c · b · c, ε),
σ(s6) = (c · b · c, ε), σ(s7) = (b · c, ε), σ(s8) = (c, ε), σ(s9) = (ε, ε) .

Since σ(s3) = σ(s4) and σ(s5) = σ(s6), we ignore σ(s4) and σ(s6); hence,

s′6 = σ(s5) = (c · b · c, ε), s′7 = σ(s7) = (b · c, ε),
s′8 = σ(s8) = (c, ε), s′9 = σ(s9) = (ε, ε) .

Shuffle Words for Optimal Scheduling of Shared Memory Access 11

In conclusion

s′ = ((a · b · a · c · b · c, a · b · c), (b · a · c · b · c, a · b · c),

(b · a · c · b · c, b · c), (b · a · c · b · c, c), (a · c · b · c, c),

(c · b · c, c), (c · b · c, ε), (b · c, ε), (c, ε), (ε, ε)) .

Next, we show that if in a construction sequence s := (s0, s1, . . . , sm) the
element sp is the first element that does not satisfy the greedy property, then in
G(s) := (s′0, s

′
1, . . . , s

′
m) the element s′p satisfies the greedy property. This follows

from Definition 3 and has already been informally explained.

Proposition 3. Let s := (s0, s1, . . . , sm) be any construction sequence that is
not greedy, and let p, 0 ≤ p ≤ m, be the smallest number such that sp does not
satisfy the greedy property. Let s′ := (s′0, s

′
1, . . . , s

′
m) := G(s) and, if s′ is not

greedy, let q, 0 ≤ q ≤ m, be the smallest number such that s′q does not satisfy
the greedy property. Then p < q.

More importantly, we can also state that the scope coincidence degree of the
shuffle word corresponding to G(s) does not increase compared to the shuffle
word that corresponds to s. To this end, we shall employ the lemmas introduced
in Section 4.

Lemma 4. Let s be an arbitrary construction sequence that corresponds to the
shuffle word w and let w′ be the shuffle word corresponding to G(s). Then
scd(w′) ≤ scd(w).

The previous lemma is very important, as it implies our next result, which can
be stated as follows. By iteratively applying the algorithm G, we can transform
each construction sequence, including the ones corresponding to shuffle words
with minimum scope coincidence degree, into a greedy construction sequence
that corresponds to a shuffle word with a scope coincidence degree that is the
same or even lower:

Theorem 1. Let w ∈ w1 t . . .twk, wi ∈ Σ∗, 1 ≤ i ≤ k, be an arbitrary shuffle
word. There exists a greedy shuffle word w′ such that scd(w′) ≤ scd(w).

This particularly implies that there exists a greedy shuffle word with mini-
mum scope coincidence degree. Hence, SWminSCDΣ reduces to the problem of
finding a greedy shuffle word with minimum scope coincidence degree.

The following algorithm – referred to as SolveSWminSCD – applies the above
established way to construct greedy shuffle words and enumerates all possible
greedy shuffle words in order to solve SWminSCDΣ .

Next, we state that this algorithm works correctly and establish its time
complexity.

Theorem 2. On an arbitrary input (w1, w2, . . . , wk) ∈ (Σ∗)k, the algorithm
SolveSWminSCD computes its output w ∈ w1tw2t . . .twk in time O(|w1 · · · · ·
wk| × k|Σ|) and there exists no w′ ∈ w1 t w2 t . . . t wk with scd(w′) < scd(w).

12 D. Reidenbach, M. L. Schmid

Algorithm 1 SolveSWminSCD

1: optShuffle := ε, minscd := |Σ|, push (ε, (w1, . . . , wk))
2: while the stack is not empty do
3: Pop element (w, (v1, . . . , vk))
4: if |v1 · v2 · · · · · vk| = 0 and scd(w) < minscd then
5: optShuffle := w
6: minscd := scd(w)
7: else
8: for all i, 1 ≤ i ≤ k, with vi 6= ε do
9: b := vi[1]

10: vi := vi[2,−]
11: Let uj , 1 ≤ j ≤ k, be the longest prefix of vj with alph(uj) ⊆ alph(w · b)
12: Push (w ·b·u1 ·u2 · · · · ·uk, (v1[|u1|+1,−], v2[|u2]+1,−], . . . , vk[|uk|+1,−]))
13: end for
14: end if
15: end while
16: Output optShuffle

By applying the observation from Section 3 – i. e., we can solve SWminSCD
by first deleting all the occurrences of symbols in the input words that are neither
leftmost nor rightmost occurrences and then solving SWminSCD for the reduced
input words – we can prove the following result about the time complexity of
SWminSCD:

Theorem 3. The problem SWminSCD on an arbitrary input (w1, w2, . . . , wk) ∈
(Σ∗)k can be solved in time O(|Σ| × k|Σ|+1).

References

1. R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of Scheduling. Addison-
Wesley Publishing Company, Reading, Mass., 1967.

2. P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon collectors,
caching algorithms and self-organizing search. Discrete Applied Mathematics,
39:207–229, 1992.

3. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
Discrete Mathematics, 5:287–326, 1979.

4. L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation.
Journal of the ACM, 13:43–61, 1966.

5. D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25:322–336, 1978.

6. F. M. Q. Pereira. A survey on register allocation. 2008. http://compilers.cs.

ucla.edu/fernando/publications/drafts/survey.pdf.
7. D. Reidenbach and M. L. Schmid. A polynomial time match test for large classes

of extended regular expressions. In Proc. 15th International Conference on Imple-
mentation and Application of Automata, CIAA 2010, volume 6482 of Lecture Notes
in Computer Science, pages 241–250. Springer, 2011.

